Skip to main content

Advertisement

Log in

Production, expression, and function of dual-specific monoclonal antibodies in a single plant

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

LSC CO17-1AK and anti-HER2 VHH-FcK can be produced in a single plant and exhibit anti-tumor activities comparable to those of their respective parent antibodies.

Abstract

Recombinant monoclonal antibodies (mAbs) which can be applied to treat various cancers, are primarily produced using mammalian, insect, and bacteria cell culture systems. Plant expression systems have also been developed to produce antibodies. Plant expression systems present several advantages, including a lack of human pathogenic agents, efficient production costs, and easy large-scale production. In this study, we generated a transgenic plant expressing anti-colorectal cancer large single chain (LSC) CO17-1AK and anti-human epidermal growth factor receptor 2 (HER2) VHH-FcK mAbs by cross-pollinating plants expressing LSC CO17-1AK and anti-HER2 VHH-FcK, respectively. F1 siblings expressing both LSC CO17-1AK and anti-HER2 VHH-FcK were screened using polymerase chain reaction and Western-blot analyses. The cell enzyme-linked immunosorbent assay (Cell ELISA) confirmed the binding of LSC CO17-1AK and anti-HER2 VHH-FcK to target proteins in the SW620 human colorectal cancer and the SKBR-3 human breast cancer cell lines, respectively. The wound healing assay confirmed the inhibitory activity of both antibodies against SW620 and SKBR-3 cell migration, respectively. In conclusion, both LSC CO17-1AK mAb and anti-HER2 VHH-FcK can be produced in a single plant, achieve binding activities to SW620 and SKBR-3 cancer cells, and inhibitory activity against SW620 and SKBR-3 cell migration similar to their parental antibodies, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

CRC:

Colorectal cancer

HC:

IgG heavy chain

HER2:

Human epidermal growth factor receptor 2

LC:

IgG light chain

LSC:

Large single chain

mAb:

Monoclonal antibody

References

  • Ayan A, Meriç S, Gümüş T, Atak Ç (2022) Next generation of transgenic plants: from farming to pharming. Genetically modified plants and beyond. IntechOpen. https://doi.org/10.5772/intechopen.102004

    Chapter  Google Scholar 

  • Bathula NV, Bommadevara H, Hayes JM (2021) Nanobodies: the future of antibody-based immune therapeutics. Cancer Biother Radiopharm 36(2):109–122

    CAS  PubMed  Google Scholar 

  • Brodzik R, Spitsin S, Golovkin M, Bandurska K, Portocarrero C, Okulicz M, Steplewski Z, Koprowski H (2008) Plant-derived EpCAM antigen induces protective anti-cancer response. Cancer Immunol Immunother 57:317–323

    Article  CAS  PubMed  Google Scholar 

  • Buyel JF, Twyman RM, Fischer R (2017) Very-large-scale production of antibodies in plants: the biologization of manufacturing. Biotechnol Adv 35(4):458–465

    Article  CAS  PubMed  Google Scholar 

  • Ferrando-Díez A, Felip E, Pous A, Bergamino Sirven M, Margelí M (2022) Targeted therapeutic options and future perspectives for HER2-positive breast cancer. Cancers 14(14):3305

    Article  PubMed  PubMed Central  Google Scholar 

  • Gong D, Riley TP, Bzymek KP, Correia AR, Li D, Spahr C, Robinson JH, Case RB, Wang Z, Garces F (2021) Rational selection of building blocks for the assembly of bispecific antibodies. Mabs 13(1):1870058

    Article  PubMed  PubMed Central  Google Scholar 

  • Harmsen MM, De Haard HJ (2007) Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol 77(1):13–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamal A, Lee J-H, Lee K-J, Oh D-B, Kim D-S, Lee K-K, Choo Y-K, Hwang K-A, Ko K (2012) Chimerism of multiple monoclonal antibodies expressed in a single plant. Hortic Environ Biotechnol 53:544–551

    Article  CAS  Google Scholar 

  • Kim K, Kang YJ, Park SR, Kim DS, Lee SW, Ko K, Ponndorf D, Ko K (2021) Effect of leaf position and days post-infiltration on transient expression of colorectal cancer vaccine candidate proteins GA733-Fc and GA733-FcK in Nicotiana benthamiana plant. PeerJ 9:e10851

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Du F, Dièras V, Curigliano G (2021) Corrigendum to ‘the role of tyrosine kinase inhibitors in the treatment of HER2+ metastatic breast cancer’[European Journal of Cancer 154 (2021) 175–189]. Eur J Cancer 158:255

    Article  PubMed  Google Scholar 

  • Lee JH, Ko K (2017) Production of recombinant anti-cancer vaccines in plants. Biomol Ther (seoul) 25(4):345–353

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Park SR, Phoolcharoen W, Ko K (2020) Expression, function, and glycosylation of anti-colorectal cancer large single-chain antibody (LSC) in plant. Plant Biotechnol Rep 14:363–371

