Skip to main content
Log in

Multi-locus genome-wide association study and genomic prediction for flowering time in chrysanthemum

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Multi-locus GWAS detected several known and candidate genes responsible for flowering time in chrysanthemum. The associations could greatly increase the predictive ability of genome selection that accelerates the possible application of GS in chrysanthemum breeding.

Abstract

Timely flowering is critical for successful reproduction and determines the economic value for ornamental plants. To investigate the genetic architecture of flowering time in chrysanthemum, a multi-locus genome-wide association study (GWAS) was performed using a collection of 200 accessions and 330,710 single-nucleotide polymorphisms (SNPs) via 3VmrMLM method. Five flowering time traits including budding (FBD), visible colouring (VC), early opening (EO), full-bloom (OF) and senescing (SF) stages, plus five derived conditional traits were recorded in two environments. Extensive phenotypic variations were observed for these flowering time traits with coefficients of variation ranging from 6.42 to 38.27%, and their broad-sense heritability ranged from 71.47 to 96.78%. GWAS revealed 88 stable quantitative trait nucleotides (QTNs) and 93 QTN-by-environment interactions (QEIs) associated with flowering time traits, accounting for 0.50–8.01% and 0.30–10.42% of the phenotypic variation, respectively. Amongst the genes around these stable QTNs and QEIs, 21 and 10 were homologous to known flowering genes in Arabidopsis; 20 and 11 candidate genes were mined by combining the functional annotation and transcriptomics data, respectively, such as MYB55, FRIGIDA-like, WRKY75 and ANT. Furthermore, genomic selection (GS) was assessed using three models and seven unique marker datasets. We found the prediction accuracy (PA) using significant SNPs identified by GWAS under SVM model exhibited the best performance with PA ranging from 0.90 to 0.95. Our findings provide new insights into the dynamic genetic architecture of flowering time and the identified significant SNPs and candidate genes will accelerate the future molecular improvement of chrysanthemum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The GBS data are available in the National Center of Biotechnology Information Sequence Read Archieve (SRA) under BioProject accession number PRJNA1004079. The sequencing and mapping profile of 200 cut chrysanthemum entries used in this study have been uploaded to Figshare (https://figshare.com/ndownloader/files/42493344).

Abbreviations

EO:

Early opening stage

FBD:

Budding stage

GBS:

Genotyping-by-sequencing

GS:

Genomic selection

GWAS:

Genome-wide association study

OF:

Full-bloom stage

QEI:

QTN-by-environment interaction

QTN:

Quantitative trait nucleotide

SF:

Senescing stage

SNP:

Single-nucleotide polymorphism

VC:

Visible colouring stage

References

  • Alexander DH, Lange K (2011) Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinform 12:1–6

    Google Scholar 

  • Azadi P, Bagheri H, Nalousi AM, Nazari F, Chandler SF (2016) Current status and biotechnological advances in genetic engineering of ornamental plants. Biotechnol Adv 34(6):1073–1090

    PubMed  Google Scholar 

  • Badouin H, Gouzy J, Grassa CJ et al (2017) The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature 546(7656):148–152

    CAS  PubMed  Google Scholar 

  • Bouche F, Lobet G, Tocquin P, Perilleux C (2016) FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucleic Acids Res 44(D1):D1167–D1171

    CAS  PubMed  Google Scholar 

  • Capella M, Ribone PA, Arce AL, Chan RL (2015) Arabidopsis thaliana HomeoBox 1 (AtHB1), a Homedomain-Leucine Zipper I (HD-Zip I) transcription factor, is regulated by PHYTOCHROME-INTERACTING FACTOR 1 to promote hypocotyl elongation. New Phytol 207(3):669–682

    CAS  PubMed  Google Scholar 

  • Cheng H, Yu Y, Zhai YW, Wang LJ, Wang LK, Chen SM, Chen FD, Jiang JF (2023) An ethylene-responsive transcription factor and a B-box protein coordinate vegetative growth and photoperiodic flowering in chrysanthemum. Plant Cell Environ 46(2):440–450

    CAS  PubMed  Google Scholar 

  • Cho LH, Yoon J, An G (2017) The control of flowering time by environmental factors. Plant J 90(4):708–719

    CAS  PubMed  Google Scholar 

  • Chong XR, Su JS, Wang F, Wang HB, Song AP, Guan ZY, Fang WM, Jiang JF, Chen SM, Chen FD, Zhang F (2019) Identification of favorable SNP alleles and candidate genes responsible for inflorescence-related traits via GWAS in chrysanthemum. Plant Mol Biol 99:407–420

