Skip to main content
Log in

NtERF4 promotes the biosynthesis of chlorogenic acid and flavonoids by targeting PAL genes in Nicotiana tabacum

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Chlorogenic acid (CGA) and flavonoids are important secondary metabolites, which modulate plant growth and development, and contribute to plant resistance to various environmental stresses. ERF4 has been shown to be a repressor of anthocyanin accumulation in grape, but its full roles in regulating the biosynthesis of other phenylpropanoid compounds still needs to be further studied. In the present study, two NtERF4 genes were identified from N. tabacum genome. The expression level of NtERF4a was higher than that of NtERF4b in all the tobacco tissues examined. Over-expression of NtERF4a significantly promoted the accumulation of CGA and flavonoids in tobacco leaves, while silencing of NtERF4a significantly repressed the biosynthesis of CGA and flavonoids. RNA-seq analysis of NtERF4a-OE and WT plants revealed 8 phenylpropanoids-related differentially expressed genes (DEGs), including 4 NtPAL genes that encode key enzymes in the phenylpropanoid pathway. Activation of NtERF4a-GR fusion protein in tobacco significantly induced the transcription of NtPAL1 and NtPAL2 in the presence of protein synthesis inhibitor. Chromatin immunoprecipitation and Dual-Luc assays further indicated that NtERF4a could bind to the GCC box presented in the promoters of NtPAL1 and NtPAL2, thereby activating their transcription. Moreover, ectopic expression of NtERF4a induced the transcription of NtGSK1, NtMYC2, and NtJAZ3 genes, and enhanced the resistance of tobacco seedlings to salt and drought stresses, indicating multiple roles of NtERF4a in plants. Our findings revealed new roles of NtERF4a in modulating the accumulation of phenylpropanoid compounds in tobacco, and provided a putative target for improving phenylpropanoids synthesis and stress resistance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and in its online supplemental material.

References

  • Anming D, Xianfeng T, Dahai Y, Meng W, Angyan R, Zongchang X, Ruibo H, Gongke Z, Malcolm ON, Yingzhen K (2020) ERF4 and MYB52 transcription factors play antagonistic roles in regulating homogalacturonan de-methylesterification in Arabidopsis seed coat mucilage. Plant Cell 33(2):381–403

    Google Scholar 

  • Biao L, Yi Y, Lingling Z, Qiuxia W, Fabo C, Gangjun L, Lina D, Huicong W (2021) Identification and functional characterization of RsGST1, an anthocyanin-related glutathione S-transferase gene in radish. J Plant Physiol 263:153468

    Article  Google Scholar 

  • Bolger AM, Marc L, Bjoern U (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradshaw HD Jr, Schemske DW (2003) Allele substitution at a flower colour locus produces a pollinator shift in monkeyflowers. Nature 426(6963):176–178

    Article  CAS  PubMed  ADS  Google Scholar 

  • Chen J-Y, Wen P-F, Kong W-F, Pan Q-H, Zhan J-C, Li J-M, Wan S-B, Huang W-D (2006) Effect of salicylic acid on phenylpropanoids and phenylalanine ammonia-lyase in harvested grape berries. Postharvest Biol Technol 40(1):64–72

    Article  CAS  Google Scholar 

  • Cheng S, Yunpeng C, Jun D, Guohui L, Aamir MM, Cunwu C, Hui D (2022) The multifaceted roles of MYC2 in plants: toward transcriptional reprogramming and stress tolerance by jasmonate signaling. Front Plant Sci 13:868874

    Article  Google Scholar 

  • Chun-Peng S, Manu A, Masaru O, Yan G, Ursula H, Pengcheng W, Jian-Kang Z (2005) Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell 17(8):2384–2396

    Article  Google Scholar 

  • Clé C, Hill LM, Niggeweg R, Martin CR, Guisez Y, Prinsen E, Jansen MAK (2008) Modulation of chlorogenic acid biosynthesis in Solanum lycopersicum; consequences for phenolic accumulation and UV-tolerance. Phytochemistry 69(11):2149–2156

