Skip to main content
Log in

Barley Mla and Rar mutants compromised in the hypersensitive cell death response against Blumeria graminis f.sp. hordei are modified in their ability to accumulate reactive oxygen intermediates at sites of fungal invasion

  • Published:
Planta Aims and scope Submit manuscript

Abstract.

 The pathogenesis-related accumulation of superoxide radical anions (O·− 2) and hydrogen peroxide (H2O2) was comparatively analyzed in a barley line (Hordeum vulgare L. cv Sultan-5) carrying the powdery mildew (Blumeria graminis f.sp. hordei, Speer, Bgh) resistance gene Mla12, and in susceptible mutants defective in Mla12 or in genes “required for Mla12-specified disease resistance” (Rar1 and Rar2). In-situ localization of reactive oxygen intermediates was performed both by microscopic detection of azide-insensitive nitroblue tetrazolium (NBT) reduction or diaminobenzidine (DAB) polymerization, and by an NBT-DAB double-staining procedure. The Mla12-mediated hypersensitive cell death occurred either in attacked epidermal cells or adjacent mesophyll cells of wild-type plants. Whole-cell H2O2 accumulation was detected in dying cells, while O·− 2 emerged in adjacent cells. Importantly, all susceptible mutants lacked these reactions. An oxalate oxidase, which is known to generate H2O2 and has been implicated in barley resistance against the powdery mildew fungus, was not differentially expressed between the wild type and all mutants. The results demonstrate that the Rar1 and Rar2 gene products, which are control elements of R-gene-mediated programmed cell death, also control accumulation of reactive oxygen intermediates but not the pathogenesis-related expression of oxalate oxidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 7 January 2000 / Accepted: 2 June 2000

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hückelhoven, R., Fodor, J., Trujillo, M. et al. Barley Mla and Rar mutants compromised in the hypersensitive cell death response against Blumeria graminis f.sp. hordei are modified in their ability to accumulate reactive oxygen intermediates at sites of fungal invasion. Planta 212, 16–24 (2000). https://doi.org/10.1007/s004250000385

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004250000385

Navigation