    CAS  PubMed  Google Scholar 

  • Cobb JN, Biswas PS, Platten JD (2019) Back to the future: revisiting MAS as a tool for modern plant breeding. Theor Appl Genet 132(3):647–667

    CAS  PubMed  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 363(1491):557–572

    CAS  PubMed  Google Scholar 

  • Cortes LT, Zhang ZW, Yu JM (2021) Status and prospects of genome-wide association studies in plants. Plant Genome 14(1):e20077

    Google Scholar 

  • del Olmo I, Lopez-Gonzalez L, Martin-Trillo MM, Martinez-Zapater JM, Pineiro M, Jarillo JA (2010) EARLY IN SHORT DAYS 7 (ESD7) encodes the catalytic subunit of DNA polymerase epsilon and is required for flowering repression through a mechanism involving epigenetic gene silencing. Plant J 61(4):623–636

    PubMed  Google Scholar 

  • Du C, Ma BJ, Wu ZG, Li NN, Zheng LL, Wang YC (2019) Reaumuria trigyna transcription factor RtWRKY23 enhances salt stress tolerance and delays flowering in plants. J Plant Physiol 239:38–51

    CAS  PubMed  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6(5):e19379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu JJ, Hao YF, Li HH, Reif JC, Chen SJ, Huang CL, Wang GY, Li XH, Xu YB, Li L (2022) Integration of genomic selection with doubled-haploid evaluation in hybrid breeding: from GS 1.0 to GS 4.0 and beyond. Mol Plant 15(4):577–580

    CAS  PubMed  Google Scholar 

  • Guan YX, Ding L, Jiang JF, Shentu YY, Zhao WQ, Zhao KK, Zhang X, Song AP, Chen SM, Chen FD (2021) Overexpression of the CmJAZ1-like gene delays flowering in Chrysanthemum morifolium. Hort Res 8(1):87

    CAS  Google Scholar 

  • Gupta PK, Kulwal PL, Jaiswal V (2019) Association mapping in plants in the post-GWAS genomics era. Adv Genet 104:75–154

    PubMed  Google Scholar 

  • Han P, Garcia-Ponce B, Fonseca-Salazar G, Alvarez-Buylla ER, Yu H (2008) AGAMOUS-LIKE 17, a novel flowering promoter, acts in a FT-independent photoperiod pathway. Plant J 55(2):253–265

    CAS  PubMed  Google Scholar 

  • Han X, Tang QQ, Xu LP, Guan ZL, Tu JX, Yi B, Liu KD, Yao X, Lu SP, Guo L (2022) Genome-wide detection of genotype environment interactions for flowering time in Brassica napus. Front Plant Sci 13:1065766

    PubMed  PubMed Central  Google Scholar 

  • Hori K, Matsubara K, Yano M (2016) Genetic control of flowering time in rice: integration of Mendelian genetics and genomics. Theor Appl Genet 129(12):2241–2252

    PubMed  Google Scholar 

  • Huang LY, Min Y, Schiessl S, Xiong XH, Jan HU, He X, Qian W, Guan CY, Snowdon RJ, Hua W, Guan M, Qian LW (2021) Integrative analysis of GWAS and transcriptome to reveal novel loci regulation flowering time in semi-winter rapeseed. Plant Sci 310:110980

    CAS  PubMed  Google Scholar 

  • Huang YY, Xing XJ, Tang Y, Jin JY, Ding L, Song AP, Chen SM, Chen FD, Jiang JF, Fang WM (2022) An ethylene-responsive transcription factor and a flowering locus KH domain homologue jointly modulate photoperiodic flowering in chrysanthemum. Plant Cell Environ 45(5):1442–1456

    CAS  PubMed  Google Scholar 

  • Jiang DH, Wang YQ, Wang YZ, He YH (2008) Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis polycomb repressive complex 2 components. PLoS ONE 3(10):e3404

    PubMed  PubMed Central  Google Scholar 

  • Kandasamy MK, Deal RB, McKinney EC, Meagher RB (2005) Silencing the nuclear actin-related protein AtARP4 in Arabidopsis has multiple effects on plant development, including early flowering and delayed floral senescence. Plant J 41(6):845–858

    CAS  PubMed  Google Scholar 

  • Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, Sabatti C, Eskin E (2010) Variance component model to account for sample structure in genome-wide association studies. Nat Genet 42(4):348–354

