Skip to main content
Log in

Drought and heat stress: insights into tolerance mechanisms and breeding strategies for pigeonpea improvement

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Pigeonpea has potential to foster sustainable agriculture and resilience in evolving climate change; understanding bio-physiological and molecular mechanisms of heat and drought stress tolerance is imperative to developing resilience cultivars.

Abstract

Pigeonpea is an important legume crop that has potential resilience in the face of evolving climate scenarios. However, compared to other legumes, there has been limited research on abiotic stress tolerance in pigeonpea, particularly towards drought stress (DS) and heat stress (HS). To address this gap, this review delves into the genetic, physiological, and molecular mechanisms that govern pigeonpea’s response to DS and HS. It emphasizes the need to understand how this crop combats these stresses and exhibits different types of tolerance and adaptation mechanisms through component traits. The current article provides a comprehensive overview of the complex interplay of factors contributing to the resilience of pigeonpea under adverse environmental conditions. Furthermore, the review synthesizes information on major breeding techniques, encompassing both conventional methods and modern molecular omics-assisted tools and techniques. It highlights the potential of genomics and phenomics tools and their pivotal role in enhancing adaptability and resilience in pigeonpea. Despite the progress made in genomics, phenomics and big data analytics, the complexity of drought and heat tolerance in pigeonpea necessitate continuous exploration at multi-omic levels. High-throughput phenotyping (HTP) is crucial for gaining insights into perplexed interactions among genotype, environment, and management practices (GxExM). Thus, integration of advanced technologies in breeding programs is critical for developing pigeonpea varieties that can withstand the challenges posed by climate change. This review is expected to serve as a valuable resource for researchers, providing a deeper understanding of the mechanisms underlying abiotic stress tolerance in pigeonpea and offering insights into modern breeding strategies that can contribute to the development of resilient varieties suited for changing environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No data were used for the review manuscript described in the article.

References

  • Afzal S, Chaudhary N, Singh NK (2021) Role of soluble sugars in metabolism and sensing under abiotic stress. In: Plant growth regulators: signalling under stress conditions, pp 305–334

  • Amede T, Schubert S (2003) Mechanisms of drought resistance in grain: II stomatal regulation and root growth. Ethiop J Sci 26:137–144

    Google Scholar 

  • Antoniou C, Chatzimichail G, Xenofontos R et al (2017) Melatonin systemically ameliorates drought stress-induced damage in Medicago sativa plants by modulating nitro-oxidative homeostasis and proline metabolism. J Pineal Res 62:e12401

    Google Scholar 

  • Asaari MSM, Mertens S, Verbraeken L et al (2022) Non-destructive analysis of plant physiological traits using hyperspectral imaging: a case study on drought stress. Comput Electron Agric 195:106806

    Google Scholar 

  • Atieno M, Lesueur D (2019) Opportunities for improved legume inoculants: enhanced stress tolerance of rhizobia and benefits to agroecosystems. Symbiosis 77:191–205

    CAS  Google Scholar 

  • Awasthi R, Kaushal N, Vadez V et al (2014) Individual and combined effects of transient drought and heat stress on carbon assimilation and seed filling in chickpea. Funct Plant Biol 41:1148–1167

    CAS  PubMed  Google Scholar 

  • Bakala HS, Singh G, Srivastava P (2020) Smart breeding for climate resilient agriculture. In: Plant breeding-current and future views. IntechOpen, p 94847

  • Banerjee A, Ghosh P, Roychoudhury A (2018) Salt stress responses in pigeon pea (Cajanus cajan L.). In: Pulse improvement: physiological, molecular and genetic perspectives, pp 99–108

  • Barber J (1995) Molecular basis of the vulnerability of photosystem II to damage by light. Funct Plant Biol 22:201–208

    CAS  Google Scholar 

  • Basu PS, Singh UMMED, Kumar ANIL et al (2016) Climate change and its mitigation strategies in pulses production. Indian J Agron 61:S71–S82

    Google Scholar 

  • Bharath P, Gahir S, Raghavendra AS (2021) Abscisic acid-induced stomatal closure: an important component of plant defense against abiotic and biotic stress. Front Plant Sci 12:615114

    PubMed  PubMed Central  Google Scholar 

  • Bhowmik P, Konkin D, Polowick P et al (2021) CRISPR/Cas9 gene editing in legume crops: opportunities and challenges. Legum Sci 3:e96

    CAS  Google Scholar 

  • Bohra A, Saxena KB, Varshney RK, Saxena RK (2020) Genomics-assisted breeding for pigeonpea improvement. Theor Appl Genet 133:1721–1737

    CAS  PubMed  Google Scholar 

  • Bolouri-Moghaddam MR, Le Roy K, Xiang L et al (2010) Sugar signalling and antioxidant network connections in plant cells. FEBS J 277:2022–2037

    CAS  PubMed  Google Scholar 

  • Buch DU, Sharma OA, Pable AA, Barvkar VT (2020) Characterization of microRNA genes from Pigeonpea (Cajanus cajan L.) and understanding their involvement in drought stress. J Biotechnol 321:23–34

