Skip to main content
Log in

Unraveling the potential of environmental DNA for deciphering recent advances in plant–animal interactions: a systematic review

Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Environmental DNA-based monitoring provides critical insights for enhancing our understanding of plant–animal interactions in the context of worldwide biodiversity decrease for developing a global framework for effective plant biodiversity conservation.

Abstract

To understand the ecology and evolutionary patterns of plant–animal interactions (PAI) and their pivotal roles in ecosystem functioning advances in molecular ecology tools such as Environmental DNA (eDNA) provide unprecedented research avenues. These methods being non-destructive in comparison to traditional biodiversity monitoring methods, enhance the discernment of ecosystem health, integrity, and complex interactions. This review intends to offer a systematic and critical appraisal of the prospective of eDNA for investigating PAI. The review thoroughly discusses and analyzes the recent reports (2015–2022) employing preferred reporting items for systematic reviews and meta-analyses (PRISMA) to outline the recent progression in eDNA approaches for elucidating PAI. The current review envisages that eDNA has a significant potential to monitor both plants and associated cohort of prospective pollinators (avian species and flowering plants, bees and plants, arthropods and plants, bats and plants, etc.). Furthermore, a brief description of the factors that influence the utility and interpretation of PAI eDNA is also presented. The review establishes that factors such as biotic and abiotic, primer selection and taxonomic resolution, and indeterminate spatio-temporal scales impact the availability and longevity of eDNA. The study also identified the limitations that influence PAI detection and suggested possible solutions for better execution of these molecular approaches. Overcoming these research caveats will augment the assortment of PAI analysis through eDNA that could be vital for ecosystem health and integrity. This review forms a critical guide and offers prominent insights for ecologists, environmental managers and researchers to assess and evaluate plant–animal interaction through environmental DNA.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Data availability

Data availability is not applicable.

References

  • Abbott C, Coulson M, Gagné N, Lacoursière-Roussel A, Parent GJ, Bajno R, Dietrich C, May-McNally S (2021) Guidance on the use of targeted environmental DNA (eDNA) analysis for the management of aquatic invasive species and species at risk. Canadian Science Advisory Secretariat (CSAS), Ottawa

    Google Scholar 

  • Alberdi A, Aizpurua O, Bohmann K, Gopalakrishnan S, Lynggaard C, Nielsen M, Gilbert MTP (2019) Promises and pitfalls of using high-throughput sequencing for diet analysis. Mol Ecol Resour 19(2):327–348

    PubMed  Google Scholar 

  • Anglès d’Auriac MB, Strand DA, Mjelde M, Demars BO, Thaulow J (2019) Detection of an invasive aquatic plant in natural water bodies using environmental DNA. PLoS ONE 14(7):e0219700

    PubMed  PubMed Central  Google Scholar 

  • Arstingstall KA, DeBano SJ, Li X, Wooster DE, Rowland MM, Burrows S, Frost K (2021) Capabilities and limitations of using DNA metabarcoding to study plant–pollinator interactions. Mol Ecol 30(20):5266–5297

    PubMed  Google Scholar 

  • Baboo B, Sagar R, Bargali S, Verma H (2017) Tree species composition, regeneration and diversity of an Indian dry tropical forest protected area. Trop Ecol 58(2):409–423

    Google Scholar 

  • Banerjee P, Dey G, Antognazza CM, Sharma RK, Maity JP, Chan MW, Huang Y-H, Lin P-Y, Chao H-C, Lu C-M (2021) Reinforcement of environmental DNA based methods (sensu stricto) in biodiversity monitoring and conservation: a review. Biology 10(12):1223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee P, Stewart KA, Antognazza CM, Bunholi IV, Deiner K, Barnes MA, Saha S, Verdier H, Doi H, Maity JP (2022) Plant–animal interactions in the era of environmental DNA (eDNA)—a review. Environ DNA. 4(5):987–999

    CAS  Google Scholar 

  • Banerjee P, Stewart KA, Dey G, Sharma RK, Maity JP, Chan MW, Chang KP, Chen T-H, Hsu C-T, Chen C-Y (2022) When conventional methods fall short: identification of invasive cryptic golden apple snails (Pomacea canaliculata; P. maculata) using environmental DNA. Hydrobiologia. 849(19):4241–4257

    CAS  Google Scholar 

  • Bargali K, Joshi B, Bargali S, Singh S (2014) Diversity within Oaks. Int Oaks 25:57–70

    Google Scholar 

  • Bargali K, Joshi B, Bargali S, Singh SP (2015) Oaks and the biodiversity they sustain. International Oaks 26:65–76

    Google Scholar 

  • Bell KL, Loeffler VM, Brosi BJ (2017) An rbcL reference library to aid in the identification of plant species mixtures by DNA metabarcoding. Appl Plant Sci 5(3):1600110

    Google Scholar 

  • Bell KL, Turo KJ, Lowe A, Nota K, Keller A, Encinas-Viso F, Parducci L, Richardson RT, Leggett RM, Brosi BJ (2022) Plants, pollinators and their interactions under global ecological change: the role of pollen DNA metabarcoding. Mol Ecol. https://doi.org/10.1111/mec.16689

    Article  PubMed  PubMed Central  Google Scholar 

  • Bell KL, Batchelor KL, Bradford M, McKeown A, Macdonald SL, Westcott D (2021) Optimisation of a pollen DNA metabarcoding method for diet analysis of flying-foxes (Pteropus spp.). Aust J Zool 68:273–284

