Abstract
Main conclusion
Ectopic expression of Camellia oleifera Abel. gibberellin 20-oxidase 1 caused a taller phenotype, promoted secondary cell wall deposition, leaf enlargement, and early flowering, and reduced chlorophyll and anthocyanin accumulation and seed enlargement phenotype in Arabidopsis.
Abstract
Plant height and secondary cell wall (SCW) deposition are important plant traits. Gibberellins (GAs) play important roles in regulating plant height and SCWs deposition. Gibberellin 20-oxidase (GA20ox) is an important enzyme involved in GA biosynthesis. In the present study, we identified a GA synthesis gene in Camellia oleifera. The total length of the CoGA20ox1 gene sequence was 1146 bp, encoding 381 amino acids. Transgenic plants with CoGA20ox1 had a taller phenotype; a seed enlargement phenotype; promoted SCWs deposition, leaf enlargement, and early flowering; and reduced chlorophyll and anthocyanin accumulation. Genetic analysis showed that the mutant ga20ox1-3 Arabidopsis partially rescued the phenotype of CoGA20ox1 overexpression plants. The results showed that CoGA20ox1 participates in the growth and development of C. oleifera. The morphological changes in CoGA20ox1 overexpressed plants provide a theoretical basis for further exploration of GA biosynthesis and analysis of the molecular mechanism in C. oleifera.








Data availability
All data generated or analyzed during this study are included in this published article.
Abbreviations
- GA:
-
Gibberellin
- SCWs:
-
Secondary cell walls
- TPS:
-
Terpene synthase
- ORF:
-
Open reading frame
- POR:
-
Protochlorophyllide oxidoreductase
- CAO:
-
Chlorophyll a oxygenase
- CHS:
-
Chalcone synthase
- CHI:
-
Chalcone isomerase
- F3H:
-
Flavanone 3-hydroxylase
References
Abe A, Takagi H, Fujibe T, Aya K, Kojima M, Sakakibara H, Uemura A, Matsuoka M, Terauchi R (2012) OsGA20ox1, a candidate gene for a major QTL controlling seedling vigor in rice. Theor Appl Genet 125:647–657. https://doi.org/10.1007/s00122-012-1857-z
Appleford NE, Evans DJ, Lenton JR (2006) Function and transcript analysis of gibberellin-biosynthetic enzymes in Wheat. Planta 223:568–582. https://doi.org/10.1007/S00425-005-0104-0
Aravanopoulos FA (2010) Breeding of fast growing forest tree species for biomass production in Greece. Biomass Bioenergy 34:1531–1537. https://doi.org/10.1016/j.biombioe.2010.06.012
Arnaud N, Girin T, Sorefan K, Fuentes S, Wood TA, Lawrenson T, Sablowski R, Østergaard L (2010) Gibberellins control fruit patterning in Arabidopsis thaliana. Gene Dev 24:2127–2132. https://doi.org/10.1101/gad.593410
Bai WQ, Xiao YH, Zhao J, Song SQ, Hu L, Zeng JY, Li XB, Hou L, Luo M, Li DM, Pei Y (2014) Gibberellin overproduction promotes sucrose synthase expression and secondary cell wall deposition in cotton fibers. PLoS One 9:e96537. https://doi.org/10.1371/journal.pone.0096537
Bao S, Hua C, Huang G, Cheng P, Gong X, Shen L, Yu H (2019) Molecular basis of natural variation in photoperiodic flowering responses. Dev Cell 50:90–101. https://doi.org/10.1016/j.devcel.2019.05.018
Bao S, Hua C, Shen L, Yu H (2020) New insights into gibberellin signaling in regulating flowering in Arabidopsis. J Integr Plant Biol 62:118–131. https://doi.org/10.1111/jipb.12892
Bensen RJ, Johal GS, Crane VC, Tossberg JT, Schnable PS, Meeley RB, Briggs SP (1995) Cloning and characterization of the maize An1 gene. Plant Cell 7:75–84. https://doi.org/10.1105/tpc.7.1.75
Binenbaum J, Weinstain R, Shani E (2018) Gibberellin localization and transport in plants. Trends Plant Sci 23:410–421. https://doi.org/10.1016/j.tplants.2018.02.005