    CAS  PubMed  Google Scholar 

  • Camejo D, Jiménez A, Alarcón JJ et al (2004) Changes in photosynthetic parameters and antioxidant activities following heat-shock treatment in tomato plants. Funct Plant Biol 33:177–187

    Google Scholar 

  • Castro B, Citterico M, Kimura S et al (2021) Stress-induced reactive oxygen species compartmentalization, perception and signalling. Nat Plants 7:403–412

    CAS  PubMed  PubMed Central  Google Scholar 

  • CGIAR (2021) http://gldc.cgiar.org/new-drought-tolerant-varieties-rekindle-hopes-of-food-security-in-drought-prone-makueni-county/

  • Chamarthi SK, Kaler AS, Abdel-Haleem H et al (2021) Identification and confirmation of loci associated with canopy wilting in soybean using genome-wide association mapping. Front Plant Sci 12:698116

    PubMed  PubMed Central  Google Scholar 

  • Chanda Venkata SK, Nadigatla Veera Prabha Rama GR, Saxena RK et al (2019) Pigeonpea improvement: an amalgam of breeding and genomic research. Plant Breed 138:445–454

    Google Scholar 

  • Chang YN, Zhu C, Jiang J et al (2020) Epigenetic regulation in plant abiotic stress responses. J Integr Plant Biol 62:563–580

    CAS  PubMed  Google Scholar 

  • Chaudhary S, Devi P, HanumanthaRao B et al (2022) Physiological and molecular approaches for developing thermotolerance in vegetable crops: a growth, yield and sustenance perspective. Front Plant Sci 13:878498

    PubMed  PubMed Central  Google Scholar 

  • Chauhan YS, Johansen C, Saxena KB (1995) Physiological basis of yield variation in short-duration pigeonpea grown in different environments of the semi-arid tropics 1. J Agron Crop Sci 174:163–171

    Google Scholar 

  • Chaves MM, Pereira JS, Maroco J et al (2002) How plants cope with water stress in the field? Photosynthesis and growth. Ann Bot 89:907–916

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen TH, Murata N (2022) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    Google Scholar 

  • Chen K, Tang WS, Zhou YB et al (2020) Overexpression of GmUBC9 gene enhances plant drought resistance and affects flowering time via histone H2B monoubiquitination. Front Plant Sci 11:555794

    PubMed  PubMed Central  Google Scholar 

  • Choudhary AK, Sultana R, Chaturvedi SK et al (2014) Breeding strategies to mitigate abiotic stresses in pulses. Souvenir & conference book. Progressive Publication, Meerut, pp 16–21

    Google Scholar 

  • Choudhary AK, Sultana R, Vales MI et al (2018) Integrated physiological and molecular approaches to improvement of abiotic stress tolerance in two pulse crops of the semi-arid tropics. Crop J 6:99–114

    Google Scholar 

  • Correia PM, Cairo Westergaard J, Bernardes da Silva A et al (2022) High-throughput phenotyping of physiological traits for wheat resilience to high temperature and drought stress. J Exp Bot 73:5235–5251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daryanto S, Wang L, Jacinthe PA (2015) Global synthesis of drought effects on food legume production. PLoS ONE 10:e0127401

    PubMed  PubMed Central  Google Scholar 

  • Das A, Schneider H, Burridge J et al (2015) Digital imaging of root traits (DIRT): a high-throughput computing and collaboration platform for field-based root phenomics. Plant Methods 11:1–12

    Google Scholar 

  • Deeplanaik N, Kumaran RC, Venkatarangaiah K et al (2013) Expression of drought responsive genes in pigeonpea and in silico comparison with soybean cDNA library. J Crop Sci Biotechnol 16:243–251

    Google Scholar 

  • Devasirvatham V, Gaur PM, Raju TN et al (2015) Field response of chickpea (Cicer arietinum L.) to high temperature. F Crop Res 172:59–71

    Google Scholar 

  • Devi J, Bhatia S, Alam MS (2019) Abiotic elicitors influence antioxidative enzyme activities and shelf life of carrot during storage under refrigerated conditions. J Plant Growth Regul 38:1529–1544

    CAS  Google Scholar 

  • Ding Y, Tao Y, Zhu C (2013) Emerging roles of microRNAs in the mediation of drought stress response in plants. J Exp Bot 64:3077–3086

    CAS  PubMed  Google Scholar 

  • Doerfler H, Sun X, Wang L et al (2014) MzGroup analyzer-predicting pathways and novel chemical structures from untargeted high-throughput metabolomics data. PLoS ONE 9:e96188

    PubMed  PubMed Central  Google Scholar 

  • Duc G, Agrama H, Bao S et al (2015) Breeding annual grain legumes for sustainable agriculture: new methods to approach complex traits and target new cultivar ideotypes. CRC Crit Rev Plant Sci 34:381–411

    Google Scholar 

  • Fahad S, Bajwa AA, Nazir U et al (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 1147:1

    Google Scholar 

  • FAO (2021) Crop statistics. Available online at: www.fao.org/faostat/en/#data/QC. In: food agric. organ, United Nations