    Google Scholar 

  • Beng KC, Corlett RT (2020) Applications of environmental DNA (eDNA) in ecology and conservation: opportunities, challenges and prospects. Biodivers Conserv 29:2089–2121

    Google Scholar 

  • Berzaghi F, Verbeeck H, Nielsen MR, Doughty C, Bretagnolle F, Marchetti M, Scarascia-Mugnozza G (2018) Assessing the role of megafauna in tropical forest ecosystems and biogeochemical cycles–the potential of vegetation models. Ecography 41(12):1934–1954

    Google Scholar 

  • Biggs J, Ewald N, Valentini A, Gaboriaud C, Dejean T, Griffiths RA, Foster J, Wilkinson JW, Arnell A, Brotherton P (2015) Using eDNA to develop a national citizen science-based monitoring programme for the great crested newt (Triturus cristatus). Biol Cons 183:19–28

    Google Scholar 

  • Bisht S, Bargali SS, Bargali K, Rawat GS, Rawat YS, Fartyal A (2022) Influence of anthropogenic activities on forest carbon stocks—a case study from Gori Valley Western Himalaya. Sustainability 14(24):16918

    CAS  Google Scholar 

  • Bisht S, Rawat G, Bargali SS, Rawat Y, Mehta A (2023) Forest vegetation response to anthropogenic pressures: a case study from Askot Wildlife Sanctuary Western Himalaya. Environ Dev and Sustain. https://doi.org/10.1007/s10668-023-03130-2

    Article  Google Scholar 

  • Bommerlund J, Baars J, Schrøder-Nielsen A, Brys R, Mauvisseau C, de Boer H, Mauvisseau Q (2023) eDNA-based detection as an early warning tool for detecting established and emerging invasive amphipods. Manag Biol Invasions. 14(2):321–333

    Google Scholar 

  • Bourret V, Albert V, April J, Côté G, Morissette O (2020) Past, present and future contributions of evolutionary biology to wildlife forensics, management and conservation. Evol Appl 13(6):1420–1434

    PubMed  PubMed Central  Google Scholar 

  • Bovo S, Ribani A, Utzeri VJ, Schiavo G, Bertolini F, Fontanesi L (2018) Shotgun metagenomics of honey DNA: Evaluation of a methodological approach to describe a multi-kingdom honey bee derived environmental DNA signature. PLoS ONE 13(10):e0205575

    PubMed  PubMed Central  Google Scholar 

  • Bruce K, Blackman RC, Bourlat SJ, Hellström M, Bakker J, Bista I, Bohmann K, Bouchez A, Brys R, Clark K (2021) A practical guide to DNA-based methods for biodiversity assessment. Pensoft Advanced Books, Sofia

    Google Scholar 

  • Buglione M, Maselli V, Rippa D, de Filippo G, Trapanese M, Fulgione D (2018) A pilot study on the application of DNA metabarcoding for non-invasive diet analysis in the Italian hare. Mamm Biol 88:31–42

    Google Scholar 

  • Burian A, Mauvisseau Q, Bulling M, Domisch S, Qian S, Sweet M (2021) Improving the reliability of eDNA data interpretation. Mol Ecol Resour 21(5):1422–1433

    CAS  PubMed  Google Scholar 

  • Carvalho CS, De Oliveira ME, Rodriguez-Castro KG, Saranholi BH, Galetti PM Jr (2022) Efficiency of eDNA and iDNA in assessing vertebrate diversity and its abundance. Mol Ecol Resour 22(4):1262–1273

    CAS  PubMed  Google Scholar 

  • Chang H, Guo J, Fu X, Liu Y, Wyckhuys KA, Hou Y, Wu K (2018) Molecular-assisted pollen grain analysis reveals spatiotemporal origin of long-distance migrants of a noctuid moth. Int J Mol Sci 19(2):567

    PubMed  PubMed Central  Google Scholar 

  • Chua PYS, Lammers Y, Menoni E, Ekrem T, Bohmann K, Boessenkool S, Alsos IG (2021) Molecular dietary analyses of western capercaillies (Tetrao urogallus) reveal a diverse diet. Environ DNA 3(6):1156–1171

    CAS  Google Scholar 

  • Coghlan SA, Shafer AB, Freeland JR (2021) Development of an environmental DNA metabarcoding assay for aquatic vascular plant communities. Environ DNA 3(2):372–387

    CAS  Google Scholar 

  • Coissac E, Riaz T, Puillandre N (2012) Bioinformatic challenges for DNA metabarcoding of plants and animals. Mol Ecol 21(8):1834–1847

    CAS  PubMed  Google Scholar 

  • Cordier T, Esling P, Lejzerowicz F, Visco J, Ouadahi A, Martins C, Cedhagen T, Pawlowski J (2017) Predicting the ecological quality status of marine environments from eDNA metabarcoding data using supervised machine learning. Environ Sci Technol 51(16):9118–9126

    CAS  PubMed  Google Scholar 

  • Creer S, Deiner K, Frey S, Porazinska D, Taberlet P, Thomas WK, Potter C, Bik HM (2016) The ecologist’s field guide to sequence-based identification of biodiversity. Methods Ecol Evol 7(9):1008–1018

    Google Scholar 

  • Cristescu ME (2014) From barcoding single individuals to metabarcoding biological communities: towards an integrative approach to the study of global biodiversity. Trends Ecol Evol 29(10):566–571