Boonkaew T, Mongkolsiriwatana C, Vongvanrungruang A, Srikulnath K, Peyachoknagul S (2018) Characterization of GA20ox genes in tall and dwarf types coconut (Cocos nucifera L.). Genes Genom 40:735–745. https://doi.org/10.1007/s13258-018-0682-4
Chory J, Peto C, Feinbaum R, Pratt L, Ausubel F (1989) Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light. Cell 58:991. https://doi.org/10.1016/0092-8674(89)90950-1
Cosgrove DJ, Jarvis MC (2012) Comparative structure and biomechanics of plant primary and secondary cell walls. Front Plant Sci 22:204. https://doi.org/10.3389/fpls.2012.00204
Davière JM, Achard P (2013) Gibberellin signaling in plants. Development 140:1147–1151. https://doi.org/10.1242/dev.087650
DeMason DA (2005) Auxin-cytokinin and auxin-gibberellin interactions during morphogenesis of the compound leaves of pea (Pisum sativum). Planta 222:151–166. https://doi.org/10.1007/s00425-005-1508-6
Do PT, De Tar JR, Lee H, Folta MK, Zhang ZJ (2016) Expression of ZmGA20ox cDNA alters plant morphology and increases biomass production of switchgrass (Panicum virgatum L.). Plant Biotechnol J 14:1532–1540. https://doi.org/10.1111/pbi.12514
Dong W, Wu D, Wang C, Liu Y, Wu D (2021) Characterization of the molecular mechanism underlying the dwarfism of dsh mutant watermelon plants. Plant Sci 313:111074. https://doi.org/10.1016/j.plantsci.2021.111074
Dubos C, Gourrierec JL, Baudry A, Huep G, Lanet E, Debeaujon I, Routaboul JM, Alboresi A, Weisshaar B, Lepiniec L (2008) MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Plant J 55:940–953. https://doi.org/10.1111/j.1365-313X.2008.03564.x
Eckhardt U, Grimm B, Hörtensteiner S (2004) Recent advances in chlorophyll biosynthesis and break down in higher plants. Plant Mol Biol 56:1–14. https://doi.org/10.1007/s11103-004-2331-3
El-Kassaby YA, Isik F, Whetten RW (2014) Modern advances in tree breeding. In: Fenning T (ed) Challenges and opportunities for the World’s forests in the 21st century. Springer Netherlands, Dordrecht, pp 441–459
Eriksson ME, Israelsson M, Olsson O, Moritz T (2000) Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat Biotechnol 18:784–788. https://doi.org/10.1038/77355
Eriksson S, Böhlenius H, Moritz T, Nilsson O (2006) GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation. Plant Cell 18:2172–2181. https://doi.org/10.1105/tpc.106.042317
Fagoaga C, Tadeo FR, Iglesias DJ, Huerta L, Lliso I, Vidal AM, Talon M, Navarro L, García-Martínez JL, Peña L (2007) Engineering of gibberellin levels in citrus by sense and antisense overexpression of a GA 20-oxidase gene modifies plant architecture. J Exp Bot 5:1407–1420. https://doi.org/10.1093/jxb/erm004
Fu X, Harberd NP (2003) Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421:740–743. https://doi.org/10.1038/nature01387
Fu J, Ren F (2016) A tandem array of ent-kaurene synthases in maize with roles in gibberellin and more specialized metabolism. Plant Physiol 170:742–751. https://doi.org/10.1104/pp.15.01727
Fukazawa J, Ohashi Y (2021) DELLA degradation by gibberellin promotes flowering via GAF1-TPR-dependent repression of floral repressors in Arabidopsis. Plant 33:2258–2272. https://doi.org/10.1093/plcell/koab102
Funada R, Miura T, Shimizu Y, Kinase T, Nakaba S, Kubo T, Sano Y (2008) Gibberellin-induced formation of tension wood in angiosperm trees. Planta 227:1409–1414. https://doi.org/10.1007/s00425-008-0712-6
García-Hurtado N, Carrera E, Ruiz-Rivero O, López-Gresa MP, Hedden P, Gong F, García-Martínez JL (2012) The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway. J Exp Bot 63:5803–5813. https://doi.org/10.1093/jxb/ers229
