Skip to main content
Log in

Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance

  • Published:
Planta Aims and scope Submit manuscript

Abstract

The yeast trehalose-6-phosphate synthase gene (TPS1) was engineered under the control of the cauliflower mosaic virus regulatory sequences (CaMV35S) for expression in plants. Using Agrobacterium-mediated transfer, the gene was incorporated into the genomic DNA and constitutively expressed in Nicotiana tabacum L. plants. Trehalose was determined in the transformants, by anion-exchange chromatography coupled to pulsed amperometric detection. The non-reducing disaccharide accumulated up to 0.17 mg per g fresh weight in leaf extracts of transgenic plants. Trehaloseaccumulating plants exhibited multiple phenotypic alterations, including stunted growth, lancet-shaped leaves, reduced sucrose content and improved drought tolerance. These pleiotropic effects, and the fact that water loss from detached leaves was not significantly affected by trehalose accumulation, suggest that synthesis of this sugar, rather than leading to an osmoprotectant effect, had altered sugar metabolism and regulatory pathways affecting plant development and stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

TPS1/CIF1 :

gene encoding trehalose-6-phosphate synthase

CaMV:

cauliflower mosaic virus

CaMV35S:

cauliflower mosaic virus regulatory sequences

References

  • Bell W, Klaassen P, Ohnacker M. Boller T, Herweijer M, Schoppink P, Van der Zee P, Wiemken A (1992) Characterization of the 56-kDa subunit of yeast trehalose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIFI, a regulator of carbon catabolite inactivation. Eur J Biochem 209: 951–959

    Article  PubMed  CAS  Google Scholar 

  • Bevan M (1984) Binary Agrobacterium vectors for plants transformation. Nucleic Acids Res 12: 8711–8721

    Article  PubMed  CAS  Google Scholar 

  • Colaco C, Kampinga J, Roser B (1995) Amorphous stability and trehalose. Science 268: 788–788

    Article  PubMed  CAS  Google Scholar 

  • Crowe J, Crowe L, Chapman D (1984) Preservation of membranes in anhydrobiotic organism: the role of trehalose. Science 223: 701–703

    Article  PubMed  CAS  Google Scholar 

  • De Virgilio C, Hottiger T, Dominguez J, Boller T, Wiemken A (1994) The role of trehalose synthesis for the acquisition of thermotolerance in yeast I. Genetic evidence that trehalose is a thermoprotectant. Eur J Biochem 219: 179–186

    Article  PubMed  Google Scholar 

  • Drennan PM, Smith MT, Goldsworthy D, Van Staden J (1993) The occurrence of trehalose in the leaves of the desiccation-tolerant angiosperm Myrothamnus flabellifolius Welw. J Plant Physiol 142: 493–496

    CAS  Google Scholar 

  • Elbein A (1974) The metabolism of α,α-trehalose. Adv Carbohyd Chem Bi 30: 227–256

    Article  CAS  Google Scholar 

  • Goddijn OJM, Verwoerd TC, Voogd E, Krutwagen R, Degraaf P, Vandun K, Delaat A, Vandenelzen P, Damm B, Pen J (1995) Transgenic tobacco plants as a model-system for the production of trehalose. Plant Physiol 108: S786

    Google Scholar 

  • Goldschmidt EE, Huber SC (1992) Regulation of photosynthesis by end-product accumulation in leaves of plant storing starch, sucrose, and hexose sugars. Plant Physiol 99: 1443–1448

    Article  PubMed  CAS  Google Scholar 

  • González MI, Strucka R, Blázquez MA, Feldmann H, Gancedo C (1992) Molecular cloning of CIFI, a yeast gene necessary for growth on glucose. Yeast 8: 183–192

    Article  PubMed  Google Scholar 

  • Guerineau F, Lucy A, Mullineaux P (1992) Effect of two consensus sequences preceding the translation initiator codon on gene expression in plant protoplasts. Plant Mol Biol 18: 815–818

    Article  PubMed  CAS  Google Scholar 

  • Herbers K, Meuwly P, Frommer WB, Métraux JP, Sonnewald U (1996) Systemic acquired resistance mediated by the ectopic expression of invertase: possible hexose sensing in the secretory pathway. Plant Cell 8: 793–803

    Article  PubMed  CAS  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir- and Tregion of the Agrobacterium tumefaciens Ti plasmid. Nature 303: 179–180

    Article  CAS  Google Scholar 

  • Hoekstra FA, Crowe LM, Van Rockel T, Vermeer E (1992) Do phospholipids and sucrose determine membrane phase transitions in dehydrating pollen species? Plant Cell Environ 15: 601–606

    Article  CAS  Google Scholar 

  • Holmström K-O, Mäntylä E, Welin B, Mandai A, Palva ET, Tunnela OE, Londesborough J (1996) Drought tolerance in tobacco. Nature 379: 683–684

    Article  Google Scholar 

  • Hottiger T, Boller T, Wiemken A (1987) Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae. FEBS Lett 255: 5518–5522

    Google Scholar 

  • Iwahashi H, Obuchi K, Fujii S, Komatsu Y (1995) The correlative evidence suggesting that trehalose stabilizes membrane-structure in the yeast Saccharomyces cerevisiae. Cell Mol Biol 41: 763–769

    PubMed  CAS  Google Scholar 

  • Jang J-C, Sheen J (1994) Sugar sensing in higher plants. Plant Cell 6: 1665–1679

    Article  PubMed  CAS  Google Scholar 

  • Kishor PBK, Hong Z, Miao G-H, Hu C-AA, Verma DPS (1995) Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108: 1387–1394

    PubMed  CAS  Google Scholar 

  • Mackenzie KF, Singh KK, Brown AD (1988) Water stress plating hypersensitivity of yeast: protective role of trehalose in Saccharomyces cerevisiae. J Gen Microbiol 134: 1661–1666

    PubMed  CAS  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Müller J, Boller T, Wiemken A (1995) Trehalose and trehalase in plants: recent developments. Plant Sci 112: 1–9

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant. 15: 473–497

    Article  CAS  Google Scholar 

  • Rocklin RD, Pohl CA (1983) Determination of carbohydrates by anion exchange chromatography with pulsed amperometric detection. J Liq Chromatogr 6: 1577–1590

    Article  CAS  Google Scholar 

  • Serrano R (1996) Salt tolerance in plants and microorganism: toxicity, targets and defense responses. Int Rev Cytol 165: 1–52

    Article  PubMed  CAS  Google Scholar 

  • Tarczynski MC, Jensen RG, Bohnert HJ (1992) Expression of a bacterial mtlD gene in transgenic tobacco leads to production and accumulation of mannitol. Proc Natl Acad Sci USA 89: 2600–2604

    Article  PubMed  CAS  Google Scholar 

  • Thevelein JM (1994) Signal transduction in yeast. Yeast 10: 1753–1790

    Article  PubMed  CAS  Google Scholar 

  • Veluthambi K, Mahadevan S, Maheshwari R (1982) Trehalose toxicity in Cuscuta reflexa: cell wall synthesis is inhibited upon trehalose feeding. Plant Physiol 70: 686–688

    Article  PubMed  CAS  Google Scholar 

  • Wen-jun S, Forde BG (1989) Efficient transformation of Agrobacterium spp. by high voltage electroporation. Nucleic Acids Res 17: 8385–8385

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco A. Culiáñez-Macià.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romero, C., Bellés, J.M., Vayá, J.L. et al. Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance. Planta 201, 293–297 (1997). https://doi.org/10.1007/s004250050069

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004250050069

Key words

Navigation