    PubMed  Google Scholar 

  • Curtis AN, Tiemann JS, Douglass SA, Davis MA, Larson ER (2021) High stream flows dilute environmental DNA (eDNA) concentrations and reduce detectability. Divers Distrib 27(10):1918–1931

    Google Scholar 

  • Darling JA, Mahon AR (2011) From molecules to management: adopting DNA-based methods for monitoring biological invasions in aquatic environments. Environ Res 111(7):978–988

    CAS  PubMed  Google Scholar 

  • Davidar P, Sahoo S, Mammen PC, Acharya P, Puyravaud J-P, Arjunan M, Garrigues JP, Roessingh K (2010) Assessing the extent and causes of forest degradation in India: where do we stand? Biol Cons 143(12):2937–2944

    Google Scholar 

  • De Vere N, Jones LE, Gilmore T, Moscrop J, Lowe A, Smith D, Hegarty MJ, Creer S, Ford CR (2017) Using DNA metabarcoding to investigate honey bee foraging reveals limited flower use despite high floral availability. Sci Rep 7(1):1–10

    Google Scholar 

  • Deiner K, Bik HM, Mächler E, Seymour M, Lacoursière-Roussel A, Altermatt F, Creer S, Bista I, Lodge DM, De Vere N (2017) Environmental DNA metabarcoding: transforming how we survey animal and plant communities. Mol Ecol 26(21):5872–5895

    PubMed  Google Scholar 

  • Deiner K, Yamanaka H, Bernatchez L (2021) The future of biodiversity monitoring and conservation utilizing environmental DNA. Environmental DNA 3(1):3–7

    CAS  Google Scholar 

  • Deka PC (2022) Plant DNA Barcoding. Research anthology on ecosystem conservation and preserving biodiversity. IGI Global, Hershey, pp 493–515

    Google Scholar 

  • Derocles SA, Evans DM, Nichols PC, Evans SA, Lunt DH (2015) Determining plant–leaf miner–parasitoid interactions: a DNA barcoding approach. PLoS ONE 10(2):e0117872

    PubMed  PubMed Central  Google Scholar 

  • Derocles SA, Bohan DA, Dumbrell AJ, Kitson JJ, Massol F, Pauvert C, Plantegenest M, Vacher C, Evans DM (2018) Biomonitoring for the 21st century: integrating next-generation sequencing into ecological network analysis. Advances in ecological research, vol 58. Elsevier, New York, pp 1–62

    Google Scholar 

  • Douchet P, Boissier J, Mulero S, Ferté H, Doberva M, Allienne JF, Toulza E, Bethune K, Rey O (2022) Make visible the invisible: optimized development of an environmental DNA metabarcoding tool for the characterization of trematode parasitic communities. Environ DNA. 4(3):627–641

    CAS  Google Scholar 

  • Drummond JA, Larson ER, Li Y, Lodge DM, Gantz CA, Pfrender ME, Renshaw MA, Correa AM, Egan SP (2021) Diversity metrics are robust to differences in sampling location and depth for environmental DNA of plants in small Temperate Lakes. Front Environ Sci 9:617924

    Google Scholar 

  • Edwards CE, Swift JF, Lance RF, Minckley TA, Lindsay DL (2019) Evaluating the efficacy of sample collection approaches and DNA metabarcoding for identifying the diversity of plants utilized by nectivorous bats. Genome 62(1):19–29

    CAS  PubMed  Google Scholar 

  • Glaubrecht M (2023) On the end of evolution–Humankind and the annihilation of species. Zool Scripta. https://doi.org/10.1111/zsc.12592

    Article  Google Scholar 

  • Goldberg AR, Conway CJ, Tank DC, Andrews KR, Gour DS, Waits LP (2020) Diet of a rare herbivore based on DNA metabarcoding of feces: selection, seasonality, and survival. Ecol Evol 10(14):7627–7643

    PubMed  PubMed Central  Google Scholar 

  • Gous A, Swanevelder DZ, Eardley CD, Willows-Munro S (2019) Plant–pollinator interactions over time: pollen metabarcoding from bees in a historic collection. Evol Appl 12(2):187–197

    CAS  PubMed  Google Scholar 

  • Green AJ, Lovas-Kiss Á, Reynolds C, Sebastián-González E, Silva GG, van Leeuwen CH, Wilkinson DM (2023) Dispersal of aquatic and terrestrial organisms by waterbirds: a review of current knowledge and future priorities. Freshw Biol 68(2):173–190

    Google Scholar 

  • Guan X, Monroe EM, Bockrath KD, Mize EL, Rees CB, Lindsay DL, Baerwaldt KL, Nico LG, Lance RF (2019) Environmental DNA (eDNA) assays for invasive populations of black carp in North America. Trans Am Fish Soc 148(6):1043–1055

    CAS  Google Scholar 

  • Harper LR, Lawson Handley L, Hahn C, Boonham N, Rees HC, Gough KC, Lewis E, Adams IP, Brotherton P, Phillips S (2018) Needle in a haystack? A comparison of eDNA metabarcoding and targeted qPCR for detection of the great crested newt (Triturus cristatus). Ecol Evol 8(12):6330–6341

    PubMed  PubMed Central  Google Scholar 

  • Harper LR, Buxton AS, Rees HC, Bruce K, Brys R, Halfmaerten D, Read DS, Watson HV, Sayer CD, Jones EP (2019) Prospects and challenges of environmental DNA (eDNA) monitoring in freshwater ponds. Hydrobiologia 826:25–41