    Article  PubMed  Google Scholar 

  • Cole T, Williams BA, Geo P, Ali M, Gordon K, Van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–515

    Article  Google Scholar 

  • Cole T, Hendrickson DG, Martin S, Loyal G, L RJ, Lior P, (2013) Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 31(1):46–53

    Article  Google Scholar 

  • Daehwan K, Ben L, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357–360

    Article  Google Scholar 

  • Dalu L, YongJun H, Shaohang L, Suli S, Linzhi L, Yang L, Huoying C (2021) Genome-wide characterization and expression analysis of AP2/ERF genes in eggplant (Solanum melongena L.). Plant Physiol Biochem 167:492–503

    Article  Google Scholar 

  • Dimosthenis K, Montserrat P (2002) Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway. Plant J Cell Mol Biol 30(6):679–689

    Article  Google Scholar 

  • Dombrecht B, Xue GP, Sprague SJ, Kirkegaard JA, Ross JJ, Reid JB, Fitt GP, Sewelam N, Schenk PM, Manners JM, Kazan K (2007) MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19(7):2225–2245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards KD, Fernandez-Pozo N, Drake-Stowe K, Humphry M, Evans AD, Bombarely A, Allen F, Hurst R, White B, Kernodle SP, Bromley JR, Sanchez-Tamburrino JP, Lewis RS, Mueller LA (2017) A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genomics 18(1):448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng SR, Ting LT, Cheng LW (2021) Jasmonic acid impairs arabidopsis seedling salt stress tolerance through MYC2-mediated repression of CAT2 expression. Front Plant Sci 12:730228

    Article  Google Scholar 

  • Fukasawa-Akada T, Kung SD, Watson JC (1996) Phenylalanine ammonia-lyase gene structure, expression, and evolution in Nicotiana. Plant Mol Biol 30(4):711–722

    Article  CAS  PubMed  Google Scholar 

  • Gaiyun Z, Ming C, Liancheng L, Zhaoshi X, Xueping C, Jiaming G, Youzhi M (2009) Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot 60(13):3781–3796

    Article  Google Scholar 

  • Gao J, Chen B, Lin H, Liu Y, Wei Y, Chen F, Li W (2020) Identification and characterization of the glutathione S-Transferase ( GST ) family in radish reveals a likely role in anthocyanin biosynthesis and heavy metal stress tolerance. Gene 743:144484

    Article  CAS  PubMed  Google Scholar 

  • Gutterson N, Reuber TL (2004) Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol 7(4):465–471

    Article  CAS  PubMed  Google Scholar 

  • Haiwen Z, Zejun H, Bingyan X, Qi C, Xin T, Xiulin Z, Hongbo Z, Xiangyang L, Dafang H, Rongfeng H (2004) The ethylene-, jasmonate-, abscisic acid- and NaCl-responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco. Planta 220(2):262–270

    Article  Google Scholar 

  • Haiwen Z, Wu L, Liyun W, Fang L, Liangying D, Dingjun L, Zhijin Z, Rongfeng H (2010) Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice. Transgenic Res 19(5):809–818

    Article  Google Scholar 

  • Hao D, Ohme-Takagi M, Sarai A (1998) Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant. J Biol Chem 273(41):26857–26861

    Article  CAS  PubMed  Google Scholar 

  • He X, Tian J, Yang L, Huang Y, Zhao B, Zhou C, Ge R, Shen Y, Huang Z (2012) Overexpressing a glycogen synthase kinase gene from wheat, TaGSK1, enhances salt tolerance in transgenic arabidopsis. Plant Mol Biol Report 30(4):807–816