  • Farooq M, Wahid A, Kobayashi NSMA et al (2009) Plant drought stress: effects, mechanisms and management. Sustain Agric 2009:153–188

    Google Scholar 

  • Farooq M, Gogoi N, Barthakur S et al (2017) Drought stress in grain legumes during reproduction and grain filling. J Agron Crop Sci 203:81–102

    Google Scholar 

  • Gangashetty PI, Belliappa SH, Bomma N et al (2024) Optimizing speed breeding and seed/pod chip based genotyping techniques in pigeonpea: a way forward for high throughput line development. Plant Methods 20(1):1–12

    Google Scholar 

  • Gudi S, Kumar P, Singh S et al (2022) Strategies for accelerating genetic gains in crop plants: special focus on speed breeding. Physiol Mol Biol Plants 28:1921–1938

    PubMed  PubMed Central  Google Scholar 

  • Gusmao M, Siddique KHM, Flower K et al (2012) Water deficit during the reproductive period of grass pea (Lathyrus sativus L.) reduced grain yield but maintained seed size. J Agron Crop Sci 198:430–441

    Google Scholar 

  • Halladakeri P, Gudi S, Akhtar S et al (2023) Meta-analysis of the quantitative trait loci associated with agronomic traits, fertility restoration, disease resistance, and seed quality traits in pigeonpea (Cajanus cajan L.). Plant Genome 2023:e20342

    Google Scholar 

  • Hartung W, Sauter A, Hose E (2002) Abscisic acid in the xylem: Where does it come from, where does it go to? J Exp Bot 53:27–32

    CAS  PubMed  Google Scholar 

  • Hassan MU, Chattha MU, Khan I et al (2021) Heat stress in cultivated plants: nature, impact, mechanisms, and mitigation strategies—a review. Plant Biosyst Int J Deal with All Asp Plant Biol 155:211–234

    Google Scholar 

  • Hein NT, Ciampitti IA, Jagadish SK (2021) Bottlenecks and opportunities in field-based high-throughput phenotyping for heat and drought stress. J Exp Bot 72:5102–5116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hospital F (2003) Marker-assisted breeding. Plant molecular breeding. Black well Publishing, Carlton, pp 30–56

    Google Scholar 

  • Hossain MS, Kawakatsu T, Kim KD et al (2017) Divergent cytosine DNA methylation patterns in single-cell, soybean root hairs. New Phytol 214:808–819

    CAS  PubMed  Google Scholar 

  • Huang X, Zheng S, Zhu N (2022) High-throughput legume seed phenotyping using a handheld 3D laser scanner. Remote Sens 14:431

    Google Scholar 

  • Hura T, Hura K, Ostrowska A (2022) Drought-stress induced physiological and molecular changes in plants. Int J Mol Sci 23:4698

    PubMed  PubMed Central  Google Scholar 

  • IPCC (2014) https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf

  • IPCC (2021) Climate change 2021: the physical science basis. https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/

  • IPCC (2022) Climate change 2022: impacts, adaptation and vulnerability. https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/

  • Jha UC, Bohra A, Parida SK, Jha R (2017) Integrated “omics” approaches to sustain global productivity of major grain legumes under heat stress. Plant Breed 136:437–459

    CAS  Google Scholar 

  • Ji X, Dong B, Shiran B et al (2011) Control of abscisic acid catabolism and abscisic acid homeostasis is important for reproductive stage stress tolerance in cereals. Plant Physiol 156:647–662

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Lahlali R, Karunakaran C et al (2015) Seed set, pollen morphology and pollen surface composition response to heat stress in field pea. Plant Cell Environ 38:2387–2397

    CAS  PubMed  Google Scholar 

  • Joshi PK, Rao PP, Gowda CLL et al (2001) The world chickpea and pigeonpea economies facts, trends, and outlook. Int Crop Res Inst Semi Arid Trop 2001:1

    Google Scholar 

  • Kaushal N, Awasthi R, Gupta K et al (2013) Heat-stress-induced reproductive failures in chickpea (Cicer arietinum) are associated with impaired sucrose metabolism in leaves and anthers. Funct Plant Biol 40:1334–1349

    CAS  PubMed  Google Scholar 

  • Khatun M, Sarkar S, Era FM et al (2021) Drought stress in grain legumes: effects, tolerance mechanisms and management. Agronomy 11:2374

    CAS  Google Scholar 

  • Khoury CK, Castañeda-Alvarez NP, Achicanoy HA et al (2015) Crop wild relatives of pigeonpea [Cajanus cajan (L.) Millsp.]: distributions, ex situ conservation status, and potential genetic resources for abiotic stress tolerance. Biol Conserv 184:259–270

    Google Scholar 

  • Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta (BBA) Gene Regul Mech 1819:137–148

    CAS  Google Scholar 

  • Kishore R, Upadhyaya KC (1988) Heat shock proteins of pigeon pea (Cajanus cajan). Plant Cell Physiol 29:517–521

    CAS  Google Scholar 

  • Krishnan HB, Natarajan SS, Oehrle NW et al (2017) Proteomic analysis of pigeonpea (Cajanus cajan) seeds reveals the accumulation of numerous stress-related proteins. J Agric Food Chem 65:4572–4581

    CAS  PubMed  Google Scholar 

  • Kumar S, Gupta S, Chandra S, Singh BB (2003) How wide is the genetic base of pulse crops?