Gong W, Song Q, Ji K, Gong S, Wang L, Chen L, Zhang J, Yuan D (2020) Full-length transcriptome from Camellia oleifera seed provides insight into the transcript variants involved in oil biosynthesis. J Agr Food Chem 68:14670–14683. https://doi.org/10.1021/acs.jafc.0c05381
Gong W, Xiao S, Wang L, Liao Z, Chang Y, Mo W, Hu G, Li W, Zhao G, Zhu H, Hu X, Ji K, Xiang X, Song Q, Yuan D, Jin S (2022) Chromosome-level genome of Camellia lanceoleosa provides a valuable resource for understanding genome evolution and self-incompatibility. Plant J 110:881–898. https://doi.org/10.1111/tpj.15739
Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53:814–827. https://doi.org/10.1111/j.1365-313X.2007.03373.x
Han LL (2017) Cloning and functional analysis of Paeonia lactiflora GA-20 oxidase gene. Shandong Agricultural University
Han Y, Teng K, Nawaz G, Feng X, Usman B, Wang X, Luo L, Zhao N, Liu Y, Li R (2019) Generation of semi-dwarf rice (Oryza sativa L.) lines by CRISPR/Cas9-directed mutagenesis of OsGA20ox2 and proteomic analysis of unveiled changes caused by mutations. 3 Biotech 9:387. https://doi.org/10.1007/s13205-019-1919-x
He J, Yu S, Ma C (2009) Effects of plant growth regulator on endogenous hormone levels during the period of the red globe growth. J Agr Sci 1:92–100. https://doi.org/10.5539/jas.v1n1p92
He R, Li X, Zhong M, Yan J, Ji R, Li X, Wang Q, Wu D, Sun M, Tang D, Lin J, Li H, Liu B, Liu H, Liu X, Zhao X, Lin C (2017) A photo-responsive F-box protein FOF2 regulates floral initiation by promoting FLC expression in Arabidopsis. Plant J 91:788–801. https://doi.org/10.1111/tpj.13607
He H, Liang G, Lu S, Wang P, Liu T, Ma Z, Zuo C, Sun X, Chen B, Mao J (2019) Genome-wide identification and expression analysis of GA2ox, GA3ox, and GA20ox are related to gibberellin oxidase genes in grape (Vitis Vinifera L.). Genes 10:680. https://doi.org/10.3390/genes10090680
Hedden P (2020) The current status of research on gibberellin biosynthesis. Plant Cell Physiol 61:1832–1849. https://doi.org/10.1093/pcp/pcaa092
Huang J, Chen X, He A, Ma Z, Gong T, Xu K, Chen R (2021) Integrative morphological, physiological, proteomics analyses of jujube fruit development provide insights into fruit quality domestication from wild jujube to cultivated jujube. Front Plant Sci 12:773825. https://doi.org/10.3389/fpls.2021.773825
Huang Y, Qian C, Lin J, Antwi-Boasiako A, Wu J, Liu Z, Mao Z, Zhong X (2023) CcNAC1 by transcriptome analysis is involved in sudan grass secondary cell wall formation as a positive regulator. Int J Mol Sci 24:6149. https://doi.org/10.3390/ijms24076149
Israelsson M, Eriksson ME, Hertzberg M, Aspeborg H, Nilsson P, Moritz T (2003) Changes in gene expression in the wood-forming tissue of transgenic hybrid aspen with increased secondary growth. Plant Mol Biol 52:893–903. https://doi.org/10.1023/a:1025097410445
Jeon HW, Cho JS, Park EJ, Han KH, Choi YI, Ko JH (2016) Developing xylem-preferential expression of PdGA20ox1, a gibberellin 20-oxidase 1 from Pinus densiflora, improves woody biomass production in a hybrid poplar. Plant Biotechnol J 14:1161–1170. https://doi.org/10.1111/pbi.12484
Jiang S, Xu K, Wang YZ, Ren YP, Gu S (2008) Role of GA3, GA4 and uniconazole-P in controlling gravitropism and tension wood formation in Fraxinus mandshurica Rupr. var. japonica Maxim. seedlings. J Integr Plant Biol 50:19–28. https://doi.org/10.1111/j.1744-7909.2007.00552.x
Jiang ZA, Sun JS, Peng JY, Shao JZ (2013) Cloning, subcellular localization and expression analysis of apple MdGA20ox1 gene. Acta Hortic Sin 40:2373–2381
Jiang K, Shimotakahara H, Luo M, Otani M, Nakamura H, Moselhy SS, Abualnaja KO, Al-Malki AL, Kumosani TA, Kitahata N, Nakano T, Nakajima M, Asami T (2017) Chemical screening and development of novel gibberellin mimics. Bioorg Med Chem Lett 27:3678–3682. https://doi.org/10.1016/j.bmcl.2017.07.012