    Article  CAS  Google Scholar 

  • Hezema YS, Shukla MR, Goel A, Ayyanath MM, Sherif SM, Saxena PK (2021) Rootstocks overexpressing StNPR1 and StDREB1 improve osmotic stress tolerance of wild-type scion in transgrafted tobacco plants. Int J Mol Sci 22(16):8398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hongna Z, Xiaolu P, Shenghui L, Wenqiu L, Yunhe L, Xiumei Z (2020) Genome-wide analysis of AP2/ERF transcription factors in pineapple reveals functional divergence during flowering induction mediated by ethylene and floral organ development. Genomics 113(2):474–489

    Google Scholar 

  • Huang S-h, Liu Y-x, Deng R, Lei T-t, Tian A-j, Ren H-h, Wang S-f, Wang X-f (2020) Genome-wide identification and expression analysis of the GSK gene family in Solanum tuberosum L. under abiotic stress and phytohormone treatments and functional characterization of StSK21 involvement in salt stress. Gene 766:145156

    Article  PubMed  Google Scholar 

  • Huang Y, Liu L, Hu H, Tang N, Shi L, Xu F, Wang S (2022) Arabidopsis ERF012 is a versatile regulator of plant growth, development and abiotic stress responses. Int J Mol Sci 23(12):6841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal X. Trends Biochem Sci 23(10):403–405

    Article  CAS  PubMed  Google Scholar 

  • Jia H, Zuo Q, Sadeghnezhad E, Zheng T, Chen X, Dong T, Fang J (2023) HDAC19 recruits ERF4 to the MYB5a promoter and diminishes anthocyanin accumulation during grape ripening. Plant J Cell Mol Biol 113(1):127–144

    Article  CAS  Google Scholar 

  • Junbei N, Songling B, Yuan Z, Minjie Q, Ruiyan T, Lei Y, Ling G, Yuanwen T (2019) Ethylene response factors Pp4ERF24 and Pp12ERF96 regulate blue light-induced anthocyanin biosynthesis in “Red Zaosu” pear fruits by interacting with MYB114. Plant Mol Biol 99(1–2):67–78

    Google Scholar 

  • Koichiro T, Daniel P, Nicholas P, Glen S, Masatoshi N, Sudhir K (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  Google Scholar 

  • Koukol J, Conn EE (1961) The metabolism of aromatic compounds in higher plants. IV. Purification and properties of the phenylalanine deaminase of Hordeum vulgare. J Biol Chem 236(10):2692–2698

    Article  CAS  PubMed  Google Scholar 

  • Kumari P, Kumar V, Kumar R, Pahuja SK (2021) Sorghum polyphenols: plant stress, human health benefits, and industrial applications. Planta 254(3):47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Kim DM, Lee JH, Kim J, Bang JW, Kim WT, Pai HS (2005) Functional characterization of NtCEF1, an AP2/EREBP-type transcriptional activator highly expressed in tobacco callus. Planta 222(2):211–222

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Chen M, Wang S, Ning J, Ding X, Chu Z (2015) AtMYB11 regulates caffeoylquinic acid and flavonol synthesis in tomato and tobacco. Plant Cell Tissue Organ Cult 122(2):309–319

    Article  CAS  Google Scholar 

  • Licausi F, Ohme-Takagi M, Perata P (2013) APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol 199(3):639–664

    Article  CAS  PubMed  Google Scholar 

  • Liu A, Yuan K, Xu H, Zhang Y, Tian J, Li Q, Zhu W, Ye H (2022) Proteomic and metabolomic revealed differences in the distribution and synthesis mechanism of aroma precursors in Yunyan 87 TOBACCO LEAF, STEM, AND ROOT AT THE SEEDLING STAGE. ACS Omega 7(37):33295–33306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lulu H, Hongzhu Z, Lin Z, Yan W (2022) Transcriptome-based identification and expression analysis of the glutathione S-transferase (GST) family in tree peony reveals a likely role in anthocyanin transport. Hortic Plant J 8(6):787–802