  • Kumar S, Kaur R, Kaur N et al (2011) Heat-stress induced inhibition in growth and chlorosis in mungbean (Phaseolus aureus Roxb.) is partly mitigated by ascorbic acid application and is related to reduction in oxidative stress. Acta Physiol Plant 33:2091–2101

    CAS  Google Scholar 

  • Kumar S, Thakur P, Kaushal N et al (2013) Effect of varying high temperatures during reproductive growth on reproductive function, oxidative stress and seed yield in chickpea genotypes differing in heat sensitivity. Arch Agron Soil Sci 59:823–843

    CAS  Google Scholar 

  • Kumar V, Khan AW, Saxena RK et al (2016) First-generation HapMap in Cajanus spp. reveals untapped variations in parental lines of mapping populations. Plant Biotechnol J 14:1673–1681

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumawat G, Raje RS, Bhutani S et al (2012) Molecular mapping of QTLs for plant type and earliness traits in pigeonpea (Cajanus cajan L. Millsp.). BMC Genet 13:1–11

    Google Scholar 

  • Kurutas EB (2015) The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J 15:22

    Google Scholar 

  • Ladrera R, Marino D, Larrainzar E et al (2007) Reduced carbon availability to bacteroids and elevated ureides in nodules, but not in shoots, are involved in the nitrogen fixation response to early drought in soybean. Plant Physiol 145:539–546

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lazarević B, Carović-Stanko K, Živčak M et al (2022) Classification of high-throughput phenotyping data for differentiation among nutrient deficiency in common bean. Front Plant Sci 13:931877

    PubMed  PubMed Central  Google Scholar 

  • Li B, Zhang C, Cao B et al (2012) Brassinolide enhances cold stress tolerance of fruit by regulating plasma membrane proteins and lipids. Amino Acids 43:2469–2480

    CAS  PubMed  Google Scholar 

  • Li Y, Ruperao P, Batley J et al (2018) Investigating drought tolerance in chickpea using genome-wide association mapping and genomic selection based on whole-genome resequencing data. Front Plant Sci 9:190

    PubMed  PubMed Central  Google Scholar 

  • Li N, Euring D, Cha JY et al (2021) Plant hormone-mediated regulation of heat tolerance in response to global climate change. Front Plant Sci 11:627969

    PubMed  PubMed Central  Google Scholar 

  • Liu Y, Li J, Zhu Y et al (2019) Heat stress in legume seed setting: effects, causes, and future prospects. Front Plant Sci 10:938

    PubMed  PubMed Central  Google Scholar 

  • Liu X, Xiao Y, Zi J et al (2023) Differential effects of low and high temperature stress on pollen germination and tube length of mango (Mangifera indica L.) genotypes. Sci Rep 13:611

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez FB, Johansen C, Chauhan YS (1996) Effects of timing of drought stress on phenology, yield and yield components of short-duration pigeonpea. J Agron Crop Sci 177:311–320

    Google Scholar 

  • López LA, Gago FE, Tello O (2021) Heat shock proteins and cell proliferation in human breast cancer biopsy samples. Cancer Detect Prev 21:441–451

    Google Scholar 

  • Lynch JP, Brown KM (2011) Topsoil foraging—an architectural adaptation of plants to low phosphorus availability. Plant Soil 237:225–237

    Google Scholar 

  • Machado S, Paulsen GM (2001) Combined effects of drought and high temperature on water relations of wheat and sorghum. Plant Soil 233:179–187

    CAS  Google Scholar 

  • Matamoros MA, Becana M (2021) Molecular responses of legumes to abiotic stress: post-translational modifications of proteins and redox signaling. J Exp Bot 72:5876–5892

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meng D, Dong B, Niu L et al (2021) The pigeon pea CcCIPK14-CcCBL1 pair positively modulates drought tolerance by enhancing flavonoid biosynthesis. Plant J 106:1278–1297

    CAS  PubMed  Google Scholar 

  • Meuwissen TH, Hayes BJ, Goddard M (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mir RR, Saxena RK, Saxena KB et al (2013) Whole-genome scanning for mapping determinacy in Pigeonpea (Cajanus spp.). Plant Breed 132:472–478

    CAS  Google Scholar 

  • Mir RR, Kudapa H, Srikanth S et al (2014) Candidate gene analysis for determinacy in pigeonpea (Cajanus spp.). Theor Appl Genet 127:2663–2678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37:118–125

    CAS  PubMed  Google Scholar 

  • Mohamed HI, Latif HH (2017) Improvement of drought tolerance of soybean plants by using methyl jasmonate. Physiol Mol Biol Plants 23:545–556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    PubMed  Google Scholar 