    CAS  Google Scholar 

  • Harper LR, Niemiller ML, Benito JB, Paddock LE, Knittle E, Molano-Flores B, Davis MA (2023) BeeDNA: Microfluidic environmental DNA metabarcoding as a tool for connecting plant and pollinator communities. Environmental DNA 5(1):191–211

    CAS  Google Scholar 

  • Hassan S, Khurshid Z, Bali BS, Ganai BA, Sayyed R, Poczai P, Zaman M (2022a) A critical assessment of the congruency between environmental DNA and palaeoecology for the biodiversity monitoring and palaeoenvironmental reconstruction. Int J Environ Res Public Health 19(15):9445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan S, Poczai P, Ganai BA, Almalki WH, Gafur A, Sayyed R (2022b) Environmental DNA metabarcoding: a novel contrivance for documenting terrestrial biodiversity. Biology 11(9):1297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hering D, Borja A, Jones JI, Pont D, Boets P, Bouchez A, Bruce K, Drakare S, Hänfling B, Kahlert M (2018) Implementation options for DNA-based identification into ecological status assessment under the European Water Framework Directive. Water Res 138:192–205

    CAS  PubMed  Google Scholar 

  • Hoshino T, Nakao R, Minamoto T (2021) Simultaneous absolute quantification and sequencing of fish environmental DNA in a mesocosm by quantitative sequencing technique. Sci Rep 11(1):1–9

    Google Scholar 

  • Htun NZ, Mizoue N, Yoshida S (2011) Tree species composition and diversity at different levels of disturbance in Popa Mountain Park. Myanmar Biotropica 43(5):597–603

    Google Scholar 

  • Hua F, Bruijnzeel LA, Meli P, Martin PA, Zhang J, Nakagawa S, Miao X, Wang W, McEvoy C, Peña-Arancibia JL (2022) The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science 376(6595):839–844

    CAS  PubMed  Google Scholar 

  • Hutchins PR, Simantel LN, Sepulveda AJ (2022) Time to get real with qPCR controls: the frequency of sample contamination and the informative power of negative controls in environmental DNA studies. Mol Ecol Resour 22(4):1319–1329

    CAS  PubMed  Google Scholar 

  • Iacolina L, Lukassen MB, Fløjgaard C, Buttenschøn R, Nielsen JL, Pertoldi C (2020) eDNA and metabarcoding for rewilding projects monitoring, a dietary approach. Mamm Biol 100:411–418

    Google Scholar 

  • Isbell F, Cowles J, Dee LE, Loreau M, Reich PB, Gonzalez A, Hector A, Schmid B (2018) Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecol Lett 21(6):763–778

    PubMed  PubMed Central  Google Scholar 

  • Iwanowicz DD, Vandergast AG, Cornman RS, Adams CR, Kohn JR, Fisher RN, Brehme CS (2016) Metabarcoding of fecal samples to determine herbivore diets: a case study of the endangered Pacific pocket mouse. PLoS ONE 11(11):e0165366

    PubMed  PubMed Central  Google Scholar 

  • Johnson MD (2017) Detection and analysis of airborne environmental DNA from terrestrial plant communities.

  • Johnson MD, Cox RD, Barnes MA (2019) Analyzing airborne environmental DNA: a comparison of extraction methods, primer type, and trap type on the ability to detect airborne eDNA from terrestrial plant communities. Environ DNA 1(2):176–185

    Google Scholar 

  • Johnson MD, Fokar M, Cox RD, Barnes MA (2021) Airborne environmental DNA metabarcoding detects more diversity, with less sampling effort, than a traditional plant community survey. BMC Ecol Evol 21(1):1–15

    Google Scholar 

  • Johnson MD, Barnes MA, Garrett NR, Clare EL (2023) Answers blowing in the wind: detection of birds, mammals, and amphibians with airborne environmental DNA in a natural environment over a yearlong survey. Environmental DNA. https://doi.org/10.1002/edn3.388

    Article  Google Scholar 

  • Johnson MD, Freeland JR, Parducci L, Evans DM, Meyer RS, Molano-Flores B, Davis MA (2023b) Environmental DNA as an emerging tool in botanical research. Am J Bot 110(2):e16120

    PubMed  Google Scholar 

  • Johnson MD, Katz AD, Davis MA, Tetzlaff S, Edlund D, Tomczyk S, Molano-Flores B, Wilder T, Sperry JH (2023) Environmental DNA metabarcoding from flowers reveals arthropod pollinators, plant pests, parasites, and potential predator–prey interactions while revealing more arthropod diversity than camera traps. Environ DNA. https://doi.org/10.1002/edn3.411

    Article  Google Scholar 

  • Jones L, Twyford AD, Ford CR, Rich TC, Davies H, Forrest LL, Hart ML, McHaffie H, Brown MR, Hollingsworth PM (2021) Barcode UK: a complete DNA barcoding resource for the flowering plants and conifers of the United Kingdom. Mol Ecol Resour 21(6):2050–2062

    CAS  PubMed  Google Scholar 

  • Jønsson KA, Thomassen EE, Iova B, Sam K, Thomsen PF (2023) Using environmental DNA to investigate avian interactions with flowering plants. Environ DNA. https://doi.org/10.1002/edn3.393

    Article  Google Scholar 

  • Kelly RP, Shelton AO, Gallego R (2019) Understanding PCR processes to draw meaningful conclusions from environmental DNA studies. Sci Rep 9(1):12133