    Article  Google Scholar 

  • Mao J-L, Miao Z-Q, Wang Z, Yu L-H, Cai X-T, Xiang C-B (2016) Arabidopsis ERF1 mediates cross-talk between ethylene and auxin biosynthesis during primary root elongation by regulating ASA1 expression. PLoS Genet 12(1):1005760

    Article  Google Scholar 

  • Masako F-M, Hiroaki O, Yuko F, Masahiro N, Yukihisa K, Keiko Y-S, Takaaki K, Toshiharu H, Yoshikazu T (2003) Biochemical and molecular characterization of a novel UDP-glucose:anthocyanin 3’-O-glucosyltransferase, a key enzyme for blue anthocyanin biosynthesis, from gentian. Plant Physiol 132(3):1652–1663

    Article  Google Scholar 

  • Mingxun C, Lijie X, Zhong W, Longhua Z, Zhilan L, Xue D, Essa A, Guoping Z, Lixi J (2014) TRANSPARENT TESTA8 inhibits seed fatty acid accumulation by targeting several seed development regulators in arabidopsis. Plant Physiol 165(2):905–916

    Article  Google Scholar 

  • Mi-Young C, Julia V, Rob A, Jemin L, Ryan M, Jae-Dong C, Patricia K, James G (2010) A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening. Plant J Cell Mol Biol 64(6):936–947

    Article  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochem Biophys Acta 1819(2):86–96

    CAS  PubMed  Google Scholar 

  • Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7(2):173–182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palmgren G, Mattson O, Okkels FT (1993) Treatment of Agrobacterium or leaf disks with 5-azacytidine increases transgene expression in tobacco. Plant Mol Biol 21(3):429–435

    Article  CAS  PubMed  Google Scholar 

  • Park JM, Park CJ, Lee SB, Ham BK, Shin R, Paek KH (2001) Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13(5):1035–1046

    CAS  PubMed  PubMed Central  Google Scholar 

  • Payyavula RS, Singh RK, Navarre DA (2013) Transcription factors, sucrose, and sucrose metabolic genes interact to regulate potato phenylpropanoid metabolism. J Exp Bot 64(16):5115–5131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi T, Song S, Ren Q, Wu D, Huang H, Chen Y, Fan M, Peng W, Ren C, Xie D (2011) The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell 23(5):1795–1814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao-li D, Yuan-peng F, Jun-mei J, Mei-qing C, Xiang-yang L, Xin X (2022) Genome-wide identification and characterization of the JAZ gene family and its expression patterns under various abiotic stresses in Sorghum bicolor. J Integr Agric 21(12):3540–3555

    Article  Google Scholar 

  • Rehman S, Mahmood T (2015) Functional role of DREB and ERF transcription factors: regulating stress-responsive network in plants. Acta Physiol Plant 37(9):178

    Article  Google Scholar 

  • Reichert AI, Xian-Zhi H, Dixon RA (2009) Phenylalanine ammonia-lyase (PAL) from tobacco (Nicotiana tabacum): characterization of the four tobacco PAL genes and active heterotetrameric enzymes. Biochem J 424(2):233–242

    Article  CAS  PubMed  Google Scholar 

  • Ricarda N, Michael AJ, Cathie M (2004) Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat Biotechnol 22(6):746–754

    Article  Google Scholar 

  • Ricardo P-DJ, Jorge P-D, José M-E, Enrique G-V, Yerko M, Simón R-L (2016) New member of the R2R3-MYB transcription factors family in grapevine suppresses the anthocyanin accumulation in the flowers of transgenic tobacco. Plant Mol Biol 90(1–2):63–76

    Google Scholar 

  • Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379(6):633–646

    CAS  PubMed  Google Scholar 

  • Schmidt GW, Delaney SK (2010) Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Mol Genet Genomics 283(3):233–241

