Skip to main content
Log in

Encoding of variability of landmark-based spatial information

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Recent evidence suggests humans optimally weight visual and haptic information (i.e., in inverse proportion to their variances). A more recent proposal is that spatial information (i.e., distance and direction) may also adhere to Bayesian principles and be weighted in an optimal fashion. A fundamental assumption of this proposal is that participants encode the variability of spatial information. In a three-dimensional virtual-environment open-field search task, we provide evidence that participants encoded the variability of landmark-based spatial information. Specifically, participants searched for a hidden goal location in a 5 × 5 matrix of raised bins. Participants experienced five training phases in which they searched for a hidden goal that maintained a unique spatial relationship to each of four distinct landmarks. Each landmark was assigned an a priori value of locational uncertainty such that each varied in its ability to predict a goal (i.e., varied in number of potential goal locations). Following training, participants experienced conflict trials in which two distinct landmarks were presented simultaneously. Participants preferentially responded to the landmark with the lower uncertainty value (i.e., smaller number of potential goal locations). Results provide empirical evidence for the encoding of variability of landmark-based spatial information and have implications for theoretical accounts of spatial learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arthur, E. J., Hancock, P. A., & Chrylser, S. T. (1997). The perception of spatial layout in real and virtual worlds. Ergonomics, 40, 69–77.

    Article  PubMed  Google Scholar 

  • Bayes, T. (1763). Essays towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society, 53, 370–418.

    Article  Google Scholar 

  • Burgess, N. (2006). Spatial memory: How egocentric and allocentric combine. Trends in Cognitive Sciences, 10, 551–557.

    Article  PubMed  Google Scholar 

  • Chamizo, V. D. (2003). Acquisition of knowledge about spatial location: Assessing the generality of the mechanism of learning. The Quarterly Journal of Experimental Psychology, 56B, 102–113.

    Article  Google Scholar 

  • Chamizo, V. D., Aznar-Casanova, J. A., & Artigas, A. A. (2003). Human overshadowing in a virtual pool: Simple guidance is a good competitor against local learning. Learning and Motivation, 34, 262–281.

    Article  Google Scholar 

  • Cheng, K. (1986). A purely geometric module in the rat’s spatial representation. Cognition, 23, 149–178.

    Article  PubMed  Google Scholar 

  • Cheng, K. (2008). Whither geometry? Troubles of the geometric module. Trends in Cognitive Sciences, 12, 355–361.

    Article  PubMed  Google Scholar 

  • Cheng, K., & Newcombe, N. S. (2005). Is there a geometric module for spatial orientation? Squaring theory and evidence. Psychonomic Bulletin & Review, 12, 1–23.

    Google Scholar 

  • Cheng, K., & Newcombe, N. S. (2006). Geometry, features, and orientation in vertebrate animals: A pictorial review. In M. F. Brown & R. G. Cook (Eds.), Animal spatial cognition: Comparative, neural, and computational approaches. Available at http://www.pigeon.psy.tufts.edu/asc/cheng/.

  • Cheng, K., Shettleworth, S. J., Huttenlocher, J., & Rieser, J. J. (2007). Bayesian integration of spatial information. Psychological Bulletin, 133, 625–637.

    Article  PubMed  Google Scholar 

  • Cheng, K., & Spetch, M. L. (2001). Blocking in landmark-based search in honeybees. Animal Learning & Behavior, 29, 1–9.

    Google Scholar 

  • Dawson, M. R. W., Kelly, D. M., Spetch, M. L., & Dupuis, B. (2010). Using perceptrons to explore the reorientation task. Cognition, 114, 207–226.

    Article  PubMed  Google Scholar 

  • Deneve, S., & Pouget, A. (2004). Bayesian multisensory integration and cross-modal spatial links. Journal of Physiology Paris, 98, 249–258.

    Article  Google Scholar 

  • Doeller, C. F., & Burgess, N. (2008). Distinct error-correcting and incidental learning location relative to landmarks and boundaries. In Proceedings of the National Academy of Sciences. (Vol.105, 5909–5914).

  • Doeller, C. F., King, J. A., & Burgess, N. (2008). Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. In Proceedings of the National Academy of Sciences. (Vol. 105, 5915–5920).

  • Ernst, M. E., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415, 429–433.

    Article  PubMed  Google Scholar 

  • Foo, P., Warren, W. H., Duchon, A., & Tarr, M. J. (2005). Do humans integrate routes into a cognitive map? Map- versus landmark-based navigation of novel shortcuts. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31, 195–215.