    PubMed  PubMed Central  Google Scholar 

  • Kestel JH, Field DL, Bateman PW, White NE, Allentoft ME, Hopkins AJ, Gibberd M, Nevill P (2022) Applications of environmental DNA (eDNA) in agricultural systems: current uses, limitations and future prospects. Sci Total Environ 847:157556

    CAS  PubMed  Google Scholar 

  • Kim P, Kim D, Yoon TJ, Shin S (2018) Early detection of marine invasive species, Bugula neritina (Bryozoa: Cheilostomatida), using species-specific primers and environmental DNA analysis in Korea. Mar Environ Res 139:1–10

    CAS  PubMed  Google Scholar 

  • Klepke MJ, Sigsgaard EE, Jensen MR, Olsen K, Thomsen PF (2022) Accumulation and diversity of airborne, eukaryotic environmental DNA. Environ DNA 4(6):1323–1339

    CAS  Google Scholar 

  • Kodama T, Miyazono S, Akamatsu Y, Tsuji S, Nakao R (2022) Abundance estimation of riverine macrophyte Egeria densa using environmental DNA: effects of sampling season and location. Limnology. https://doi.org/10.1007/s10201-021-00689-5

    Article  Google Scholar 

  • Kraaijeveld K, De Weger LA, Ventayol García M, Buermans H, Frank J, Hiemstra PS, Den Dunnen JT (2015) Efficient and sensitive identification and quantification of airborne pollen using next-generation DNA sequencing. Mol Ecol Resour 15(1):8–16

    CAS  PubMed  Google Scholar 

  • Krehenwinkel H, Weber S, Künzel S, Kennedy SR (2022) The bug in a teacup—monitoring arthropod–plant associations with environmental DNA from dried plant material. Biol Let 18(6):20220091

    CAS  Google Scholar 

  • Kudoh A, Minamoto T, Yamamoto S (2020) Detection of herbivory: eDNA detection from feeding marks on leaves. Environ DNA 2(4):627–634

    Google Scholar 

  • Kuehne LM, Ostberg CO, Chase DM, Duda JJ, Olden JD (2020) Use of environmental DNA to detect the invasive aquatic plants Myriophyllum spicatum and Egeria densa in lakes. Freshwater Sci 39(3):521–533

    Google Scholar 

  • Kumar G, Eble JE, Gaither MR (2020) A practical guide to sample preservation and pre-PCR processing of aquatic environmental DNA. Mol Ecol Resour 20(1):29–39

    PubMed  Google Scholar 

  • Lacoursière-Roussel A, Deiner K (2021) Environmental DNA is not the tool by itself. J Fish Biol 98(2):383–386

    PubMed  Google Scholar 

  • Lacoursière-Roussel A, Howland K, Normandeau E, Grey EK, Archambault P, Deiner K, Lodge DM, Hernandez C, Leduc N, Bernatchez L (2018) eDNA metabarcoding as a new surveillance approach for coastal Arctic biodiversity. Ecol Evol 8(16):7763–7777

    PubMed  PubMed Central  Google Scholar 

  • Ladin ZS, Ferrell B, Dums JT, Moore RM, Levia DF, Shriver WG, D’Amico V, Trammell TL, Setubal JC, Wommack KE (2021) Assessing the efficacy of eDNA metabarcoding for measuring microbial biodiversity within forest ecosystems. Sci Rep 11(1):1–14

    Google Scholar 

  • Leempoel K, Hebert T, Hadly EA (2020) A comparison of eDNA to camera trapping for assessment of terrestrial mammal diversity. Proc R Soc B 287(1918):20192353

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leray M, Knowlton N (2015) DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. Proc Natl Acad Sci 112(7):2076–2081

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lynggaard C, Frøslev TG, Johnson MS, Olsen MT, Bohmann K (2022) Airborne environmental DNA captures terrestrial vertebrate diversity in nature. BioRxiv. https://doi.org/10.1101/2022.10.24.512985

    Article  Google Scholar 

  • Macgregor CJ, Kitson JJ, Fox R, Hahn C, Lunt DH, Pocock MJ, Evans DM (2019) Construction, validation, and application of nocturnal pollen transport networks in an agro-ecosystem: a comparison using light microscopy and DNA metabarcoding. Ecol Entomol 44(1):17–29

    Google Scholar 

  • Macher JN, Vivancos A, Piggott JJ, Centeno FC, Matthaei CD, Leese F (2018) Comparison of environmental DNA and bulk-sample metabarcoding using highly degenerate cytochrome c oxidase I primers. Mol Ecol Resour 18(6):1456–1468

    CAS  PubMed  Google Scholar 

  • Mächler E, Osathanunkul M, Altermatt F (2018) Shedding light on eDNA: neither natural levels of UV radiation nor the presence of a filter feeder affect eDNA-based detection of aquatic organisms. PLoS ONE 13(4):e0195529

    PubMed  PubMed Central  Google Scholar 

  • Manral V, Bargali K, Bargali S, Shahi C (2020) Changes in soil biochemical properties following replacement of Banj oak forest with Chir pine in Central Himalaya, India. Ecol Process 9:1–9

    Google Scholar 

  • Maréchaux I, Langerwisch F, Huth A, Bugmann H, Morin X, Reyer CP, Seidl R, Collalti A, Dantas de Paula M, Fischer R (2021) Tackling unresolved questions in forest ecology: the past and future role of simulation models. Ecol Evol 11(9):3746–3770