    Article  CAS  PubMed  Google Scholar 

  • Sharma MK, Kumar R, Solanke AU, Sharma R, Tyagi AK, Sharma AK (2010) Identification, phylogeny, and transcript profiling of ERF family genes during development and abiotic stress treatments in tomato. Mol Genet Genom MGG 284(6):455–475

    Article  CAS  Google Scholar 

  • Shen J, Zou Z, Xing H, Duan Y, Zhu X, Ma Y, Wang Y, Fang W (2020) Genome-wide analysis reveals stress and hormone responsive patterns of JAZ family genes in Camellia sinensis. Int J Mol Sci 21(7):2433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoji T, Yuan L (2021) ERF gene clusters: working together to regulate metabolism. Trends Plant Sci 26(1):23–32

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Kaur I, Kariyat R (2021) The multifunctional roles of polyphenols in plant-herbivore interactions. Int J Mol Sci 22(3):1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song C, Cao Y, Dai J, Li G, Manzoor MA, Chen C, Deng H (2022) The multifaceted roles of MYC2 in plants: toward transcriptional reprogramming and stress tolerance by jasmonate signaling. Front Plant Sci 13:86887

    Google Scholar 

  • Takayuki T, Yasutaka N, Yokota HM, Mitsuru Y, Jun-ichiro N, Motoko A, Eri I, Hideki T, Goodenowe DB, Masahiko K, Masaaki N, Mami Y, Kazuki S (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J Cell Mol Biol 42(2):218–235

    Article  Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nat Int Wkly J Sci 448(7154):661–665

    CAS  Google Scholar 

  • Tong L, Zhongyu J, Lichao Z, Dongmei T, Yun W, Hui Y, Tianlai L, Aide W (2016) Apple (Malus domestica) MdERF2 negatively affects ethylene biosynthesis during fruit ripening by suppressing MdACS1 transcription. Plant J Cell Mol Biol 88(5):735–748

    Article  Google Scholar 

  • Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3(1):2–20

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Liu YH, Feng SJ, Wang ZY, Zhang JW, Zhang JL, Wang D, Gan YT (2018) AtHKT1 gene regulating K+ state in whole plant improves salt tolerance in transgenic tobacco plants. Sci Rep 8:16585

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Wang Z, Wang S, Xiao Y, Li Z, Wu M, Xie X, Li H, Mu W, Li F, Liu P, Wang R, Yang J (2020) Functional characterization of a HD-ZIP IV transcription factor NtHDG2 in regulating flavonols biosynthesis in Nicotiana tabacum. Plant Physiol Biochem 146(C):259–268

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Luo Z, Liu Y, Li Z, Liu P, Bai G, Zhou Z, Xie H, Yang J (2021) Molecular cloning and functional characterization of NtWRKY11b in promoting the biosynthesis of flavonols in Nicotiana tabacum. Plant Sci 304:110799

    Article  CAS  PubMed  Google Scholar 

  • Wenchao Z, Huang H, Jingjing W, Xiaoyun W, Bingqin X, Xuehui Y, Lulu S, Rui Y, Jianli W, Aidong S, Shaohui W (2022) Jasmonic acid enhances osmotic stress responses by MYC2-mediated inhibition of protein phosphatase 2C1 and response regulators 26 transcription factor in tomato. Plant J Cell Mol Biol 113(3):546–561

    Google Scholar 

  • Wu J, Deng Y, Hu J, Jin C, Zhu X, Li D (2020) Genome-wide analyses of direct target genes of an ERF11 transcription factor involved in plant defense against bacterial pathogens. Biochem Biophys Res Commun 532(1):76–81

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Nolan TM, Jiang H, Yin Y (2019) AP2/ERF Transcription factor regulatory networks in hormone and abiotic stress responses in arabidopsis. Front Plant Sci 10:228