    Article  PubMed  Google Scholar 

  • Gallistel, C. R. (1990). The organization of learning. Cambridge, MA: MIT Press.

    Google Scholar 

  • Gallistel, C. R. (2003). Conditioning from an information processing perspective. Behavioural Processes, 62, 89–101.

    Article  PubMed  Google Scholar 

  • Gallistel, C. R., & Gibbon, J. (2001). Computational versus associative models of simple conditioning. Current Directions in Psychological Science, 10, 146–150.

    Article  Google Scholar 

  • Gillner, S., Weiß, A. M., & Mallot, H. A. (2008). Visual place recognition and homing in the absence of feature-based landmark information. Cognition, 109, 105–122.

    Article  PubMed  Google Scholar 

  • Graham, M., Good, M. A., McGregor, A., & Pearce, J. M. (2006). Spatial learning based on the shape of the environment is influenced by properties of the objects forming the shape. Journal of Experimental Psychology: Animal Behavior Processes, 32, 44–59.

    Article  PubMed  Google Scholar 

  • Gray, E. R., Bloomfield, L. L., Ferrey, A., Spetch, M. L., & Sturdy, C. B. (2005). Spatial encoding in mountain chickadees: Features overshadow geometry. Biology Letters, 1, 314–317.

    Article  PubMed  Google Scholar 

  • Hartley, T., King, J. A., & Burgess, N. (2003). Studies of the neural basis of human navigation and memory. In K. Jeffery (Ed.), The neurobiology of spatial behavior (pp. 144–164). New York: Oxford University Press.

    Google Scholar 

  • Healy, S. (1998). Spatial representation in animals. Oxford: Oxford University Press.

    Google Scholar 

  • Jones, J. E., Antoniadis, E., Shettleworth, S. J., & Kamil, A. C. (2002). A comparative study of geometric rule learning by nutcrackers, pigeons, and jackdaws. Journal of Comparative Psychology, 116, 350–356.

    Article  PubMed  Google Scholar 

  • Kamil, A. C., & Jones, J. E. (2000). Geometric rule learning by Clark’s nutcrackers. Journal of Experimental Psychology: Animal Behavior Processes, 26, 439–453.

    Article  PubMed  Google Scholar 

  • Kelly, D. M., & Gibson, B. M. (2007). Spatial navigation: Spatial learning in real and virtual environments. Comparative Cognition & Behavior Reviews, 2, 111–124.

    Google Scholar 

  • Klatzky, R. L., Loomis, J. M., Beall, A. C., Chance, S. S., & Golledge, R. G. (1998). Spatial updating of self-position and orientation during real, imagined, and virtual locomotion. Psychological Science, 9, 293–298.

    Article  Google Scholar 

  • Loomis, J. M., Blascovich, J. J., & Beall, A. C. (1999). Immersive virtual environment technology as a basic research tool in psychology. Behavior Research Methods, Instruments & Computers, 31, 557–564.

    Google Scholar 

  • Miller, N. Y. (2009). Modeling the effects of enclosure size on geometry learning. Behavioural Processes, 80, 306–313.

    Article  PubMed  Google Scholar 

  • Miller, N. Y., & Shettleworth, S. J. (2007). Learning about environmental geometry: An associative model. Journal of Experimental Psychology: Animal Behavior Processes, 33, 191–212.

    Article  PubMed  Google Scholar 

  • Montello, D. R., Hegarty, M., Richardson, A. E., & Waller, D. (2004). Spatial memory of real environments, virtual environments, and maps. In G. L. Allen (Ed.), Human spatial memory (pp. 251–285). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Mou, W., Biocca, F., Owen, C. B., Tang, A., Xiao, F., & Lim, L. (2004). Frames of reference in mobile augmented reality displays. Journal of Experimental Psychology: Applied, 10, 238–244.

    Article  PubMed  Google Scholar 

  • Newcombe, N. S., & Ratliff, K. R. (2007). Explaining the development of spatial reorientation: Modularity-plus-language versus the emergence of adaptive combination. In J. Plumert & J. Spencer (Eds.), The emerging spatial mind (pp. 53–76). New York: Oxford.

    Google Scholar 

  • Pearce, J. M., Graham, M., Good, M. A., Jones, P. M., & McGregor, A. (2006). Potentiation, overshadowing, and blocking of spatial learning based on the shape of the environment. Journal of Experimental Psychology: Animal Behavior Processes, 32, 201–214.