    PubMed  PubMed Central  Google Scholar 

  • Marshall NT, Vanderploeg HA, Chaganti SR (2021) Environmental (e) RNA advances the reliability of eDNA by predicting its age. Sci Rep 11(1):2769

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuhashi S, Minamoto T, Doi H (2019) Seasonal change in environmental DNA concentration of a submerged aquatic plant species. Freshwater Sci. 38(3):654–660

    Google Scholar 

  • Mauvisseau Q, Harper LR, Sander M, Hanner RH, Kleyer H, Deiner K (2022) The multiple states of environmental DNA and what is known about their persistence in aquatic environments. Environ Sci Technol 56(9):5322–5333

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGee KM, Robinson CV, Hajibabaei M (2019) Gaps in DNA-based biomonitoring across the globe. Front Ecol Evol 7:337

    Google Scholar 

  • McKee AM, Spear SF, Pierson TW (2015) The effect of dilution and the use of a post-extraction nucleic acid purification column on the accuracy, precision, and inhibition of environmental DNA samples. Biol Cons 183:70–76

    Google Scholar 

  • Milla L, Sniderman K, Lines R, Mousavi-Derazmahalleh M, Encinas-Viso F (2021) Pollen DNA metabarcoding identifies regional provenance and high plant diversity in Australian honey. Ecol Evol 11(13):8683–8698

    PubMed  PubMed Central  Google Scholar 

  • Minuzzi-Souza TTC, Nitz N, Cuba CAC, Hagström L, Hecht MM, Santana C, Ribeiro M, Vital TE, Santalucia M, Knox M (2018) Surveillance of vector-borne pathogens under imperfect detection: lessons from Chagas disease risk (mis) measurement. Sci Rep 8(1):1–10

    Google Scholar 

  • Monge O, Dumas D, Baus I (2020) Environmental DNA from avian residual saliva in fruits and its potential uses in population genetics. Conserv Genet Resour 12:131–139

    Google Scholar 

  • Nagler M, Podmirseg SM, Ascher-Jenull J, Sint D, Traugott M (2022) Why eDNA fractions need consideration in biomonitoring. Mol Ecol Resour 22(7):2458–2470

    PubMed  PubMed Central  Google Scholar 

  • Nakahama N, Furuta T, Ando H, Setsuko S, Takayanagi A, Isagi Y (2021) DNA meta-barcoding revealed that sika deer foraging strategies vary with season in a forest with degraded understory vegetation. For Ecol Manage 484:118637

    Google Scholar 

  • Nevers MB, Przybyla-Kelly K, Shively D, Morris CC, Dickey J, Byappanahalli MN (2020) Influence of sediment and stream transport on detecting a source of environmental DNA. PLoS ONE 15(12):e0244086

    CAS  PubMed  PubMed Central  Google Scholar 

  • Newton JP, Bateman PW, Heydenrych MJ, Kestel JH, Dixon KW, Prendergast KS, White NE, Nevill P (2023) Monitoring the birds and the bees: environmental DNA metabarcoding of flowers detects plant–animal interactions. Environ DNA. https://doi.org/10.1002/edn3.399

    Article  Google Scholar 

  • Nichols RV, Cromsigt JP, Spong G (2015) DNA left on browsed twigs uncovers bite-scale resource use patterns in European ungulates. Oecologia 178:275–284

    PubMed  Google Scholar 

  • Nicholson A, McIsaac D, MacDonald C, Gec P, Mason BE, Rein W, Wrobel J, de Boer M, Milián-García Y, Hanner RH (2020) An analysis of metadata reporting in freshwater environmental DNA research calls for the development of best practice guidelines. Environmental DNA 2(3):343–349

    Google Scholar 

  • Nogueira J, Evangelista H, Valeriano CdM, Sifeddine A, Neto C, Vaz G, Moreira LS, Cordeiro RC, Turcq B, Aniceto KC (2021) Dust arriving in the Amazon basin over the past 7,500 years came from diverse sources. Commun Earth Environ 2(1):5

    Google Scholar 

  • Ogram A, Sayler GS, Barkay T (1987) The extraction and purification of microbial DNA from sediments. J Microbiol Methods 7(2–3):57–66

    CAS  Google Scholar 

  • Pandey R, Bargali SS, Bargali K, Pandey VC (2023) Temporal variability in fine root dynamics in relation to tree girth size in sub-tropical sal (Shorea robusta) forests. Land Degrad Dev 34(5):1522–1537

    Google Scholar 

  • Parducci L, Bennett KD, Ficetola GF, Alsos IG, Suyama Y, Wood JR, Pedersen MW (2017) Ancient plant DNA in lake sediments. New Phytol 214(3):924–942

    CAS  PubMed  Google Scholar 

  • Parducci L, Alsos IG, Unneberg P, Pedersen MW, Han L, Lammers Y, Salonen JS, Väliranta MM, Slotte T, Wohlfarth B (2019) Shotgun environmental DNA, pollen, and macrofossil analysis of lateglacial lake sediments from southern Sweden. Front Ecol Evol 7:189

    Google Scholar 

  • Pascher K, Švara V, Jungmeier M (2022) Environmental DNA-based methods in biodiversity monitoring of protected areas: application range, limitations, and needs. Diversity 14(6):463

