Skip to main content
Log in

Plant BBR/BPC transcription factors: unlocking multilayered regulation in development, stress and immunity

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

This review provides a detailed structural and functional understanding of BBR/BPC TF, their conservation across the plant lineage, and their comparative study with animal GAFs.

Abstract

Plant-specific Barley B Recombinant/Basic PentaCysteine (BBR/BPC) transcription factor (TF) family binds to “GA” repeats similar to animal GAGA Factors (GAFs). These GAGA binding proteins are among the few TFs that regulate the genes at multiple steps by modulating the chromatin structure. The hallmark of the BBR/BPC TF family is the presence of a conserved C-terminal region with five cysteine residues. In this review, we present: first, the structural distinct yet functional similar relation of plant BBR/BPC TF with animal GAFs, second, the conservation of BBR/BPC across the plant lineage, third, their role in planta, fourth, their potential interacting partners and structural insights. We conclude that BBR/BPC TFs have multifaceted roles in plants. Besides the earliest identified function in homeotic gene regulation and developmental processes, presently BBR/BPC TFs were identified in hormone signaling, stress, circadian oscillation, and sex determination processes. Understanding how plants’ development and stress processes are coordinated is central to divulging the growth-immunity trade-off regulation. The BBR/BPC TFs may hold keys to divulge the interactions between development and immunity. Moreover, the conservation of BBR/BPC across plant lineage makes it an evolutionary vital gene family. Consequently, BBR/BPCs are prospective to attract the increasing attention of the scientific communities as they are probably at the crossroads of diverse fundamental processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

No new data was generated in this paper.

References

  • Bagshaw A (2017) Functional mechanisms of microsatellite DNA in eukaryotic genomes. Genome Biol Evol 9(9):2428–2443

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baile F, Gómez-Zambrano Á, Calonje M (2021) Roles of polycomb complexes in regulating gene expression and chromatin structure in plants. Plant Commun 3(1):100267

    PubMed Central  PubMed  Google Scholar 

  • Berger N, Dubreucq B (2012) Evolution goes GAGA: GAGA binding proteins across kingdoms. Biochem Biophys Acta 1819(8):863–868

    CAS  PubMed  Google Scholar 

  • Berger N, Dubreucq B, Roudier F, Dubos C, Lepiniec L (2011) Transcriptional regulation of Arabidopsis LEAFY COTYLEDON2 involves RLE, a cis-element that regulates trimethylation of histone H3 at lysine-27. Plant Cell 23(11):4065–4078

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bevilacqua A, Fiorenza MT, Mangia F (2000) A developmentally regulated GAGA box-binding factor and Sp1 are required for transcription of the hsp70.1 gene at the onset of mouse zygotic genome activation. Development 127(7):1541–1551

    CAS  PubMed  Google Scholar 

  • Bouyer D, Roudier F, Heese M, Andersen ED, Gey D, Nowack MK, Goodrich J, Renou JP, Grini PE, Colot V, Schnittger A (2011) Polycomb repressive complex 2 controls the embryo-to-seedling phase transition. PLoS Genet 7(3):e1002014

    CAS  PubMed Central  PubMed  Google Scholar 

  • Busturia A, Lloyd A, Bejarano F, Zavortink M, Xin H, Sakonju S (2001) The MCP silencer of the Drosophila Abd-B gene requires both pleiohomeotic and GAGA factor for the maintenance of repression. Development 128(11):2163–2173

    CAS  PubMed  Google Scholar 

  • Carella P (2020) Stop the FUSS: BPCs restrict FUSCA3 transcription to promote ovule and seed development. Plant Cell 32(6):1779–1780

    CAS  PubMed Central  PubMed  Google Scholar 

  • Charlesworth D (2021) Evolution: the oldest sex chromosomes. Current Biology: CB 31(24):R1585–R1588

    CAS  PubMed  Google Scholar 

  • Chetverina D, Erokhin M, Schedl P (2021) GAGA factor: a multifunctional pioneering chromatin protein. Cellular Mol Life Sci: CMLS 78(9):4125–4141

    CAS  PubMed  Google Scholar 

  • Choe S (2006) Brassinosteroid biosynthesis and inactivation. Physiol Plant 126(4):539–548

    CAS  Google Scholar 

  • Chung Y, Kwon SI, Choe S (2014) Antagonistic regulation of Arabidopsis growth by brassinosteroids and abiotic stresses. Mol Cells 37(11):795–803

