Skip to main content
Log in

Stone cell formation in the pedicel of pears and apples

Planta Aims and scope Submit manuscript

Abstract

Main Conclusion

For the first time, stone cells in pear and apple pedicel were studied. The lignification of the pedicel outer part was correlated with flesh, and the secondary cell wall biosynthesis genes were activated.

Abstract

Fruit pedicels act as bridges between the fruit and the shoot. They have secondary thickened cell walls that presumably function in mechanical support, water and nutrient transport. Stone cells are cells with a secondary cell wall thickening. In pears, yet not in apples, the stone cells affect the flesh texture. There have been few reports on stone cell formation in pear and apple pedicels; therefore, we studied these cells for the first time. The apple pedicel had few stone cells in the cortex. The formation of stone cells in pear continued until seven weeks after flowering (WAF), and the density was significantly higher than in apple. The stone cell formation degree (SFD) of pear was 3.6–7.1 times higher than that of apple. Total lignin and lignin non-condensed structure (G and S units) content in the pear pedicle outer part was 1.5–2.7 times higher than that of the apple at harvest. The SFD of the pedicel outer part had a positive correlation with the G and S units content of the flesh. The total lignin and G and S units content between flesh and the pedicel outer part were positively correlated. Correlation analysis revealed a positive relationship between fruit and pedicel formation of the stone cells. The WGCNA showed that NST3 was linked to NAC028, MYB46, CESA, POD, LAC, and VSR6. These genes were highly expressed in the outer part of the pear pedicel, while they were suppressed in that issue of the apple at 4 WAF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data and material availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

ARF:

Auxin response factor

CESA:

Cellulose synthase A catalytic subunit

G-lignin:

Guaiacyl lignin

LAC:

Laccase

NST:

NAC secondary wall thickening promoting factor

PLD:

Pedicel lignification degree

S-lignin:

Syringyl lignin

SFD:

Stone cell formation degree

TF:

Transcription factor

WAF:

Weeks after flowering

References

  • Bao W, O’Malley DM, Whetten R, Sederoff RR (1993) A laccase associated with lignification in loblolly pine xylem. Science 260(5108):672–674

    Article  CAS  PubMed  Google Scholar 

  • Barros J, Serk H, Granlund I, Pesquet E (2015) The cell biology of lignification in higher plants. Ann Bot 115(7):1053–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berthet S, Demont-Caulet N, Pollet B, Bidzinski P, Cezard L, Le Bris P, Borrega N, Herve J, Blondet E, Balzergue S, Lapierre C, Jouanin L (2011) Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. Plant Cell 23(3):1124–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Y, Li G, Nie J, Lin Y, Nie F, Zhang J, Xu Y (2010) Study of the structure and biosynthetic pathway of lignin in stone cells of pear. Sci Hortic 125(3):374–379

    Article  CAS  Google Scholar 

  • Cao Y, Han Y, Li D, Lin Y, Cai Y (2016) Systematic analysis of the 4-coumarate: coenzyme A ligase (4CL) related genes and expression profiling during fruit development in the Chinese pear. Genes (Basel) 7(10):89

    Article  PubMed  Google Scholar 

  • Chagne D, Crowhurst RN, Pindo M, Thrimawithana A, Deng C et al (2014) The draft genome sequence of European pear (Pyrus communis L. ‘Bartlett’). PLoS One 9(4):e92644

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng X, Xiong Y, Li DH, Cheng J, Cao YP, Yan CC, Jin Q, Sun N, Cai YP, Lin Y (2016) Bioinformatic and expression analysis of the OMT gene family in Pyrus bretschneideri cv. Dangshan Su. Genet Mol Res. https://doi.org/10.4238/gmr.15038664

    Article  PubMed  Google Scholar 

  • Cheng X, Li M, Li D, Zhang J, Jin Q, Sheng L, Cai Y, Lin Y (2017a) Characterization and analysis of CCR and CAD gene families at the whole-genome level for lignin synthesis of stone cells in pear (Pyrus bretschneideri) fruit. Biol Open 6(11):1602–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng X, Yan C, Zhang J, Ma C, Li S, Jin Q, Zhang N, Cao Y, Lin Y, Cai Y (2017b) The effect of different pollination on the expression of Dangshan Su pear microRNA. Biomed Res Int 2017:2794040