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DH (2020) Current understanding of flowering pathways in plants: focusing on the vernalization pathway in Arabidopsis and several vegetable crop plants. Hortic Environ Biotechnol 61(2):209–227

    CAS  Google Scholar 

  • Kou K, Yang H, Li HY et al (2022) A functionally divergent SOC1 homolog improves soybean yield and latitudinal adaptation. Curr Biol 32(8):1728–1742

    CAS  PubMed  Google Scholar 

  • Kwak JS, Son GH, Song JT, Seo HS (2017) Post-translational modifications of FLOWERING LOCUS C modulate its activity. J Exp Bot 68(3):383–389

    CAS  PubMed  Google Scholar 

  • Le Hir R, Spinner L, Klemens PAW et al (2015) Disruption of the sugar transporters AtSWEET11 and AtSWEET12 affects vascular development and freezing tolerance in Arabidopsis. Mol Plant 8(11):1687–1690

    PubMed  Google Scholar 

  • Lee I, Aukerman MJ, Gore SL, Lohman KN, Michaels SD, Weaver LM, John MC, Feldmann KA, Amasino RM (1994) Isolation of LUMINIDEPENDENS: a gene involved in the control of flowering time in Arabidopsis. Plant Cell 6(1):75–83

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HJ, Jung JH, Llorca LC, Kim SG, Lee S, Baldwin IT, Park CM (2014) FCA mediates thermal adaptation of stem growth by attenuating auxin action in Arabidopsis. Nat Commun 5:5473

    PubMed  Google Scholar 

  • Li H (2014) Toward better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics 30(20):2843–2851

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079

    PubMed  PubMed Central  Google Scholar 

  • Li CL, Chen C, Gao L, Yang SG, Nguyen V, Shi XJ, Siminovitch K, Kohalmi SE, Huang SZ, Wu KQ, Chen XM, Cui YH (2015) The Arabidopsis SWI2/SNF2 chromatin remodeler BRAHMA regulates polycomb function during vegetative development and directly activates the flowering repressor gene SVP. PLoS Genet 11(1):e1004944

    PubMed  PubMed Central  Google Scholar 

  • Li M, Zhang YW, Zhang ZC, Xiang Y, Liu MH, Zhou YH, Zuo JF, Zhang HQ, Chen Y, Zhang YM (2022) A compressed variance component mixed model for detecting QTNs and QTN-by-environment and QTN-by-QTN interactions in genome-wide association studies. Mol Plant 15(4):630–650

    CAS  PubMed  Google Scholar 

  • Li YY, Guo LL, Wang ZY, Zhao DH, Guo DL, Carlson JE, Yin WL, Hou XG (2023) Genome-wide association study of 23 flowering phenology traits and 4 floral agronomic traits in tree peony (Paeonia section Moutan DC.) reveals five genes known to regulate flowering time. Hort Res 10(2):uhac263

    Google Scholar 

  • Lozada DN, Ward BP, Carter AH (2020) Gains through selection for grain yield in a winter wheat breeding program. PLoS ONE 15(4):e0221603

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Z, Yu Y, Xiang JH, Li FH (2021) Genomic selection using a subset of SNPs identified by genome-wide association analysis for disease resistance traits in aquaculture species. Aquaculture 539:736620

    CAS  Google Scholar 

  • Lyu J, Aiwaili P, Gu ZY, Xu YJ, Zhang YH, Wang ZL, Huang HF, Zeng RH, Ma C, Gao JP, Zhao X, Hong B (2022) Chrysanthemum MAF2 regulates flowering by repressing gibberellin biosynthesis in response to low temperature. Plant J 112(5):1159–1175

    PubMed  PubMed Central  Google Scholar 

  • Marquardt S, Raitskin O, Wu Z, Liu FQ, Sun QW, Dean C (2014) Functional consequences of splicing of the antisense transcript COOLAIR on FLC transcription. Mol Cell 54(1):156–165

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157(4):1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Milly PCD, Dunne KA (2020) Colorado River flow dwindles as warming-driven loss of reflective snow energizes evaporation. Science 367(6483):1252–1255

    CAS  PubMed  Google Scholar 

  • Murray M, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8(19):4321–4326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oda A, Narumi T, Li TP, Kando T, Higuchi Y, Sumitomo K, Fukai S, Hisamatsu T (2012) CsFTL3, a chrysanthemum FLOWERING LOCUS T-like gene, is a key regulator of photoperiodic flowering in chrysanthemums. J Exp Bot 63(3):1461–1477