  • Monclus R, Dreyer E, Villar M et al (2006) Impact of drought on productivity and water use efficiency in 29 genotypes of Populus deltoids × Populus nigra. New Phytol 169:765–777

    PubMed  Google Scholar 

  • Moran JF, Becana M, Iturbe-Ormaetxe I et al (1994) Drought induces oxidative stress in pea plants. Planta 194:346–352

    CAS  Google Scholar 

  • Mousavi-Derazmahalleh M, Bayer PE, Hane JK et al (2019) Adapting legume crops to climate change using genomic approaches. Plant Cell Environ 42:6–19

    CAS  PubMed  Google Scholar 

  • Moustafa-Farag M, Elkelish A, Dafea M et al (2020) Role of melatonin in plant tolerance to soil stressors: salinity, pH and heavy metals. Molecules 25:5359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muchero W, Roberts PA, Diop NN et al (2013) Genetic architecture of delayed senescence, biomass, and grain yield under drought stress in cowpea. PLoS ONE 8:e70041

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muchow RC (1985) Phenology, seed yield and water use of grain legumes grown under different soil water regimes in a semi-arid tropical environment. F Crop Res 11:81–97

    Google Scholar 

  • Nadeem M, Li J, Yahya M et al (2019) Research progress and perspective on drought stress in legumes: a review. Int J Mol Sci 20:2541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nam NH, Chauhan YS, Johansen C (2001) Effect of timing of drought stress on growth and grain yield of extra-short-duration pigeonpea lines. J Agric Sci 136:179–189

    Google Scholar 

  • Negi J, Rathinam M, Sreevathsa R, Kumar PA (2021) Transgenic Pigeonpea [Cajanus cajan (L). Millsp.]. Genetically Modified Crops Curr Status Prosp Challenges 1:79–96

    Google Scholar 

  • Ozga JA, Kaur H, Savada RP, Reinecke DM (2017) Hormonal regulation of reproductive growth under normal and heat-stress conditions in legume and other model crop species. J Exp Bot 68:1885–1894

    CAS  PubMed  Google Scholar 

  • Patil PG, Bohra A, Satheesh NS et al (2018) Validation of QTLs for plant ideotype, earliness and growth habit traits in pigeonpea (Cajanus cajan Millsp.). Physiol Mol Biol Plants 24:1245–1259

    PubMed  PubMed Central  Google Scholar 

  • Patriyawaty NR, Rachaputi RC, George D (2018) Physiological mechanisms underpinning tolerance to high temperature stress during reproductive phase in mungbean (Vigna radiata (L.) Wilczek). Environ Exp Bot 150:188–197

    CAS  Google Scholar 

  • Pieruschka R, Schurr U (2019) Plant phenotyping: past, present, and future. Plant Phenomics 2019:1

    Google Scholar 

  • Pirasteh‐Anosheh H, Saed‐Moucheshi A, Pakniyat H, Pessarakli M (2016) Stomatal responses to drought stress. In: Water stress and crop plants: a sustainable approach, pp 24–40

  • Pisias MT, Bakala HS, McAlvay AC et al (2022) Prospects of feral crop de novo redomestication. Plant Cell Physiol 63:1641–1653

    CAS  PubMed  Google Scholar 

  • Priyanka B, Sekhar K, Reddy VD, Rao KV (2010) Expression of pigeonpea hybrid-proline-rich protein encoding gene (CcHyPRP) in yeast and Arabidopsis affords multiple abiotic stress tolerance. Plant Biotechnol J 8:76–87

    CAS  PubMed  Google Scholar 

  • Ramakrishna G, Kaur P, Singh A et al (2021) Comparative transcriptome analyses revealed different heat stress responses in pigeonpea (Cajanus cajan) and its crop wild relatives. Plant Cell Rep 40:881–898

    CAS  PubMed  Google Scholar 

  • Ramakrishna G, Singh A, Kaur P et al (2022) Genome wide identification and characterization of small heat shock protein gene family in pigeonpea and their expression profiling during abiotic stress conditions. Int J Biol Macromol 197:88–102

    CAS  PubMed  Google Scholar 

  • Ranđelović P, Đorđević V, Miladinović J et al (2023) High-throughput phenotyping for non-destructive estimation of soybean fresh biomass using a machine learning model and temporal UAV data. Plant Methods 19:89

    PubMed  PubMed Central  Google Scholar 

  • Ranjan T, Kumari Rajani AK, Kumar RR (2016) Evaluation of proline metabolizing enzymes in pigeonpea under PEG induced drought stress. Int J Pure App Biosci 4:327–335

    Google Scholar 

  • Reddy PJ (2001) Screening of pigeonpea genotypes for drought tolerance under black cotton soils of Krishna Godavari zone. Ann Plant Physiol 15:104–106

    Google Scholar 

  • Rennenberg H, Loreto F, Polle A et al (2006) Physiological responses of forest trees to heat and drought. Plant Biol 2006:556–571

    Google Scholar 

  • Rieu I, Twell D, Firon N (2017) Pollen development at high temperature: from acclimation to collapse. Plant Physiol 173:1967–1976