Jung JH, Ju Y, Seo PJ, Lee JH, Park CM (2012) The SOC1-SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis. Plant J 69:577–588. https://doi.org/10.1111/j.1365-313X.2011.04813.x
Koch GW, Sillett SC, Jennings GM, Davis SD (2004) The limits to tree height. Nature 428:851–854. https://doi.org/10.1038/nature02417
Kumar M, Campbell L, Turner S (2016) Secondary cell walls: biosynthesis and manipulation. J Exp Bot 67:515–531. https://doi.org/10.1093/jxb/erv533
Lando AP, Viana WG, Vale EM, Santos M, Silveira V, Steiner N (2020) Cellular alteration and differential protein profile explain effects of GA3 and ABA and their inhibitor on Trichocline Catharine-nsis (Asteraceae) seed germination. Physiol Plantarum 169:258–275. https://doi.org/10.1111/ppl.13076
Lange T, Pimenta Lange MJ (2020) The multifunctional dioxygenases of gibberellin synthesis. Plant Cell Physiol 61:1869–1879. https://doi.org/10.1093/pcp/pcaa051
Lester DR, Ross JJ, Davies PJ, Reid JB (1997) Mendel’s stem length gene (Le) encodes a gibberellin 3 beta-hydroxylase. Plant Cell 9:1435–1443. https://doi.org/10.1105/tpc.9.8.1435
Li W, Xiang F, Su Y, Luo Z, Luo W, Zhou L, Liu H, Xiao L (2021) Gibberellin increases the bud yield and theanine accumulation in Camellia sinensis (L.) Kuntze. Molecules 26:3290
Lin P, Wang K, Wang Y, Hu Z, Yan C, Huang H, Ma X, Cao Y, Long W, Liu W, Li X, Fan Z, Li J, Ye N, Ren H, Yao X, Yin H (2022) The genome of oil-camellia and population genomics analysis provide insights into seed oil domestication. BMC 23:14. https://doi.org/10.1186/s13059-021-02599-2
Liu C, Yu H (2021) Abscisic acid regulates secondary cell-wall formation and lignin deposition in Ara-bidopsis thaliana through phosphorylation of NST1. PNAS 118:e2010911118. https://doi.org/10.1073/pnas.2010911118
Liu M, Bassetti N, Petrasch S, Zhang N, Bucher J, Shen S, Zhao J, Bonnema G (2019) What makes turnsips: anatomy, physiology and transcriptome during early stages of its hypocotyl-tuber development. Hortic Res-England 6:38. https://doi.org/10.1038/s41438-019-0119-5
Lv S, Yu D, Sun Q, Jiang J (2018) Activation of gibberellin 20-oxidase 2 undermines auxin-dependent root and root hair growth in NaCl-stressed Arabidopsis seedlings. Plant Growth Regul 84:225–236. https://doi.org/10.1007/s10725-017-0333-9
Ma QX, Yin PC, Lin H, Ping JZ, Jin ZP, Wang HQ, Yang JP, Pei YX (2019) Functional analysis of gi-bberellin oxidase gene MtGA20ox in Medicago truncatula. Adv Biotechnol 9:161–168
Marciniak K, Przedniczek K (2020) Gibberellin signaling repressor LlDELLA1 controls the flower and pod development of yellow lupine (Lupinus luteus L.). Int J Mol Sci 21:1815. https://doi.org/10.3390/ijms21051815
Mariotti L, Fambrini M, Pugliesi C, Scartazza A (2022) The gibberellin-deficient dwarf2 mutant of sunflower shows a high constitutive level of jasmonic and salicylic acids and an elevated energy dissipation capacity in well-watered and drought conditions. Environ Exp Bot 194:104697. https://doi.org/10.1016/j.envexpbot.2021.104697
Mauriat M, Moritz T (2009) Analyses of GA20ox- and GID1-over-expressing aspen suggest that gibberellins play two distinct roles in wood formation. Plant J 58:989–1003. https://doi.org/10.1111/j.1365-313X.2009.03836.x
Meents MJ, Watanabe Y, Samuels AL (2018) The cell biology of secondary cell wall biosynthesis. Ann Bot-London 121:1107–1125. https://doi.org/10.1093/aob/mcy005