    CAS  PubMed  Google Scholar 

  • Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6):841–842

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raman H, Raman R, Coombes N, Song J, Prangnell R, Bandaranayake C, Tahira R, Sundaramoorthi V, Killian A, Meng J, Dennis ES, Balasubramanian S (2016) Genome-wide association analyses reveal complex genetic architecture underlying natural variation for flowering time in canola. Plant Cell Environ 39(6):1228–1239

    CAS  PubMed  Google Scholar 

  • Saddic LA, Huvermann BR, Bezhani S, Su YH, Winter CM, Kwon CS, Collum RP, Wagner D (2006) The LEAFY target LMI1 is a meristem identity regulator and acts together with LEAFY to regulate expression of CAULIFLOWER. Development 133(9):1673–1682

    CAS  PubMed  Google Scholar 

  • Sang SH, Chen Y, Yang QF, Wang P (2017) Arabidopsis inositol polyphosphate multikinase delays flowering time through mediating transcriptional activation of FLOWERING LOCUS C. J Exp Bot 68(21–22):5787–5800

    CAS  PubMed  PubMed Central  Google Scholar 

  • Segura V, Vilhjalmsson BJ, Platt A, Korte A, Seren U, Long Q, Nordborg M (2012) An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat Genet 44(7):825–830

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seo PJ, Ryu J, Kang SK, Park CM (2011) Modulation of sugar metabolism by an INDETERMINATE DOMAIN transcription factor contributes to photoperiodic flowering in Arabidopsis. Plant J 65(3):418–429

    CAS  PubMed  Google Scholar 

  • Sharma N, Geuten K, Giri BS, Varma A (2020) The molecular mechanism of vernalization in Arabidopsis and cereals: role of Flowering Locus C and its homologs. Physiol Plant 170(3):373–383

    CAS  PubMed  Google Scholar 

  • Song YH, Ito S, Imaizumi T (2013) Flowering time regulation: photoperiod- and temperature-sensing in leaves. Trends Plant Sci 18(10):575–583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song YH, Shim JS, Kinmonth-Schultz HA, Imaizumi T (2015) Photoperiodic flowering: Time measurement mechanisms in leaves. Annu Rev Plant Biol 66:441–464

    CAS  PubMed  Google Scholar 

  • Song AP, Su JS, Wang HB et al (2023) Analyses of a chromosome-scale genome assembly reveal the origin and evolution of cultivated chrysanthemum. Nat Commun 14(1):2021

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soto-Cerda BJ, Aravena G, Cloutier S (2021) Genetic dissection of flowering time in flax (Linum usitatissimum L.) through single- and multi-locus genome-wide association studies. Mol Genet Genom 296(4):877–891

    CAS  Google Scholar 

  • Spindel J, Begum H, Akdemir D, Virk P, Collard B, Redona E, Atlin G, Jannink J-L, McCouch SR (2015) Correction: genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS Genet 11(6):e1005350

    PubMed  PubMed Central  Google Scholar 

  • Tamba CL, Ni YL, Zhang YM (2017) Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies. PLoS Comput Biol 13(1):e1005357

    PubMed  PubMed Central  Google Scholar 

  • Wahl V, Ponnu J, Schlereth A, Arrivault S, Langenecker T, Franke A, Feil R, Lunn JE, Stitt M, Schmid M (2013) Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science 339(6120):704–707

    CAS  PubMed  Google Scholar 

  • Wang K, Li MY, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164

    PubMed  PubMed Central  Google Scholar 

  • Wang SB, Feng JY, Ren WL, Huang B, Zhou L, Wen YJ, Zhang J, Dunwell JM, Xu SZ, Zhang YM (2016) Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Sci Rep 6:19444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang LL, Yan JP, Zhou X, Cheng SY, Chen ZX, Song QL, Liu XM, Ye JB, Zhang WW, Wu GX, Xu F (2019) GbFT, a FLOWERING LOCUS T homolog from Ginkgo biloba, promotes flowering in transgenic Arabidopsis. Sci Hortic 247:205–215

    CAS  Google Scholar 

  • Wang LJ, Sun J, Ren LP, Zhou M, Han XY, Ding L, Zhang F, Guan ZY, Fang WM, Chen SM, Chen FD, Jiang JF (2020) CmBBX8 accelerates flowering by targeting CmFTL1 directly in summer chrysanthemum. Plant Biotechnol J 18(7):1562–1572