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rontein D, Basset G, Hanson AD (2002) Metabolic engineering of osmoprotectant accumulation in plants. Metab Eng 4:49–56

    CAS  PubMed  Google Scholar 

  • Rutkoski J, Poland J, Mondal S et al (2016) Canopy temperature and vegetation indices from high-throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in wheat. G3 Genes Genomes Genet 6:2799–2808

    Google Scholar 

  • Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7:571

    PubMed  PubMed Central  Google Scholar 

  • Sahoo KK, Tripathi AK, Pareek A, Singla-Pareek SL (2013) Taming drought stress in rice through genetic engineering of transcription factors and protein kinases. Plant Stress 7:60–72

    Google Scholar 

  • Salazar-Henao JE, Vélez-Bermúdez IC, Schmidt W (2016) The regulation and plasticity of root hair patterning and morphogenesis. Development 143:1848–1858

    CAS  PubMed  Google Scholar 

  • Saxena KB (2008) Genetic improvement of pigeon pea—a review. Trop Plant Biol 1:159–178

    Google Scholar 

  • Saxena RK, Von Wettberg E, Upadhyaya HD et al (2014) Genetic diversity and demographic history of Cajanus spp. illustrated from genome-wide SNPs. PLoS ONE 9:e88568

    PubMed  PubMed Central  Google Scholar 

  • Saxena KB, Sharma D, Vales MI (2018a) Development and commercialization of CMS pigeonpea hybrids. Plant Breed Rev 41:103–167

    Google Scholar 

  • Saxena RK, Rathore A, Bohra A et al (2018b) Development and application of high-density Axiom Cajanus SNP array with 56K SNPs to understand the genome architecture of released cultivars and founder genotypes. Plant Genome 11:180005

    CAS  Google Scholar 

  • Saxena KB, Choudhary AK, Saxena RK, Chauhan YS (2020) Can pigeonpea hybrids negotiate stresses better than inbred cultivars? Breed Sci 70:423–429

    PubMed  PubMed Central  Google Scholar 

  • Sehgal A, Sita K, Siddique KH et al (2018) Drought or/and heat-stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields, and nutritional quality. Front Plant Sci 9:1705

    PubMed  PubMed Central  Google Scholar 

  • Sekhar K, Priyanka B, Reddy VD, Rao KV (2010) Isolation and characterization of a pigeonpea cyclophilin (CcCYP) gene, and its over-expression in Arabidopsis confers multiple abiotic stress tolerance. Plant Cell Environ 33:1324–1338

    CAS  PubMed  Google Scholar 

  • Serraj R, Buhariwalla HK, Sharma KK et al (2004) Crop improvement of drought resistance in pulses: a holistic approach. Indian J Pulses Res 17:1–13

    Google Scholar 

  • Shahana T, Rao PA, Ram SS, Sujatha E (2015) Mitigation of drought stress by 24-epibarassinolide and 28-homobrassinolide in pigeon pea seedlings. Int J Multi Curr Res 3:905–911

    Google Scholar 

  • Shan Q, Ma F, Wei J et al (2020) Physiological functions of heat shock proteins. Curr Protein Pept Sci 21:751–760

    CAS  PubMed  Google Scholar 

  • Sharma P, Dubey RS (2005) Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul 46:209–221

    CAS  Google Scholar 

  • Sharma A, Guled MB (2011) Effect of set-furrow method of cultivation in pigeonpea + greengram intercropping system in medium deep black soil under rainfed conditions. Karnataka J Agric Sci 25:22–24

    Google Scholar 

  • Sheahan CM (2012) Plant guide for pigeonpea (Cajanus cajan). USDA-Natural Resources Conservation Service, Cape May Plant Materials Center. Cape May, NJ 8210

  • Shibairo SI, Nyabundi JO, Otieno W (1993) Effects of temperature on germination of seeds of three pigeonpea (Cajanus cajant) genotypes. Discov Innov 7:283–287

    Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    CAS  PubMed  Google Scholar 

  • Siddique KHM, Walton GH, Seymour M (1993) A comparison of seed yields of winter grain legumes in Western Australia. Aust J Exp Agric 33:915–922

    Google Scholar 

  • Siebers MH, Yendrek CR, Drag D et al (2015) Heat waves imposed during early pod development in soybean (G lycine max) cause significant yield loss despite a rapid recovery from oxidative stress. Glob Chang Biol 21:3114–3125

    PubMed  Google Scholar 

  • Singh S, Grover P, Kaur J et al (2016) Genetic variability of pigeonpea (Cajanus cajan (L.) Millsp.) for waterlogging and salinity tolerance under in vitro and in vivo conditions. Am J Exp Agric 12:1–13

    Google Scholar 

  • Singh A, Singh PK, Sharma AK et al (2019) Understanding the role of the WRKY gene family under stress conditions in pigeonpea (Cajanus cajan L.). Plants 8:214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh G, Singh I, Taggar GK et al (2020a) Introgression of productivity enhancing traits, resistance to pod borer and Phytopthora stem blight from Cajanus scarabaeoides to cultivated pigeonpea. Physiol Mol Biol Plants 26:1399–1410