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng X, Li G, Ma C, Abdullah M, Zhang J, Zhao H, Jin Q, Cai Y, Lin Y (2019) Comprehensive genome-wide analysis of the pear (Pyrus bretschneideri) laccase gene (PbLAC) family and functional identification of PbLAC1 involved in lignin biosynthesis. PLoS One 14(2):e0210892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng X, Zhang J, Wang H, Chen T, Li G, Yan C, Jin Q, Lin Y, Cai Y (2020) Effects of metaxenia on stone cell formation in pear (Pyrus bretschneideri) based on transcriptomic analysis and functional characterization of the lignin-related gene PbC4H2. Forests 11(1):53

    Article  CAS  Google Scholar 

  • Cui Z, Sun H, Lu Y, Ren L, Xu X, Li D, Wang R, Ma C (2022) Variations in pedicel structural properties among four pear species (Pyrus): Insights into the relationship between the fruit characteristics and the pedicel structure. Front Plant Sci 13:815283

    Article  PubMed  PubMed Central  Google Scholar 

  • Daccord N, Celton JM, Linsmith G, Becker C, Choisne N, Schijlen E, van de Geest H et al (2017) High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat Genet 49(7):1099–1106

    Article  CAS  PubMed  Google Scholar 

  • Dardick C, Callahan AM (2014) Evolution of the fruit endocarp: Molecular mechanisms underlying adaptations in seed protection and dispersal strategies. Front Plant Sci 5:284

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong X, Wang Z, Tian L, Zhang Y, Qi D, Huo H, Xu J, Li Z, Liao R, Shi M, Wahocho SA, Liu C, Zhang S, Tian Z, Cao Y (2019) De novo assembly of a wild pear (Pyrus betuleafolia) genome. Plant Biotechnol J 18(2):581–595

    Article  PubMed  PubMed Central  Google Scholar 

  • Drazeta L, Lang A, Cappellini C, Hall AJ, Volz RK, Jameson PE (2004) Vessel differentiation in the pedicel of apple and the effects of auxin transport inhibition. Physiol Plant 120(1):162–170

    Article  CAS  PubMed  Google Scholar 

  • Folta KM, Gardiner SE (2009) Genetics and genomics of Rosaceae. Springer, New York

    Book  Google Scholar 

  • Herremans E, Verboven P, Hertog ML, Cantre D, van Dael M, De Schryver T, Van Hoorebeke L, Nicolai BM (2015) Spatial development of transport structures in apple (Malus x domestica Borkh.) fruit. Front Plant Sci 6:679

    Article  PubMed  PubMed Central  Google Scholar 

  • Horbens M, Feldner A, Hofer M, Neinhuis C (2014) Ontogenetic tissue modification in Malus fruit peduncles: The role of sclereids. Ann Bot 113(1):105–118

    Article  PubMed  Google Scholar 

  • Itoyama H, Nakagawa ACS, Ariyoshi Y, Ario N, Yuasa T, Iwaya-Inoue M, Ishibashi Y (2020) Lignin deposits in pedicel xylem vessels regulate water transport during seed maturation in soybean. Crop Sci 60(2):954–960

    Article  CAS  Google Scholar 

  • Kasirajan L, Hoang NV, Furtado A, Botha FC, Henry RJ (2018) Transcriptome analysis highlights key differentially expressed genes involved in cellulose and lignin biosynthesis of sugarcane genotypes varying in fiber content. Sci Rep 8(1):11612

    Article  PubMed  PubMed Central  Google Scholar 

  • Katahira R, Nakatsubo F (2001) Determination of nitrobenzene oxidation products by GC and 1H-NMR spectroscopy using 5-iodovanillin as a new internal standard. J Wood Sci 47:378–382

    Article  CAS  Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9:559

    Article  Google Scholar 

  • Li M, Cheng C, Zhang X, Zhou S, Wang C, Ma C, Yang S (2019) PpNAC187 enhances lignin synthesis in ‘Whangkeumbae’ Pear (Pyrus pyrifolia) ‘Hard-End’ fruit. Molecules 24(23):4338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin SY, Dence CW (eds) (1992) Methods in lignin chemistry. Springer Series in Wood Science, Springer, Berlin, Heidelberg

  • Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell 19(1):270–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu G, Peng D, Yu Z, Chen X, Cheng X, Yang Y, Ye T, Lv Q, Ji W, Deng X, Zhou B (2021) Advances in the role of auxin for transcriptional regulation of lignin biosynthesis. Fun Plant Biol 48(8):743–754

    Article  CAS  Google Scholar 

  • Sakamoto S, Mitsuda N (2015) Reconstitution of a secondary cell wall in a secondary cell wall-deficient Arabidopsis mutant. Plant Cell Physiol 56(2):299–310