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Zhang JJ, Xie YY, Liu X, Wen LZ, Wang HF, Zhang J, Li J, Han L, Yu XL, Mysore KS, Wen JQ, Zhou C (2021) LATE MERISTEM IDENTITY1 regulates leaf margin development via the auxin transporter gene SMOOTH LEAF MARGIN1. Plant Physiol 187(1):218–235

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Q, Ma C, Xu YJ, Wang TL, Chen YY, Lu J, Zhang LL, Jiang CZ, Hong B, Gao JP (2017) Control of chrysanthemum flowering through integration with an ageing pathway. Nat Commun 8:829

    PubMed  PubMed Central  Google Scholar 

  • Wen YJ, Zhang HW, Ni YL, Huang B, Zhang J, Feng JY, Wang SB, Dunwell JM, Zhang YM, Wu RL (2017) Methodological implementation of mixed linear models in multi-locus genome-wide association studies. Brief Bioinform 18(5):906–906

    PubMed  PubMed Central  Google Scholar 

  • Wong CK, Bernardo R (2008) Genomewide selection in oil palm: increasing selection gain per unit time and cost with small populations. Theor Appl Genet 116(6):815–824

    CAS  PubMed  Google Scholar 

  • Xu YJ, Zhao X, Aiwaili P, Mu XY, Zhao M, Zhao J, Cheng LN, Ma C, Gao JP, Hong B (2020) A zinc finger protein BBX19 interacts with ABF3 to affect drought tolerance negatively in chrysanthemum. Plant J 103(5):1783–1795

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang JA, Lee SH, Goddard ME, Visscher PM (2011) GCTA: a tool for genome-wide complextrait analysis. Am J Hum Genet 88(1):76–82

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang YJ, Ma C, Xu YJ, Wei Q, Imtiaz M, Lan HB, Gao S, Cheng LN, Wang MY, Fei ZJ, Hong B, Gao JP (2014) A zinc finger protein regulates flowering time and abiotic stress tolerance in chrysanthemum by modulating gibberellin biosynthesis. Plant Cell 26(5):2038–2054

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu TS, Lue WL, Wang SM, Chen JC (2000) Mutation of Arabidopsis plastid phosphoglucose isomerase affects leaf starch synthesis and floral initiation. Plant Physiol 123(1):319–325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu CW, Liu XC, Luo M, Chen CY, Lin XD, Tian G, Lu Q, Cui YH, Wu KQ (2011) HISTONE DEACETYLASE6 interacts with FLOWERING LOCUS D and regulates flowering in Arabidopsis. Plant Physiol 156(1):173–184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Chen SM, Jiang JF, Guan ZY, Fang WM, Chen FD (2013) Genetic mapping of quantitative trait loci underlying flowering time in chrysanthemum (Chrysanthemum morifolium). PLoS ONE 8(12):e83023

    PubMed  PubMed Central  Google Scholar 

  • Zhang LP, Chen LG, Yu DQ (2018) Transcription factor WRKY75 interacts with DELLA proteins to affect flowering. Plant Physiol 176(1):790–803

    CAS  PubMed  Google Scholar 

  • Zhang YM, Jia ZY, Dunwell JM (2019a) The applications of new multi-locus GWAS methodologies in the genetic dissection of complex traits. Front Plant Sci 10:100

    PubMed  PubMed Central  Google Scholar 

  • Zhang ZX, Hu Q, Cheng H, Cheng PL, Liu YN, Liu WX, Xing XJ, Chen SM, Chen FD, Jiang JF (2019b) A single residue change in the product of the chrysanthemum gene TPL1-2 leads to a failure in its repression of flowering. Plant Sci 285:165–174

    CAS  PubMed  Google Scholar 

  • Zhang ZH, Li HM, Zhang JY, Yan YY, Ma ZY (2022) Mechanism investigation on flowering time regulation of GhUBC4 a ubiquitin-conjugating enzyme E2 in Gossypium hirsutum. J Agric Univ Hebei 45:1–9

    CAS  Google Scholar 

  • Zhao Q, Shi XS, Wang T, Chen Y, Yang R, Mi JM, Zhang YW, Zhang YM (2023) Identification of QTNs, QTN-by-environment interactions, and their candidate genes for grain size traits in main crop and ratoon rice. Front Plant Sci 14:1119218