    PubMed Central  PubMed  Google Scholar 

  • Clouse SD, Sasse JM (1998) BRASSINOSTEROIDS: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451

    CAS  PubMed  Google Scholar 

  • Deng W, Buzas DM, Ying H, Robertson M, Taylor J, Peacock WJ, Dennis ES, Helliwell C (2013) Arabidopsis polycomb repressive complex 2 binding sites contain putative GAGA factor binding motifs within coding regions of genes. BMC Genom 14:593

    CAS  Google Scholar 

  • Derkacheva M, Hennig L (2014) Variations on a theme: polycomb group proteins in plants. J Exp Bot 65(10):2769–2784

    CAS  PubMed  Google Scholar 

  • Ezquer I, Mizzotti C, Nguema-Ona E, Gotté M, Beauzamy L, Viana VE, Dubrulle N, Costa de Oliveira A, Caporali E, Koroney AS, Boudaoud A, Driouich A, Colombo L (2016) The developmental regulator SEEDSTICK controls structural and mechanical properties of the Arabidopsis seed coat. Plant Cell 28(10):2478–2492

    CAS  PubMed Central  PubMed  Google Scholar 

  • Francis NJ, Kingston RE, Woodcock CL (2004) Chromatin compaction by a polycomb group protein complex. Science 306(5701):1574–1577

    CAS  PubMed  Google Scholar 

  • Franke R, Briesen I, Wojciechowski T, Faust A, Yephremov A, Nawrath C, Schreiber L (2005) Apoplastic polyesters in Arabidopsis surface tissues—a typical suberin and a particular cutin. Phytochemistry 66:2643–2658

    CAS  PubMed  Google Scholar 

  • Gong R, Cao H, Zhan J, Xie K, Wang D, Yu S (2018) Divergent functions of the GAGA-binding transcription factor family in rice. Plant J Cell Mol Biol 94(1):32–47

    CAS  Google Scholar 

  • Han SK, Kwak JM, Qi X (2021) Stomatal lineage control by developmental program and environmental cues. Front Plant Sci 12:751852

    PubMed Central  PubMed  Google Scholar 

  • Hecker A, Brand LH, Peter S, Simoncello N, Kilian J, Harter K, Gaudin V, Wanke D (2015) The Arabidopsis GAGA-Binding Factor BASIC PENTACYSTEINE6 Recruits the POLYCOMB-REPRESSIVE COMPLEX1 Component LIKE HETEROCHROMATIN PROTEIN1 to GAGA DNA Motifs. Plant Physiol 168(3):1013–1024

    PubMed Central  PubMed  Google Scholar 

  • Hennig L, Derkacheva M (2009) Diversity of Polycomb group complexes in plants: same rules, different players? Trends Genet 25(9):414–423

    CAS  PubMed  Google Scholar 

  • Hu Z, Fu Q, Zheng J, Zhang A, Wang H (2020) Transcriptomic and metabolomic analyses reveal that melatonin promotes melon root development under copper stress by inhibiting jasmonic acid biosynthesis. Horticult Res 7(1):79

    CAS  Google Scholar 

  • Huang Y, Chen DH, Liu BY, Shen WH, Ruan Y (2017) Conservation and diversification of polycomb repressive complex 2 (PRC2) proteins in the green lineage. Brief Funct Genom 16:106–119

    CAS  Google Scholar 

  • Iglesias AR, Kindlund E, Tammi M, Wadelius C (2004) Some microsatellites may act as novel polymorphic cis-regulatory elements through transcription factor binding. Gene 341:149–165

    CAS  PubMed  Google Scholar 

  • Iwasaki M, Kajiwara T, Yasui Y, Yoshitake Y, Miyazaki M, Kawamura S, Suetsugu N, Nishihama R, Yamaoka S, Wanke D, Hashimoto K, Kuchitsu K, Montgomery SA, Singh S, Tanizawa Y, Yagura M, Mochizuki T, Sakamoto M, Nakamura Y, Liu C, Berger F, Yamato KT, Bowman JL, Kohchi T (2021) Identification of the sex-determining factor in the liverwort Marchantia polymorpha reveals unique evolution of sex chromosomes in a haploid system. Curr Biol 31(24):5522-5532.e7

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim SY, Lee J, Eshed-Williams L, Zilberman D, Sung ZR (2012) EMF1 and PRC2 cooperate to repress key regulators of Arabidopsis development. PLoS Genet 8:e1002512

