Skip to main content
Log in

Mislocalization of a target toward subjective contours: attentional modulation of location signals

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

This study examined whether a briefly presented target was mislocalized toward a subjective contour. Observers manually reproduced the position of a briefly presented peripheral target circle above a central fixation cross. A luminance contour, a subjective contour, or a no-contour stimulus was presented in either the left of right visual field, and a no-contour control was presented in the opposite visual field. After these stimuli vanished, a target circle was then presented. Consequently, the degree of mislocalization toward the subjective and luminance contours was the same; this indicated that image integration at a coarse spatial scale cannot explain mislocalization. Experiment 2 revealed that the mislocalization in Experiment 1 was not a result of eye movements. Experiment 3 found that the spatial attention allocated at the location of the luminance and subjective contours was more than that allocated at the no-contour stimulus. An attentional shift toward the task-irrelevant stimulus resulted in a mislocalization of the target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Ryan’s test adopts nominal significant level given as follows: p = 2 × 0.05/(n × (m − 1)), where n means the number of group to be compared, and m means the distance defined as the number of group X p satisfying X i  ≤ X p  ≤ X j . Here, X i and X j are pair in a concerned hypothesis. On the other hand, the significant level in Bonferroni’s test is set at p = 0.05/ n C 2, where n means the number of group to be compared.

References

  • Atkinson, J., & Braddick, O. J. (1989). ‘Where’ and ‘what’ in visual search. Perception, 18, 181–189.

    Article  PubMed  Google Scholar 

  • Bryant, D. J., & Subbiah, I. (1994). Subjective landmarks for perception and memory for spatial location. Canadian Journal of Experimental Psychology, 48, 119–139.

    Article  PubMed  Google Scholar 

  • Davis, G., & Driver, J. (1994). Parallel detection of Kanizsa subjective figures in the human visual system. Nature, 371, 791–793.

    Article  PubMed  Google Scholar 

  • Hamm, J. P., & Klein, R. M. (2002). Does attention follow the motion in the “shooting line” illusion? Perception & Psychophysics, 64, 279–291.

    Google Scholar 

  • Hikosaka, O., Miyauchi, S., & Shimojo, S. (1993). Focal visual attention produces illusory temporal order and motion sensation. Vision Research, 33, 1219–1240.

    Article  PubMed  Google Scholar 

  • Honda, H. (1989). Perceptual localization of visual stimuli flashed during saccades. Perception & Psychophysics, 45, 162–174.

    Google Scholar 

  • Hubbard, T. L. (1995). Environmental invariants in the representation of motion: Implied dynamics and representational momentum, gravity, friction, and centripetal force. Psychonomic Bulletin & Review, 2, 322–338.

    Google Scholar 

  • Hubbard, T. L., & Ruppel, S. E. (2000). Spatial memory averaging, the landmark attraction effect, and representational gravity. Psychological Research, 64, 41–55.

    Article  PubMed  Google Scholar 

  • Joseph, J. S., Chun, M. M., & Nakayama, K. (1997). Attentional requirements in a ‘preattentive’ feature search task. Nature, 387, 805–807.

    Article  PubMed  Google Scholar 

  • Kanizsa, G. (1976). Subjective contours. Scientific American, 234, 48–52.

    Article  PubMed  Google Scholar 

  • Kawahara, J. (2002). Facilitation of local information processing in the attentional blink as indexed by shooting line illusion. Psychological Research, 66, 116–123.

    Article  PubMed  Google Scholar 

  • Kerzel, D. (2002). Attention shift and memory averaging. The Quarterly Journal of Experimental Psychology. Section A: Human Experimental Psychology, 55, 425–443.

    Article  Google Scholar 

  • Müsseler, J., Heijden, A. H. C. van der Mahmud, S. H., Deubel, H., & Ertsey, S. (1999). Relative mislocalization of briefly presented stimuli in the retinal periphery. Perception & Psychophysics, 61, 1646–1661.

    Google Scholar 

  • Nelson, T. O., & Chaiklin, S. (1980). Immediate memory for spatial location. Journal of Experimental Psychology: Human Learning and Memory, 6, 529–545.

    Article  Google Scholar 

  • Ricciardelli, P., Bonfiglioli, C., Nicoletti, R., & Umiltà, C. (2001). Focusing attention on overlapping and non overlapping figures with subjective contours. Psychological Research, 65, 98–106.