    PubMed  PubMed Central  Google Scholar 

  • Zuo JF, Ikram M, Liu JY, Han CY, Niu Y, Dunwell JM, Zhang YM (2022) Domestication and improvement genes reveal the differences of seed size- and oil-related traits in soybean domestication and improvement. Comput Struct Biotechnol J 20:2951–2964

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We wish to thank the high-performance computing platform of Bioinformatics Center, Nanjing Agricultural University for providing data analysis platform services. This work was financially supported by the China Postdoctoral Science Foundation (2019M661870), Jiangsu Agriculture Science and Technology Innovation Fund (CX(21)2004), Natural Science Foundation of Jiangsu Province (BK20210395), the National Science Foundation of China (32230098, 32102421), China Agriculture Research System (CARS-23-A18), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institution.

Author information

Authors and Affiliations

Authors

Contributions

FC, FZ, and JS conceived and designed the project. JS, ZL, JZ, XZ, XY, and SW conducted the filed experiments. JS performed GWAS analysis and wrote the manuscript. FZ, JJ and FC guided the research. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fadi Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 191 KB)

425_2023_4297_MOESM2_ESM.pdf

Fig. S1 Boxplots indicating the flowering time variation between the disbud and spray accessions. A pairwise t-test (two-tailed) was used to determine the significance. ***, P < 0.001; **, P < 0.01; *, P < 0.05; ns, not significant

425_2023_4297_MOESM3_ESM.pdf

Fig. S2 Population stratification analyses of the 200 chrysanthemum accessions panel. a Means of cross-validation errors. b Population structure analysis. Each bar represents a single entry, and the coloured portions of the bar indicate the proportional contribution of each of the subpopulations to a given entry. c Distribution of pairwise kinship coefficients in the GWAS panel. d Neighbour-joining phylogenetic tree of the 200 chrysanthemum accessions panel, with each coloured spot representative of one cluster of Q1 to Q9. The spray- and disbud-type chrysanthemum accessions are indicated by green and purple branches, respectively

425_2023_4297_MOESM4_ESM.pdf

Fig. S3 Veen diagram indicating the detected common QTNs across traits and datasets E1, E2, M and B represent four datasets where the phenotypic observations for ten flowering time traits collected in environment 1, environment 2, their mean and BLUP values, respectively, using in single-environment analysis. MQ represents the phenotypic observations for ten flowering time traits collected in environment 1 and environment 2, using in multiple environments analysis

425_2023_4297_MOESM5_ESM.pdf

Fig. S4 Information of the detected QTNs for flowering time traits. a Veen diagram indicating the detected common QTNs across five datasets. b, the distribution of the QTNs for ten flowering traits on 27 chromosomes of chrysanthemum

425_2023_4297_MOESM6_ESM.pdf

Fig. S5 Box plots indicating the variation in five unconditional flowering time traits for ten stable QTNs. NS, not significant. The mean values of each flowering time traits across two environments were used as phenotypic values. *, ** and *** indicate statistical significance at P < 0.05, P < 0.01 and P < 0.001, respectively, as calculated by Wilcox test

425_2023_4297_MOESM7_ESM.tif

Fig. S6 Manhattan plots for the five unconditional flowering time traits. a-e indicate the detected QEIs for FBD, VC, EO, OF and SF, respectively. Candidate genes around QEIs are marked with green colour

425_2023_4297_MOESM8_ESM.tif

Fig. S7 Manhattan plots for the five conditional flowering time traits. a-e indicate the detected QEIs for VC_FBD, EO_VC, OF_EO, SF_OF and SF_EO, respectively. Known genes around QEIs are marked with red colour, and candidate genes around QEIs are marked with green colour

425_2023_4297_MOESM9_ESM.pdf

Fig. S8 Box plots indicating the phenotypic variation in senescing stage (SF) for QEI Chr23__100938560. The P values were calculated by Wilcox test. Mean values were indicated by blue dots. The average SF value for each environment is indicated as blue dots and marked on the box plot

Fig. S9 Scree plot of principal component analysis

425_2023_4297_MOESM11_ESM.pdf

Fig. S10 The correlation between predicted and observed phenotypic values for flowering time using SVM and sig dataset. The dots in purple represent predictions from the training set, and in orange represent predictions from the test set

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, J., Lu, Z., Zeng, J. et al. Multi-locus genome-wide association study and genomic prediction for flowering time in chrysanthemum. Planta 259, 13 (2024). https://doi.org/10.1007/s00425-023-04297-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-023-04297-8

Keywords

Navigation