    Article  CAS  PubMed  Google Scholar 

  • Shirasawa K, Itai A, Isobe S (2021) Chromosome-scale genome assembly of Japanese pear (Pyrus pyrifolia) variety ‘Nijisseiki.’ DNA Res. https://doi.org/10.1093/dnares/dsab001

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith WW (1935) The course of stone cell formation in pear fruits. Plant Physiol 10(4):587–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A et al (2010) The genome of the domesticated apple (Malus x domestica Borkh.). Nat Genet 42(10):833–839

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Xue Y, Fan J, Yao JL, Qin M, Lin T, Lian Q, Zhang M, Li X, Li J, Sun M, Song B, Zhang J, Zhao K, Chen X, Hu H, Fei Z, Xue C, Wu J (2021) A systems genetics approach reveals PbrNSC as a regulator of lignin and cellulose biosynthesis in stone cells of pear fruit. Genome Biol 22(1):313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Zhang SL, Li XL (2019) The genome of pear. In: Korban SS (ed) The pear genome. Springer, Cham, pp 133–143

    Chapter  Google Scholar 

  • Xu Q, Wang W, Zeng J, Zhang J, Grierson D, Li X, Yin X, Chen K (2015) A NAC transcription factor, EjNAC1, affects lignification of loquat fruit by regulating lignin. Postharvest Biol Technol 102:25–31

    Article  CAS  Google Scholar 

  • Xu XF, Wang B, Feng YF, Xue JS, Qian XX, Liu SQ, Zhou J, Yu YH, Yang NY, Xu P, Yang ZN (2019) Auxin response factor17 directly regulates MYB108 for anther dehiscence. Plant Physiol 181(2):645–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue H, Wang S, Yao JL, Deng CH, Wang L, Su Y, Zhang H, Zhou H, Sun M, Li X, Yang J (2018) Chromosome level high-density integrated genetic maps improve the Pyrus bretschneideri ‘DangshanSuli’ v1.0 genome. BMC Genom 19(1):833

    Article  CAS  Google Scholar 

  • Yan C, Yin M, Zhang N, Jin Q, Fang Z, Lin Y, Cai Y (2014) Stone cell distribution and lignin structure in various pear varieties. Sci Hortic 174:142–150

    Article  CAS  Google Scholar 

  • Zhang C, Tanabe K, Tamura F, Itai A, Yoshida M (2007a) Roles of gibberellins in increasing sink demand in Japanese pear fruit during rapid fruit growth. Plant Growth Regul 52(2):161–172

    Article  CAS  Google Scholar 

  • Zhang C, Tanabe K, Tani H, Nakajima H, Mori M, Sakuno E (2007b) Biologically active gibberellins and abscisic acid in fruit of two late-maturing Japanese pear cultivars with contrasting fruit size. J Am Soc Hortic Sci 132(4):452–458

    Article  CAS  Google Scholar 

  • Zhang MY, Xue C, Xu L, Sun H, Qin MF, Zhang S, Wu J (2016) Distinct transcriptome profiles reveal gene expression patterns during fruit development and maturation in five main cultivated species of pear (Pyrus L.). Sci Rep 6(28130):28130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Hu J, Han X, Li J, Gao Y, Richards CM, Zhang C, Tian Y, Liu G, Gul H, Wang D, Tian Y, Yang C, Meng M, Yuan G, Kang G, Wu Y, Wang K, Zhang H, Wang D, Cong P (2019) A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour. Nat Commun 10(1):1494

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Kamitakahara H, Murayama H, Ohsako T, Itai A (2020) Analysis of fruit lignin content, composition, and linkage types in pear cultivars and related species. J Agric Food Chem 68(8):2493–2505

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, Nakashima J, Chen F, Yin Y, Fu C, Yun J, Shao H, Wang X, Wang ZY, Dixon RA (2013) LACCASE is necessary and nonredundant with PEROXIDASE for lignin polymerization during vascular development in Arabidopsis. Plant Cell 25(10):3976–3987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants-in-aid from the Japanese Society for the Promotion of Science (no.16H04874 and no. 20H02979). We would like to thank Editage (http://www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Contributions

L.Z. performed the experiments. H.K. and T.T. provided facilities for lignin analysis. L.Z., S.S., N.M., and A.I. analyzed the data. L.Z. and A.I. wrote the manuscript. A.I. conceived the experiments. A.I. and L.Z. designed the experiments. All authors read and approved the manuscript.

Corresponding author

Correspondence to Akihiro Itai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Kamitakahara, H., Takano, T. et al. Stone cell formation in the pedicel of pears and apples. Planta 258, 85 (2023). https://doi.org/10.1007/s00425-023-04240-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-023-04240-x

Keywords

Navigation