    Article  Google Scholar 

  • Lim S, Kim D-S, Ko K (2020) Expression of a large single-chain 13F6 antibody with binding activity against Ebola virus-like particles in a plant system. Int J Mol Sci 21(19):7007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim C-Y, Kim D-S, Kang Y, Lee Y-R, Kim K, Kim M-S, Ko K (2022) Immune responses to plant-derived recombinant colorectal cancer glycoprotein EpCAM-FcK fusion protein in mice. Biomol Ther (seoul) 30(6):546–552

    Article  CAS  PubMed  Google Scholar 

  • Loh H-S (2014) Optimizations of laboratory-scale vacuum-assisted agroinfiltration for delivery of a transgene in Nicotiana benthamiana. Asian J Biotechnol 6:25–37. https://doi.org/10.3923/ajbkr.2014

    Article  Google Scholar 

  • Loibl S, Gianni L (2017) HER2-positive breast cancer. Lancet 389(10087):2415–2429

    Article  CAS  PubMed  Google Scholar 

  • Lomonossoff GP, D’Aoust M-A (2016) Plant-produced biopharmaceuticals: a case of technical developments driving clinical deployment. Science 353(6305):1237–1240

    Article  CAS  PubMed  Google Scholar 

  • Mamaloudis I, Zacharoulis D, Samara M, Papadopoulos G, Samara S, Koukoulis G, Chatzitheofilou C, Kollia P (2015) Expression profile of the GA733 gene family in colorectal cancer: correlation with clinicopathological parameters. Genet Mol Res 14(4):14772–14781

    Article  CAS  PubMed  Google Scholar 

  • Mayfield SP, Franklin SE, Lerner RA (2003) Expression and assembly of a fully active antibody in algae. Proc Natl Acad Sci USA 100(2):438–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moussavou G, Ko K, Lee J-H, Choo Y-K (2015) Production of monoclonal antibodies in plants for cancer immunotherapy. BioMed Res Int 2015:306164

    Article  PubMed  PubMed Central  Google Scholar 

  • Nessa MU, Rahman MA, Kabir Y (2020) Plant-produced monoclonal antibody as immunotherapy for cancer. BioMed Res Int 2020:3038564

    Article  PubMed  PubMed Central  Google Scholar 

  • Park SR, Lee J-H, Kim K, Kim TM, Lee SH, Choo Y-K, Kim KS, Ko K (2020) Expression and in vitro function of anti-breast cancer llama-based single domain antibody VHH expressed in tobacco plants. Int J Mol Sci 21(4):1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SH, Ji K-Y, Park SY, Kim HM, Ma SH, Do JH, Kang H, Kang HS, Oh D-B, Shim JS (2022) Immunotherapeutic effects of recombinant colorectal cancer antigen produced in tomato fruits. Sci Rep 12(1):9723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sack M, Hofbauer A, Fischer R, Stoger E (2015) The increasing value of plant-made proteins. Curr Opin Biotechnol 32:163–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin C, Kang Y, Kim H-S, Shin YK, Ko K (2019) Immune response of heterologous recombinant antigenic protein of viral hemorrhagic septicemia virus (VHSV) in mice. Anim Cells Syst (seoul) 23(2):97–105

    Article  CAS  PubMed  Google Scholar 

  • Shin C, Kim K, Kang YJ, Kim D-S, Seo Y-J, Park SR, Kim MK, Lee YK, Kim D-S, Ko K (2022) Effect of IgG Fc-fusion and KDEL-ER retention signal on prostate-specific antigen expression in plant and its immune in mice. Plant Biotechnol Rep 16(6):729–740

    Article  CAS  Google Scholar 

  • Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, Cercek A, Smith RA, Jemal A (2020) Colorectal cancer statistics. CA Cancer J Clin 70(3):145–164

    Article  PubMed  Google Scholar 

  • Sitia L, Sevieri M, Signati L, Bonizzi A, Chesi A, Mainini F, Corsi F, Mazzucchelli S (2022) HER-2-targeted nanoparticles for breast cancer diagnosis and treatment. Cancers 14(10):2424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235(4785):177–182

    Article  CAS  PubMed  Google Scholar 

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249

    Article  PubMed  Google Scholar 

  • Vasconcellos FA, Aleixo PB, Stone SC, Conceição FR, Dellagostin OA, Aleixo JAG (2013) Generation and characterization of new HER2 monoclonal antibodies. Acta Histochem 115(3):240–244

    Article  CAS  PubMed  Google Scholar 

  • Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2(2):127–137

    Article  CAS  PubMed  Google Scholar 

  • Yu D (2001) Mechanisms of ErbB2-mediated paclitaxel resistance and trastuzumab-mediated paclitaxel sensitization in ErbB2-overexpressing breast cancers. Semin Oncol 28(5 Suppl 16):12–17

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) [2021R1F1A1063869].

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: CJ, and KK; Methodology: CJ, and YJK; Formal analysis and investigation: CJ, SRP, and YJO; Resources: SRP, and KK; Writing—original draft preparation: CJ; Writing—review and editing: CJ, and KK; Supervision: KK.

Corresponding author

Correspondence to Kisung Ko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1213 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, C., Kang, Y.J., Park, S.R. et al. Production, expression, and function of dual-specific monoclonal antibodies in a single plant. Planta 259, 15 (2024). https://doi.org/10.1007/s00425-023-04284-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-023-04284-z

Keywords

Navigation