    CAS  PubMed Central  PubMed  Google Scholar 

  • King IF, Francis NJ, Kingston RE (2002) Native and recombinant polycomb group complexes establish a selective block to template accessibility to repress transcription in vitro. Mol Cell Biol 22(22):7919–7928

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kooiker M, Airoldi CA, Losa A, Manzotti PS, Finzi L, Kater MM, Colombo L (2005) BASIC PENTACYSTEINE1, a GA binding protein that induces conformational changes in the regulatory region of the homeotic Arabidopsis gene SEEDSTICK. Plant Cell 17(3):722–729

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee YC, Tsai PT, Huang XX, Tsai HL (2022) Family members additively repress the ectopic expression of BASIC PENTACYSTEINE3 to prevent disorders in Arabidopsis circadian vegetative development. Front Plant Sci 13:919946

    PubMed Central  PubMed  Google Scholar 

  • Lehmann M (2004) Anything else but GAGA: a nonhistone protein complex reshapes chromatin structure. Trends Genet 20(1):15–22

    CAS  PubMed  Google Scholar 

  • Lehman A, Black R, Ecker JR (1996) HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl. Cell 85:183–194

    CAS  PubMed  Google Scholar 

  • Li S, Miao L, Huang B, Gao L, He C, Yan Y, Wang J, Yu X, Li Y (2019) Genome-wide identification and characterization of cucumber BPC transcription factors and their responses to abiotic stresses and exogenous phytohormones. Int J Mol Sci 20(20):5048

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li Q, Wang M, Fang L (2021) BASIC PENTACYSTEINE2 negatively regulates osmotic stress tolerance by modulating LEA4-5 expression in Arabidopsis thaliana. Plant Physiol Biochem 168:373–380

    CAS  PubMed  Google Scholar 

  • Liang MH, He YJ, Liu DM, Jiang JG (2021) Regulation of carotenoid degradation and production of apocarotenoids in natural and engineered organisms. Crit Rev Biotechnol 41(4):513–534

    CAS  PubMed  Google Scholar 

  • Liu Z, Zhou Y, Guo J, Li J, Tian Z, Zhu Z, Wang J, Wu R, Zhang B, Hu Y, Sun Y, Shangguan Y, Li W, Li T, Hu Y, Guo C, Rochaix JD, Miao Y, Sun X (2020) Global dynamic molecular profiling of stomatal lineage cell development by single-cell RNA sequencing. Mol Plant 13(8):1178–1193

    CAS  PubMed  Google Scholar 

  • Liu J, Zhang W, Long S, Zhao C (2021) Maintenance of cell wall integrity under high salinity. Int J Mol Sci 22(6):3260

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lloret A, Quesada-Traver C, Conejero A, Arbona V, Gómez-Mena C, Petri C, Sánchez-Navarro JA, Zuriaga E, Leida C, Badenes ML, Ríos G (2021) Regulatory circuits involving bud dormancy factor PpeDAM6. Horticult Res 8(1):261

    CAS  Google Scholar 

  • Lomaev D, Mikhailova A, Erokhin M, Shaposhnikov AV, Moresco JJ, Blokhina T, Wolle D, Aoki T, Ryabykh V, Yates JR, Shidlovskii YV, Georgiev P, Schedl P, Chetverina D (2017) The GAGA factor regulatory network: identification of GAGA factor associated proteins. PLoS ONE 12(3):e0173602

    PubMed Central  PubMed  Google Scholar 

  • Luo M, Platten D, Chaudhury A, Peacock WJ, Dennis ES (2009) Expression, imprinting, and evolution of rice homologs of the polycomb group genes. Mol Plant 2:711–723

    CAS  PubMed  Google Scholar 

  • Ma X, Yu Y, Hu Z, Huang H, Li S, Yin H (2022) Characterizations of a Class-I BASIC PENTACYSTEINE gene reveal conserved roles in the transcriptional repression of genes involved in seed development. Curr Issues Mol Biol 44:4059–4069

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martin DE, Soulard A, Hall MN (2004) TOR regulates ribosomal protein gene expression via PKA and the Forkhead transcription factor FHL1. Cell 119(7):969–979

    CAS  PubMed  Google Scholar 

  • Matharu NK, Hussain T, Sankaranarayanan R, Mishra RK (2010) Vertebrate homologue of Drosophila GAGA factor. J Mol Biol 400(3):434–447