Niki T, Nishijima T, Nakayama M, Hisamatsu T, Oyama-Okubo N, Yamazaki H, Hedden P, Lange T, Mander LN, Koshioka M (2001) Production of dwarf lettuce by overexpressing a pumpkin gibberellin 20-oxidase gene. Plant Physiol 126:965–972. https://doi.org/10.1104/pp.126.3.965
Nugroho WD, Yamagishi Y, Nakaba S, Fukuhara S, Begum S, Marsoem SN, Ko JH, Jin HO, Funada R (2012) Gibberellin is required for the formation of tension wood and stem gravitropism in Acacia mangium seedlings. Ann Bot-London 110:887–895. https://doi.org/10.1093/aob/mcs148
Nugroho WD, Nakaba S, Yamagishi Y, Begum S, Marsoem SN, Ko JH, Jin HO, Funada R (2013) Gibberellin mediates the development of gelatinous fibres in the tension wood of inclined Acacia mangium seedlings. Ann Bot-London 112:1321–1329. https://doi.org/10.1093/aob/mct198
Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S (2003) Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 15:1591–1604. https://doi.org/10.1105/tpc.011650
Olimpieri I, Caccia R, Picarella ME, Pucci A, Santangelo E, Soressi GP, Mazzucato A (2011) Constitutive co-suppression of the GA 20-oxidase1 gene in tomato leads to severe defects in vegetative and reproductive development. Plant Sci 180:496–503. https://doi.org/10.1016/j.plantsci.2010.11.004
Park EJ, Kim HT, Choi YI, Lee C, Nguyen VP, Jeon HW, Cho JS, Funada R, Pharis RP, Kurepin LV, Ko JH (2015) Overexpression of gibberellin 20-oxidase1 from Pinus densiflora results in enhanced wood formation with gelatinous fiber development in a transgenic hybrid poplar. Tree Physiol 35:1264–1277. https://doi.org/10.1093/treephys/tpv099
Peng J, Yu D, Wang L, Xie M, Yuan C, Wang Y, Tang D, Zhao X, Liu X (2012) Arabidopsis F-box gene FOA1 involved in ABA signaling. Sci China Life Sci 55:497–506. https://doi.org/10.1007/s11427-012-4332-9
Peng S, Lu J, Zhang Z, Ma L, Liu C, Chen Y (2020) Global transcriptome and correlation analysis reveal cultivar-specific molecular signatures associated with fruit development and fatty acid determination in Camellia oleifera Abel. Int J Genomics 2020:6162802. https://doi.org/10.1155/2020/6162802
Petroni K, Tonelli C (2011) Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci 181:219–229. https://doi.org/10.1016/j.plantsci.2011.05.009
Porra RJ, Schäfer W, Cmiel E, Katheder I, Scheer H (1994) The derivation of the formyl-group oxygen of chlorophyll b in higher plants from molecular oxygen. Achievement of high enrichment of the 7-formyl-group oxygen from 18O2 in greening maize leaves. Eur J Biochem 219:617–679. https://doi.org/10.1111/j.1432-1033.1994.tb19983.x
Prasetyaningrum P, Mariotti L, Valeri MC, Novi G, Dhondt S, Inzé D, Perata P, van Veen H (2020) Nighttime gibberellin biosynthesis is influenced by fluctuating environmental conditions and contributes to growth adjustments of Arabidopsis leaves. Chem Chem. https://doi.org/10.1101/2020.05.06.080358
Prasetyaningrum P, Mariotti L, Valeri MC, Novi G, Dhondt S, InzéD PP, van Veen H (2021) Nocturnal gibberellin biosynthesis is carbon dependent and adjusts leaf expansion rates to variable conditions. Plant Physiol 185:228–239. https://doi.org/10.1093/plphys/kiaa019
Rao X, Dixon RA (2018) Current models for transcriptional regulation of secondary cell wall biosynthesis in grasses. Front Plant Sci 9:399. https://doi.org/10.3389/fpls.2018.00399
Rieu I, Ruiz-Rivero O, Fernandez-Garcia N, Griffiths J, Powers SJ, Gong F, Linhartova T, Eriksson S, Nilsson O, Thomas SG, Phillips AL, Hedden P (2008) The gibberellin biosynthetic genes AtGA20-ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J 53:488–504. https://doi.org/10.1111/j.1365-313X.2007.03356.x