    Google Scholar 

  • Pornon A, Escaravage N, Burrus M, Holota H, Khimoun A, Mariette J, Pellizzari C, Iribar A, Etienne R, Taberlet P (2016) Using metabarcoding to reveal and quantify plant-pollinator interactions. Sci Rep 6(1):1–12

    Google Scholar 

  • Ptaszyńska AA (2022) A short guide to the sixth mass extinction–is the anthropocene an extended suicide? Rev Educ 395:27–41

    Google Scholar 

  • Pyle MM, Adams RP (1989) In situ preservation of DNA in plant specimens. Taxon 38(4):576–581

    Google Scholar 

  • Qiu J, Cardinale BJ (2020) Scaling up biodiversity–ecosystem function relationships across space and over time. Ecology 101(11):e03166

    PubMed  Google Scholar 

  • Rasmussen AJ, Nielsen M, Mak SS, Döring J, Klincke F, Gopalakrishnan S et al (2021) eDNA‐based biomonitoring at an experimental German vineyard to characterize how management regimes shape ecosystem diversity. Environ DNA 3(1):70–82

    Google Scholar 

  • Rishan ST, Kline RJ, Rahman MS (2023) Applications of environmental DNA (eDNA) to detect subterranean and aquatic invasive species: a critical review on the challenges and limitations of eDNA metabarcoding. Environ Adv. 12:100370

    CAS  Google Scholar 

  • Robeson MS, O’Rourke DR, Kaehler BD, Ziemski M, Dillon MR, Foster JT, Bokulich NA (2021) RESCRIPt: reproducible sequence taxonomy reference database management. PLoS Comput Biol 17(11):e1009581

    PubMed  PubMed Central  Google Scholar 

  • Roger F, Ghanavi HR, Danielsson N, Wahlberg N, Löndahl J, Pettersson LB, Andersson GK, Boke Olén N, Clough Y (2022) Airborne environmental DNA metabarcoding for the monitoring of terrestrial insects—a proof of concept from the field. Environ DNA 4(4):790–807

    CAS  Google Scholar 

  • Ruppert KM, Kline RJ, Rahman MS (2019) Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA. Global Ecol Conserv 17:e00547

    Google Scholar 

  • Sagova-Mareckova M, Boenigk J, Bouchez A, Cermakova K, Chonova T, Cordier T, Eisendle U, Elersek T, Fazi S, Fleituch T (2021) Expanding ecological assessment by integrating microorganisms into routine freshwater biomonitoring. Water Res 191:116767

    CAS  PubMed  Google Scholar 

  • Scott R, Zhan A, Brown EA, Chain FJ, Cristescu ME, Gras R, MacIsaac HJ (2018) Optimization and performance testing of a sequence processing pipeline applied to detection of nonindigenous species. Evol Appl 11(6):891–905

    PubMed  PubMed Central  Google Scholar 

  • Sepulveda AJ, Schabacker J, Smith S, Al-Chokhachy R, Luikart G, Amish SJ (2019) Improved detection of rare, endangered and invasive trout in using a new large-volume sampling method for eDNA capture. Environmental DNA 1(3):227–237

    Google Scholar 

  • Sepulveda AJ, Hutchins PR, Forstchen M, Mckeefry MN, Swigris AM (2020a) The elephant in the lab (and field): contamination in aquatic environmental DNA studies. Front Ecol Evol 8:609973

    Google Scholar 

  • Sepulveda AJ, Nelson NM, Jerde CL, Luikart G (2020b) Are environmental DNA methods ready for aquatic invasive species management? Trends Ecol Evol 35(8):668–678

    PubMed  Google Scholar 

  • Seymour M, Edwards FK, Cosby BJ, Bista I, Scarlett PM, Brailsford FL, Glanville HC, de Bruyn M, Carvalho GR, Creer S (2021) Environmental DNA provides higher resolution assessment of riverine biodiversity and ecosystem function via spatio-temporal nestedness and turnover partitioning. Communications Biology 4(1):512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh JS (2002) The biodiversity crisis: a multifaceted review. Curr Sci 82(6):638–647

    Google Scholar 

  • Soininen EM, Zinger L, Gielly L, Yoccoz NG, Henden J-A, Ims RA (2017) Not only mosses: lemming winter diets as described by DNA metabarcoding. Polar Biol 40:2097–2103

    Google Scholar 

  • Spicer ME, Woods CL (2022) A case for studying biotic interactions in epiphyte ecology and evolution. Perspect Plant Ecol Evol Syst 54:125658

    Google Scholar 

  • Steel ZL, Jones GM, Collins BM, Green R, Koltunov A, Purcell KL, Sawyer SC, Slaton MR, Stephens SL, Stine P (2023) Mega-disturbances cause rapid decline of mature conifer forest habitat in California. Ecol Appl 33(2):e2763

    PubMed  Google Scholar 

  • Stewart KA (2019) Understanding the effects of biotic and abiotic factors on sources of aquatic environmental DNA. Biodivers Conserv 28(5):983–1001

    Google Scholar 

  • Stewart KA, Taylor SA (2020) Leveraging eDNA to expand the study of hybrid zones. Mol Ecol 29(15):2768–2776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taberlet P, Coissac E, Pompanon F, Gielly L, Miquel C, Valentini A, Vermat T, Corthier G, Brochmann C, Willerslev E (2007) Power and limitations of the chloroplast trn L (UAA) intron for plant DNA barcoding. Nucleic Acids Res 35(3):e14–e14