    Article  PubMed  Google Scholar 

  • Ryan, T. A. (1960). Significance tests for multiple comparison of proportions, variances, and other statistics. Psychological Bulletin, 57, 318–328.

    Article  PubMed  Google Scholar 

  • Schmidt, T., Werner, S., & Diedrichsen, J. (2003). Spatial distortions induced by multiple visual landmarks: How local distortions combine to produce complex distortion patterns. Perception & Psychophysics, 65, 861–873.

    Google Scholar 

  • Senkowski, D., Röttger, S., Grimm, S., Foxe, J. J., & Herrmann, C. S. (2005). Kanizsa subjective figures capture spatial attention: evidence from electrophysiological and behavioral data. Neuropsychologia, 43, 872–886.

    Article  PubMed  Google Scholar 

  • Sheth, B. R., & Shimojo, S. (2001). Compression of space in visual memory. Vision Research, 41, 329–341.

    Article  PubMed  Google Scholar 

  • Sheth, B. R., & Shimojo, S. (2004). Extrinsic cues suppress the encoding of intrinsic cues. Journal of Cognitive Neuroscience, 16, 339–350.

    Article  PubMed  Google Scholar 

  • Shim, W. M., & Cavanagh, P. (2004). The motion-induced position shift depends on the perceived direction of bistable quartet motion. Vision Research, 44, 2393–2401.

    Article  PubMed  Google Scholar 

  • Shim, W. M., & Cavanagh, P. (2005). Attentive tracking shifts the perceived location of a nearby flash. Vision Research, 45, 3253–3261.

    Article  PubMed  Google Scholar 

  • Schlag, J., & Schlag-Rey, M. (1995). Illusory localization of stimuli flashed in the dark before saccades. Vision Research, 35, 2347–2357.

    Article  PubMed  Google Scholar 

  • Suzuki, S., & Cavanagh, P. (1997). Focused attention distorts visual space: An attentional repulsion effect. Journal of Experimental Psychology: Human Perception and Performance, 23, 443–463.

    Article  PubMed  Google Scholar 

  • Tsal, Y., & Bareket, T. (2005). Localization judgements under various levels of attention. Psychonomic Bulletin & Review, 12, 559–566.

    Google Scholar 

  • Uddin, M. K., Kawabe, T., & Nakamizo, K. (2005a). Attention shift not memory averaging reduces foveal bias. Vision Research, 45, 3301–3306.

    Article  Google Scholar 

  • Uddin, M. K., Kawabe, T., & Nakamizo, K. (2005b). Differential roles of distracters in reflexive and memory-based localization. Spatial Vision, 18, 579–592.

    Article  Google Scholar 

  • Watt, R. J. (1988). Visual processing: Computational, psychophysical and cognitive research. London: Lawrence Erlbaum Associates.

    Google Scholar 

  • Watt, R. J., & Morgan, M. J. (1985). A theory of the primitive spatial code in human vision. Vision Research, 25, 1661–1674.

    Article  PubMed  Google Scholar 

  • Wertheimer, M. (1923). Untersuchungen zur Lehre von der Gestalt. Psychologishe Forschung, 4, 301–350.

    Article  Google Scholar 

  • Wolfe, J. M. (1997). In a blink of the mind’s eye. Nature, 387, 756–757.

    Article  PubMed  Google Scholar 

  • Wolfe, J. M., O’Neil, P., & Bennet, S. C. (1998). Why are there eccentricity effects in visual search? Visual and attentional hypotheses. Perception & Psychophysics, 60, 140–156.

    Google Scholar 

  • Womelsdorf, T., Anton-Erxleben, K., Pieper, F., & Treue, S. (2006). Dynamic shifts of visual receptive fields in cortical area MT by spatial attention. Nature Neuroscience, 9, 1156–1160.

    Article  PubMed  Google Scholar 

  • Yantis, S., & Jonides J. (1984). Abrupt visual onsets and selective attention: evidence from visual search. Journal of Experimental Psychology: Human Perception and Performance, 10, 601–621.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors thank Timothy Hubbard and the anonymous reviewer for many helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Yamada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, Y., Kawabe, T. & Miura, K. Mislocalization of a target toward subjective contours: attentional modulation of location signals. Psychological Research 72, 273–280 (2008). https://doi.org/10.1007/s00426-007-0109-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-007-0109-3

Keywords

Navigation