Rüscher D, Corral JM, Carluccio AV, Klemens PAW, Gisel A, Stavolone L, Neuhaus HE, Ludewig F, Sonnewald U, Zierer W (2021) Auxin signaling and vascular cambium formation enable storage metabolism in cassava tuberous roots. J Exp Bot 72:3688–3703. https://doi.org/10.1093/jxb/erab106
Shi YC, Deng XX, Liu WQ (2010) Bioinformatics analysis of Arabidopsis GA20 oxidase family. J Henan Agric Univ 44:453–461
Shu K, Liu XD, Xie Q, He ZH (2016) Two faces of one seed: hormonal regulation of dormancy and germination. Mol Plant 9:34–45. https://doi.org/10.1016/j.molp.2015.08.010
Silvija Z, Zlatko Č, Tomislav J (2012) Size and weight of sweet cherry (Prunus avium L. ‘Regina’) fruit treated with 3,5,6-TPA and GA3. Agric Conspec Sci 77:45–47
Speck T, Burgert I (2011) Plant stems: functional design and mechanics. Annu Rev Mater Res 41:169–193. https://doi.org/10.1146/annurev-matsci-062910-100425
Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA 99:9043–9048. https://doi.org/10.1073/pnas.132266399
Sun H, Pang B, Yan J, Wang T, Wang L, Chen CH, Li Q, Ren ZH (2018) Comprehensive analysis of cucumber gibberellin oxidase family genes and functional characterization of CsGA20ox1 in root development in Arabidopsis. Int J Mol Sci 19:3135. https://doi.org/10.3390/ijms19103135
Voorend W, Nelissen H, Vanholme R, De Vliegher A, Van Breusegem F, Boerjan W, Roldán-Ruiz I, Muylle H, Inzé D (2016) Overexpression of GA20-OXIDASE1 impacts plant height, biomass allocation and saccharification efficiency in maize. Plant Biotechnol J 14:997–1007. https://doi.org/10.1111/pbi.12458
Wang XC, Wang C, Fang JG, Sun X, Leng XP (2013) Cloning subcellular localization and spatiotemporal expression analysis of grape VvGA2ox1 gene. J Nanjing Agric Univ 36:29–34
Wang GL, Que F, Xu ZS, Wang F, Xiong AS (2017a) Exogenous gibberellin enhances secondary xylem development and lignification in carrot taproot. Protoplasma 254:839–848. https://doi.org/10.1007/s00709-016-0995-6
Wang Y, Zhao J, Lu W, Deng D (2017b) Gibberellin in plant height control: old player, new story. Plant Cell Rep 36:391–398. https://doi.org/10.1007/s00299-017-2104-5
Wang Y, Yu W, Ran L, Chen Z, Wang C, Dou Y, Qin Y, Suo Q, Li Y, Zeng J, Liang A, Dai Y, Wu Y, Ouyang X, Xiao Y (2021) DELLA-NAC interactions mediate GA signaling to promote secondary cell wall formation in cotton stem. Front Plant Sci 12:655127. https://doi.org/10.3389/fpls.2021.655127
Wei HT (2021) Cloning and functional analysis of PeGA20ox1 gene related to height growth of Phyllostachys pubescens. Zhejiang Agriculture and Forestry University
Wu K, Xu H, Gao X, Fu X (2021) New insights into gibberellin signaling in regulating plant growth-metabolic coordination. Curr Opin Plant Biol 63:102074. https://doi.org/10.1016/j.pbi.2021.102074
Wu W, Zhu L, Wang P, Liao Y, Duan L, Lin K, Chen X, Li L, Xu J, Hu H, Xu ZF, Ni J (2023) Transcriptome-based construction of the gibberellin metabolism and signaling pathways in Eucalyptus grandis × E. urophylla, and functional characterization of GA20ox and GA2ox in regulating plant development and abiotic stress adaptations. Int J Mol Sci 24:7051. https://doi.org/10.3390/ijms24087051
Xiao JH, Li H, Zhang J, Chen R, Zhang Y, Bo O, Wang T, Ye Z (2006) Dissection of GA 20-oxidase members affecting tomato morphology by RNAi-mediated silencing. Plant Lant Growth Regul 50:179–189. https://doi.org/10.1007/s10725-006-9117-3
Xie M, Zhang J, Tschaplinski TJ, Tuskan GA, Chen JG, Muchero W (2018) Regulation of lignin biosynthesis and its role in growth-defense tradeoffs. Front Plant Sci 9:1427. https://doi.org/10.3389/fpls.2018.01427
Xu Y, Jia Q, Zhou G, Zhang XQ, Angessa T, Broughton S, Yan G, Zhang W, Li C (2017) Characterization of the sdw1 semi-dwarf gene in barley. BMC Plant Biol 17:11. https://doi.org/10.1186/s12870-016-0964-4
Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251. https://doi.org/10.1146/annurev.arplant.59.032607.092804
Yan J, Liao X, He R, Zhong M, Feng P, Li X, Tang D, Liu X, Zhao X (2017) Ectopic expression of GA 2-oxidase 6 from rapeseed (Brassica napus L.) causes dwarfism, late flowering and enhanced chlorophyll accumulation in Arabidopsis thaliana. Plant Physiol Bioch 111:10–19. https://doi.org/10.1016/j.plaphy.2016.11.008
Yan J, Li X, Zeng B, Zhong M, Yang J, Yang P, Li X, He C, Lin J, Liu X, Zhao X (2020) FKF1 F-box protein promotes flowering in part by negatively regulating DELLA protein stability under long-day photoperiod in Arabidopsis. J Integr Plant Biol 62:1717–1740. https://doi.org/10.1111/jipb.12971
Yang P, Li Y, He C, Yan J, Zhang W, Li X, Xiang F, Zuo Z, Li X, Zhu Y, Liu X, Zhao X (2020) Phenotype and TMT-based quantitative proteomics analysis of Brassica napus reveals new insight into chlorophyll synthesis and chloroplast structure. J Proteomics 214:103621. https://doi.org/10.1016/j.jprot.2019.103621
Yang BL, Xu HB, Li LB, Feng Z, Liu L, Yu SX (2022) Cloning and functional exploration of GhGA20ox6 gene related to plant height in upland cotton. Cotton Science 34:275–285. https://doi.org/10.11963/cs20210011
Zarka R, Jenna M, Christopher P, Gurjeet G (2022) Genetic control of seed dormancy in Lolium rigidum and its association with GA20ox and ABA1 expression. Crop Pasture Sci 73:1406–1415. https://doi.org/10.1071/CP22088
Zhang Y, Liu Z, Liu R, Hao H, Bi Y (2011) Gibberellins negatively regulate low temperature-induced anthocyanin accumulation in a HY5/HYH-dependent manner. Plant Signal Behav 6:632–634. https://doi.org/10.4161/psb.6.5.14343
Zhang W, Wu L, Ding Y, Yao X, Wu X, Weng F, Li G, Liu Z, Tang S, Ding C, Wang S (2017a) Nitrogen fertilizer application affects lodging resistance by altering secondary cell wall synthesis in japonica rice (Oryza sativa). J Plant Res 130:859–871. https://doi.org/10.1007/s10265-017-0943-3
Zhang Y, Liu Z, Liu J, Lin S, Wang J, Lin W, Xu W (2017b) GA-DELLA pathway is involved in regulation of nitrogen deficiency-induced anthocyanin accumulation. Plant Cell Rep 36:557–569. https://doi.org/10.1007/s00299-017-2102-7
Zhang J, Xie M, Tuskan GA, Muchero W, Chen JG (2018) Recent advances in the transcriptional regulation of secondary cell wall biosynthesis in the woody plants. Front Plant Sci 9:1535. https://doi.org/10.3389/fpls.2018.01535
Zhang F, Li Z, Zhou J, Gu Y, Tan X (2021) Comparative study on fruit development and oil synthesis in two cultivars of Camellia oleifera. BMC Plant Biol 21:348. https://doi.org/10.1186/s12870-021-03114-2
Acknowledgements
We thank Dr. Xiaoying Zhao of Hunan University for providing ga20ox1-3 seeds.
Funding
This research was funded by the Major Program of Natural Science Foundation of Hunan Province (2021JC0007), Natural Science Foundation of Hunan Province (2023JJ41041), China Postdoctoral Science Foundation (2021M703653), Changsha Natural Science Foundation (kq2202281) and Hunan Forestry Science and Technology Innovation Project (XLK202101-2).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
We have no conflicts of interest to disclose.
Additional information
Communicated by Anastasios Melis.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wang, Y., Li, J., Guo, P. et al. Ectopic expression of Camellia oleifera Abel. gibberellin 20-oxidase gene increased plant height and promoted secondary cell walls deposition in Arabidopsis. Planta 258, 65 (2023). https://doi.org/10.1007/s00425-023-04222-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00425-023-04222-z