    Article  PubMed  Google Scholar 

  • Péruch, P., & Gaunet, F. (1998). Virtual environments as a promising tool for investigating human spatial cognition. Current Psychology of Cognition, 17, 881–899.

    Google Scholar 

  • Ponticorvo, M., & Miglino, O. (2010). Encoding geometric and non-geometric information: a study with evolved agents. Animal Cognition, 13, 157–174.

    Article  PubMed  Google Scholar 

  • Ratliff, K. R., & Newcombe, N. S. (2008). Reorienting when cues conflict: Evidence for an adaptive combination view. Psychological Science, 19, 1301–1307.

    Article  PubMed  Google Scholar 

  • Rescorla, R. A. (1988). Pavlovian conditioning: It’s not what you think it is. American Psychologist, 43, 151–160.

    Article  PubMed  Google Scholar 

  • Rodrigo, T., Chamizo, V. D., McLaren, I. P., & Mackintosh, N. J. (1997). Blocking in the spatial domain. Journal of Experimental Psychology: Animal Behavior Processes, 23, 110–118.

    Article  PubMed  Google Scholar 

  • Singer, R. A., Abroms, B. D., & Zentall, T. R. (2006). Formation of simple cognitive maps in rats. International Journal of Comparative Cognition, 19, 417–425.

    Google Scholar 

  • Spetch, M. L., & Kelly, D. M. (2006). Comparative spatial cognition: Processes in landmark- and surface-based place finding. In E. A. Wasserman & T. R. Zentall (Eds.), Comparative cognition: Experimental explorations of animal intelligence (pp. 210–228). Oxford, England: Oxford University Press.

    Google Scholar 

  • Steck, S. D., & Mallot, H. A. (2000). The role of global and local landmarks in virtual environment navigation. Presence: Teleoperators and Virtual Environments, 9, 69–83.

    Article  Google Scholar 

  • Sturz, B. R., Bodily, K. D., & Katz, J. S. (2006). Evidence against integration of spatial maps in humans. Animal Cognition, 9, 207–217.

    Article  PubMed  Google Scholar 

  • Sturz, B. R., Bodily, K. D., Katz, J. S., & Kelly, D. M. (2009a). Evidence against integration of spatial maps in humans: Generality across real and virtual environments. Animal Cognition, 12, 237–247.

    Article  PubMed  Google Scholar 

  • Sturz, B. R., Brown, M. F., & Kelly, D. M. (2009b). Facilitation of learning spatial relations among locations by visual cues: Implications for theoretical accounts of spatial learning. Psychonomic Bulletin & Review, 16, 306–312.

    Article  Google Scholar 

  • Sturz, B. R., & Diemer, S. M. (2010). Reorienting when cues conflict: A role for information content in spatial learning? Behavioural Processes, 83, 90–98.

    Article  PubMed  Google Scholar 

  • Sturz, B. R., & Katz, J. S. (2009). Learning of absolute and relative distance and direction from discrete visual landmarks by pigeons (Columba livia). Journal of Comparative Psychology, 123, 90–113.

    Article  PubMed  Google Scholar 

  • Sturz, B. R., & Kelly, D. M. (2009). Encoding of relative enclosure size in a dynamic three-dimensional virtual environment by humans. Behavioural Processes, 82, 223–227.

    Article  PubMed  Google Scholar 

  • Sturz, B. R., Kelly, D. M., & Brown, M. F. (2009c). Facilitation of learning spatial relations among locations by visual cues: Generality across spatial configurations. Animal Cognition. doi:10.1007/s10071-009-0283-3.

  • Sutton, J. E. (2002). Multiple-landmark piloting in pigeons: Landmark configuration as a discriminative cue. Journal of Comparative Psychology, 116, 391–403.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was conducted following the relevant ethical guidelines for human research. We thank Paul Cooke, Stephanie Diemer, Sebastian Krzywanski, Martha Forloines, Shrinidhi Subramaniam, and especially Caroline Eastman and Rebecca Hattaway for their invaluable assistance with data collection and scoring. We are grateful for the comments by Fabio Ferlazzo, Kristin Ratliff, and an anonymous reviewer on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bradley R. Sturz or Kent D. Bodily.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sturz, B.R., Bodily, K.D. Encoding of variability of landmark-based spatial information. Psychological Research 74, 560–567 (2010). https://doi.org/10.1007/s00426-010-0277-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-010-0277-4

Keywords

Navigation