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh N, Rai V, Singh NK (2020b) Multi-omics strategies and prospects to enhance seed quality and nutritional traits in pigeonpea. Nucl 63:249–256

    Google Scholar 

  • Singh RK, Deshmukh R, Muthamilarasan M et al (2020c) Versatile roles of aquaporin in physiological processes and stress tolerance in plants. Plant Physiol Biochem 149:178–189

    CAS  PubMed  Google Scholar 

  • Singh S, Mahato AK, Jayaswal PK et al (2020d) A 62K genic-SNP chip array for genetic studies and breeding applications in pigeonpea (Cajanus cajan L. Millsp.). Sci Rep 10:4960

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh G, Amandeep GS et al (2022a) Unlocking the hidden variation from wild repository for accelerating genetic gain in legumes. Front Plant Sci 13:1035878

    PubMed  PubMed Central  Google Scholar 

  • Singh V, Sinha P, Obala J et al (2022b) QTL-seq for the identification of candidate genes for days to flowering and leaf shape in pigeonpea. Heredity (edinb) 128:411–419

    CAS  PubMed  Google Scholar 

  • Singh G, Kaur N, Khanna R et al (2024) 2Gs and plant architecture: breaking grain yield ceiling through breeding approaches for next wave of revolution in rice (Oryza sativa L.). Crit Rev Biotechnol 44(1):139–162

    PubMed  Google Scholar 

  • Singh NB, Singh IP, Singh BB (2005) Pigeonpea breeding. In: Ali M, Kumar S (eds) Adv. Pigeonpea Res, pp 67–95

  • Singh N (2023) Perspective chapter: an insight into abiotic stresses in pigeonpea—effects and tolerance. In: Plant abiotic stress responses and tolerance mechanisms

  • Sinha P, Saxena RK, Singh VK et al (2015a) Selection and validation of housekeeping genes as reference for gene expression studies in pigeonpea (Cajanus cajan) under heat and salt stress conditions. Front Plant Sci 6:1071

    PubMed  PubMed Central  Google Scholar 

  • Sinha P, Singh VK, Suryanarayana V et al (2015b) Evaluation and validation of housekeeping genes as reference for gene expression studies in pigeonpea (Cajanus cajan) under drought stress conditions. PLoS ONE 10:e0122847

    PubMed  PubMed Central  Google Scholar 

  • Sinha P, Pazhamala LT, Singh VK et al (2016) Identification and validation of selected universal stress protein domain containing drought-responsive genes in Pigeonpea (Cajanus cajan L.). Front Plant Sci 6:1065

    PubMed  PubMed Central  Google Scholar 

  • Sinha P, Singh VK, Saxena RK et al (2020) Superior haplotypes for haplotype-based breeding for drought tolerance in pigeonpea (Cajanus cajan L.). Plant Biotechnol J 18:2482–2490

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sita K, Sehgal A, HanumanthaRao B et al (2017) Food legumes and rising temperatures: effects, adaptive functional mechanisms specific to reproductive growth stage and strategies to improve heat tolerance. Front Plant Sci 8:1658

    PubMed  PubMed Central  Google Scholar 

  • Song Z, Yang Q, Dong B et al (2022) Melatonin enhances stress tolerance in pigeon pea by promoting flavonoid enrichment, particularly luteolin in response to salt stress. J Exp Bot 73:5992–6008

    PubMed  Google Scholar 

  • Sreeharsha RV, Mudalkar S, Sengupta D et al (2019) Mitigation of drought-induced oxidative damage by enhanced carbon assimilation and an efficient antioxidative metabolism under high CO2 environment in pigeonpea (Cajanus cajan L.). Photosynth Res 139:425–439

    CAS  PubMed  Google Scholar 

  • Subbarao GV, Nam NH, Chauhan YS, Johansen C (2000) Osmotic adjustment, water relations and carbohydrate remobilization in pigeonpea under water deficits. J Plant Physiol 157:651–659

    CAS  Google Scholar 

  • Sultana R, Choudhary AK, Pal AK et al (2014) Abiotic stresses in major pulses: current status and strategies. In: Approaches to plant stress their manag, pp 173–190

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    CAS  PubMed  Google Scholar 

  • Tamirisa S, Vudem DR, Khareedu VR (2014) Overexpression of pigeonpea stress-induced cold and drought regulatory gene (CcCDR) confers drought, salt, and cold tolerance in Arabidopsis. J Exp Bot 65:4769–4781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Triboï E, Martre P, Triboï-Blondel AM (2003) Environmentally-induced changes in protein composition in developing grains of wheat are related to changes in total protein content. J Exp Bot 54:1731–1742

    PubMed  Google Scholar 

  • Tricker PJ, ElHabti A, Schmidt J, Fleury D (2018) The physiological and genetic basis of combined drought and heat tolerance in wheat. J Exp Bot 69:3195–3210

    CAS  PubMed  Google Scholar 

  • Turner MG, Gardner RH, O’neill RV, O’Neill RV (2001) Landscape ecology in theory and practice, vol 401. Springer, New York