    Article  PubMed  PubMed Central  Google Scholar 

  • Yanan H, Zhenyun H, Yaqiang S, Shuai W, Ting W, Yi W, Kenong X, Xinzhong Z, Xuefeng X, Zhenhai H, Ting W (2020) ERF4 affects fruit firmness through TPL4 by reducing ethylene production. Plant J Cell Mol Biol 103(3):937–950

    Article  Google Scholar 

  • Yang Y, Li R, Qi M (2000) In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J Cell Mol Biol 22(6):543–551

    Article  CAS  Google Scholar 

  • Yoh S, Qiang L, Dubouzet JG, Hiroshi A, Kazuo S, Kazuko Y (2002) DNA-binding specificity of the ERF/AP2 domain of arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290(3):998–1009

    Article  Google Scholar 

  • Yu Z-X, Li J-X, Yang C-Q, Hu W-L, Wang L-J, Chen X-Y (2012) The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L. Mol Plant 5(2):353–365

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Saifeng C, Yaling S, Yulan H, Shaoli Z, Xiaoyun L, Dao-Xiu Z (2015) The interaction between rice ERF3 and WOX11 promotes crown root development by regulating gene expression involved in cytokinin signaling. Plant Cell 27(9):2469–2483

    Article  Google Scholar 

  • Yu Z, Aijia J, Zhichao X, Hongmei L, Jingyuan S (2019) The AP2/ERF transcription factor SmERF128 positively regulates diterpenoid biosynthesis in Salvia miltiorrhiza. Plant Mol Biol 100(1–2):83–93

    Google Scholar 

  • Yun Z, Weiqi D, Yongchao Z, Allan AC, Kui L-W, Changjie X (2020) PpGST1, an anthocyanin-related glutathione S-transferase gene, is essential for fruit coloration in peach. Plant Biotechnol J 18(5):1284–1295

    Article  Google Scholar 

  • Zhang GY, Chen M, Chen XP, Xu ZS, Li LC, Guo JM, Ma YZ (2010) Isolation and characterization of a novel EAR-motif-containing gene GmERF4 from soybean (Glycine max L,). Mol Biol Rep 37(2):809–818

    Article  CAS  PubMed  Google Scholar 

  • Zhen Y, Lining T, Marysia L-G, Daniel B, Keqiang W (2005) Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Mol Biol 58(4):585–596

    Article  Google Scholar 

  • Zhong W, Shanshan W, Mingzhu W, Zefeng L, Pingping L, Feng L, Qiansi C, Aiguo Y, Jun Y (2018) Evolutionary and functional analyses of the 2-oxoglutarate-dependent dioxygenase genes involved in the flavonoid biosynthesis pathway in tobacco. Planta 249(2):543–561

    Google Scholar 

  • Zhong W, Zhaopeng L, Yongjun L, Zefeng L, Pingping L, Ge B, Zhicheng Z, He X, Jun Y (2021) Molecular cloning and functional characterization of NtWRKY11b in promoting the biosynthesis of flavonols in Nicotiana tabacum. Plant Sci 304:110799

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Henan Natural Science Foundation (No. 222300420388), Tobacco Genome Projects of CNTC (Grant No. 110202201015 (JY-15) and 110202101044 (JY-21)), Foundation of Yunnan Tobacco Industry Co. Ltd (2022JY01), and Science and Technology Projects of HNTI (KY2022YC0003).

Author information

Authors and Affiliations

Authors

Contributions

ZW and JMZ conceived and supervised this study. SH, XX, QG, CJH, ZPL, PPL, MZW, and HTH conducted the experiments and data analysis. ZW and SH summarized the results and wrote the manuscript. JY advised and modified the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Jianmin Zeng or Zhong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by De-Yu Xie.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 403 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, S., Xu, X., Gao, Q. et al. NtERF4 promotes the biosynthesis of chlorogenic acid and flavonoids by targeting PAL genes in Nicotiana tabacum. Planta 259, 31 (2024). https://doi.org/10.1007/s00425-023-04301-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-023-04301-1

Keywords

Navigation