    PubMed  Google Scholar 

  • Thomsen PF, Sigsgaard EE (2019) Environmental DNA metabarcoding of wild flowers reveals diverse communities of terrestrial arthropods. Ecol Evol 9(4):1665–1679

    PubMed  PubMed Central  Google Scholar 

  • Thomsen PF, Willerslev E (2015) Environmental DNA–An emerging tool in conservation for monitoring past and present biodiversity. Biol Cons 183:4–18

    Google Scholar 

  • Tian HA (2021) Assessing the biotic and abiotic factors influencing the distribution and intensity of cyanobacterial harmful algal blooms in Dog Lake, South Frontenac using UAV imaging and eDNA. Queen’s University, Kingston

    Google Scholar 

  • Tsuri K, Ikeda S, Hirohara T, Shimada Y, Minamoto T, Yamanaka H (2021) Messenger RNA typing of environmental RNA (eRNA): a case study on zebrafish tank water with perspectives for the future development of eRNA analysis on aquatic vertebrates. Environ DNA 3(1):14–21

    CAS  Google Scholar 

  • Turvey ST, Crees JJ (2019) Extinction in the anthropocene. Curr Biol 29(19):R982–R986

    CAS  PubMed  Google Scholar 

  • Utzeri VJ, Schiavo G, Ribani A, Tinarelli S, Bertolini F, Bovo S, Fontanesi L (2018) Entomological signatures in honey: an environmental DNA metabarcoding approach can disclose information on plant-sucking insects in agricultural and forest landscapes. Sci Rep 8(1):9996

    PubMed  PubMed Central  Google Scholar 

  • Valentin RE, Fonseca DM, Gable S, Kyle KE, Hamilton GC, Nielsen AL, Lockwood JL (2020) Moving eDNA surveys onto land: strategies for active eDNA aggregation to detect invasive forest insects. Mol Ecol Resour 20(3):746–755

    Google Scholar 

  • Valentini A, Taberlet P, Miaud C, Civade R, Herder J, Thomsen PF, Bellemain E, Besnard A, Coissac E, Boyer F (2016) Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol Ecol 25(4):929–942

    CAS  PubMed  Google Scholar 

  • van Beeck Calkoen ST, Leigh-Moy K, Cromsigt JP, Spong G, Lebeau LC, Heurich M (2019) The blame game: Using eDNA to identify species-specific tree browsing by red deer (Cervus elaphus) and roe deer (Capreolus capreolus) in a temperate forest. For Ecol Manage 451:117483

    Google Scholar 

  • van der Heyde M, Bunce M, Nevill P (2022) Key factors to consider in the use of environmental DNA metabarcoding to monitor terrestrial ecological restoration. Sci Total Environ. 848:157617

    PubMed  Google Scholar 

  • Vasconcelos T, Boyko JD, Beaulieu JM (2023) Linking mode of seed dispersal and climatic niche evolution in flowering plants. J Biogeogr 50(1):43–56

    Google Scholar 

  • Veilleux HD, Misutka MD, Glover CN (2021) Environmental DNA and environmental RNA: current and prospective applications for biological monitoring. Sci Total Environ 782:146891

    CAS  PubMed  Google Scholar 

  • Vidal F (2023) The anthropocene new stage: the era of boundaries. The palgrave handbook of environmental politics and theory. Springer, New York, pp 599–626

    Google Scholar 

  • Wang K, Xie H, Li Y, Wu W, Xu C (2016) Morphology and molecular analysis of Paratylenchus nanjingensis n. sp. (Nematoda: Paratylenchinae) from the rhizosphere soil of Pinus massoniana in China. J Helminthol. 90(2):166–173

    CAS  PubMed  Google Scholar 

  • Yuan S-C, Chin S-W, Lee C-Y, Chen F-C (2018) Phalaenopsis pollinia storage at sub-zero temperature and its pollen viability assessment. Bot Stud 59(1):1–8

    PubMed  PubMed Central  Google Scholar 

  • Zhang DQ, Wang M, He Q, Niu X, Liang Y (2020) Distribution of perfluoroalkyl substances (PFASs) in aquatic plant-based systems: from soil adsorption and plant uptake to effects on microbial community. Environ Pollut 257:113575

    CAS  PubMed  Google Scholar 

  • Zinger L, Bonin A, Alsos IG, Bálint M, Bik H, Boyer F, Chariton AA, Creer S, Coissac E, Deagle BE (2019) DNA metabarcoding—need for robust experimental designs to draw sound ecological conclusions, vol 28. Wiley Online Library, New York

    Google Scholar 

Download references

Acknowledgements

The authors are highly indebted to Bashir Ahmad Ganai and Department of Environmental Science/ Centre of Research for Development for providing the necessary guidance and facilities to make the current study possible. The author Shahnawaz Hassan acknowledges the University Grants Commission (UGC) for funding his doctoral study (MANF UGC beneficiary Code: BININ01669533).

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

SH: project administration, writing—original draft, Writing—review and editing. S: writing—original draft. SAG: visualization. AY: visualization. MZ: Investigation. AJS: visualization. BAG: concept, supervision, reviewing and editing.

Corresponding authors

Correspondence to Shahnawaz Hassan or Bashir Ahmad Ganai.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Communicated by Gerhard Leubner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, S., Sabreena, Ganiee, S.A. et al. Unraveling the potential of environmental DNA for deciphering recent advances in plant–animal interactions: a systematic review. Planta 258, 117 (2023). https://doi.org/10.1007/s00425-023-04267-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-023-04267-0

Keywords

Navigation