  • Ullah A, Farooq M (2012) The challenge of drought stress for grain legumes and options for improvement. Arch Agron Soil Sci 68:1601–1618

    Google Scholar 

  • Ullah A, Manghwar H, Shaban M et al (2018) Phytohormones enhanced drought tolerance in plants: a coping strategy. Environ Sci Pollut Res 25:33103–33118

    CAS  Google Scholar 

  • Varshney RK, Chen W, Li Y et al (2012) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30:83

    CAS  Google Scholar 

  • Varshney RK, Thudi M, Pandey MK et al (2018a) Accelerating genetic gains in legumes for the development of prosperous smallholder agriculture: integrating genomics, phenotyping, systems modelling and agronomy. J Exp Bot 69:3293–3312

    CAS  PubMed  Google Scholar 

  • Varshney RK, Tuberosa R, Tardieu F (2018b) Progress in understanding drought tolerance: from alleles to cropping systems. J Exp Bot 69:3175–3179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Barmukh R, Roorkiwal M et al (2021) Breeding custom-designed crops for improved drought adaptation. Adv Genet 2:e202100017

    CAS  PubMed  PubMed Central  Google Scholar 

  • Voss-Fels K, Snowdon RJ (2016) Understanding and utilizing crop genome diversity via high-resolution genotyping. Plant Biotechnol J 14:1086–1094

    CAS  PubMed  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Google Scholar 

  • Wang L, Xu Y, Li Y, Zhao Y (2018) Voxel segmentation-based 3D building detection algorithm for airborne LIDAR data. PLoS ONE 13:e0208996

    PubMed  PubMed Central  Google Scholar 

  • Waraich EA, Ahmad R, Ashraf MY (2011) Role of mineral nutrition in alleviation of drought stress in plants. Aust J Crop Sci 5:764–777

    CAS  Google Scholar 

  • Weckwerth W (2011) Unpredictability of metabolism—the key role of metabolomics science in combination with next-generation genome sequencing. Anal Bioanal Chem 400:1967–1978

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weyers JD, Paterson NW (2001) Plant hormones and the control of physiological processes. New Phytol 152:375–407

    CAS  PubMed  Google Scholar 

  • Wise RR, Olson AJ, Schrader SM, Sharkey TD (2004) Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant Cell Environ 27:717–724

    CAS  Google Scholar 

  • WMO (2019) https://reliefweb.int/report/world/wmo-statement-state-global-climate-2019-enarru

  • Wu X, Feng H, Wu D et al (2021) Using high-throughput multiple optical phenotyping to decipher the genetic architecture of maize drought tolerance. Genome Biol 22:1–26

    Google Scholar 

  • Yang C, Shen W, Chen H et al (2018) Characterization and subcellular localization of histone deacetylases and their roles in response to abiotic stresses in soybean. BMC Plant Biol 18:1–13

    CAS  Google Scholar 

  • Ye H, Roorkiwal M, Valliyodan B et al (2018) Genetic diversity of root system architecture in response to drought stress in grain legumes. J Exp Bot 69:3267–3277

    CAS  PubMed  Google Scholar 

  • Yung WS, Huang C, Li MW, Lam HM (2022) Changes in epigenetic features in legumes under abiotic stresses. Plant Genome 2022:e20237

    Google Scholar 

  • Zargar SM, Nazir M, Rai V et al (2015) Towards a common bean proteome atlas: looking at the current state of research and the need for a comprehensive proteome. Front Plant Sci 6:201

    PubMed  PubMed Central  Google Scholar 

  • Zhang L, Zhao HK, Dong QL et al (2015) Genome-wide analysis and expression profiling under heat and drought treatments of HSP70 gene family in soybean (Glycine max L.). Front Plant Sci 6:773

    PubMed  PubMed Central  Google Scholar 

  • Zhang X, Sun Y, Qiu X et al (2022) Tolerant mechanism of model legume plant Medicago truncatula to drought, salt, and cold stresses. Front Plant Sci 13:847166

    PubMed  PubMed Central  Google Scholar 

  • Zia R, Muhammad Shoib Nawaz MS, Muhammad Jawad Siddique MJ et al (2021) Plant survival under drought stress: implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiol Res 242:126626

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank everyone who contributed to improving the quality of the review article at different stages of writing manuscript.

Author information

Authors and Affiliations

Authors

Contributions

IS, HSB and GS conceived the idea. HSB, JD and GS wrote the manuscript. HSB and JD finalized the tables. HSB and GS finalized the figures. HSB, JD, GS, and IS evaluated the manuscript. IS supervised the study and finalized the manuscript. All authors read and approved the final version.

Corresponding author

Correspondence to Gurjeet Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

Additional information

Communicated by Gerhard Leubner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakala, H.S., Devi, J., Singh, G. et al. Drought and heat stress: insights into tolerance mechanisms and breeding strategies for pigeonpea improvement. Planta 259, 123 (2024). https://doi.org/10.1007/s00425-024-04401-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-024-04401-6

Keywords

Navigation