    CAS  PubMed  Google Scholar 

  • Meister RJ, Williams LA, Monfared MM, Gallagher TL, Kraft EA, Nelson CG, Gasser CS (2004) Definition and interactions of a positive regulatory element of the Arabidopsis INNER NO OUTER promoter. Plant J Cell Molecul Biol 37(3):426–438

    CAS  Google Scholar 

  • Monfared MM, Simon MK, Meister RJ, Roig-Villanova I, Kooiker M, Colombo L, Fletcher JC, Gasser CS (2011) Overlapping and antagonistic activities of BASIC PENTACYSTEINE genes affect a range of developmental processes in Arabidopsis. Plant J Cell Mol Biol 66(6):1020–1031

    CAS  Google Scholar 

  • Mozgova I, Hennig L (2015) The polycomb group protein regulatory network. Annu Rev Plant Biol 66:269–296

    CAS  PubMed  Google Scholar 

  • Mu Y, Liu Y, Bai L, Li S, He C, Yan Y, Yu X, Li Y (2017a) Cucumber CsBPCs regulate the expression of CsABI3 during seed germination. Front Plant Sci 8:459

    PubMed Central  PubMed  Google Scholar 

  • Mu Y, Zou M, Sun X, He B, Xu X, Liu Y, Zhang L, Chi W (2017b) BASIC PENTACYSTEINE Proteins Repress ABSCISIC ACID INSENSITIVE4 Expression via Direct Recruitment of the Polycomb-Repressive Complex 2 in Arabidopsis Root Development. Plant Cell Physiol 58(3):607–621

    CAS  PubMed  Google Scholar 

  • Pelayo MA, Yamaguchi N, Ito T (2021) One factor, many systems: the floral homeotic protein AGAMOUS and its epigenetic regulatory mechanisms. Curr Opin Plant Biol 61:102009

    CAS  PubMed  Google Scholar 

  • Petrella R, Caselli F, Roig-Villanova I, Vignati V, Chiara M, Ezquer I, Tadini L, Kater MM, Gregis V (2020) BPC transcription factors and a Polycomb Group protein confine the expression of the ovule identity gene SEEDSTICK in Arabidopsis. Plant J Cell Mol Biol 102(3):582–599

    CAS  Google Scholar 

  • Samakovli D, Komis G, Šamaj J (2020) Uncovering the genetic networks driving stomatal lineage development. Mol Plant 13(10):1355–1357

    CAS  PubMed  Google Scholar 

  • Sangwan I, O’Brian MR (2002) Identification of a soybean protein that interacts with GAGA element dinucleotide repeat DNA. Plant Physiol 129(4):1788–1794

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santi L, Wang Y, Stile MR, Berendzen K, Wanke D, Roig C, Pozzi C, Müller K, Müller J, Rohde W, Salamini F (2003) The GA octodinucleotide repeat binding factor BBR participates in the transcriptional regulation of the homeobox gene Bkn3. Plant J Cell Mol Biol 34(6):813–826

    CAS  Google Scholar 

  • Schubert D, Primavesi L, Bishopp A, Roberts G, Doonan J, Jenuwein T, Goodrich J (2006) Silencing by plant Polycombgroup genes requires dispersed trimethylation of histone H3 at lysine 27. EMBO J 25:4638–4649

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schuettengruber B, Cavalli G (2009) Recruitment of polycomb group complexes and their role in the dynamic regulation of cell fate choice. Development 136:3531–3542

    CAS  PubMed  Google Scholar 

  • Schwartz YB, Pirrotta V (2013) A new world of Polycombs: unexpected partnerships and emerging functions. Nat Rev Genet 14(12):853–864

    CAS  PubMed  Google Scholar 

  • Shanks CM, Hecker A, Cheng CY, Brand L, Collani S, Schmid M, Schaller GE, Wanke D, Harter K, Kieber JJ (2018) Role of BASIC PENTACYSTEINE transcription factors in a subset of cytokinin signaling responses. Plant J Cell Mol Biol 95(3):458–473

    CAS  Google Scholar 

  • Shen Q, Lin Y, Li Y, Wang G (2021) Dynamics of H3K27me3 modification on plant adaptation to environmental cues. Plants 10(6):1165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shkolnik-Inbar D, Bar-Zvi D (2010) ABI4 mediates abscisic acid and cytokinin inhibition of lateral root formation by reducing polar auxin transport in Arabidopsis. Plant Cell 22(11):3560–3573

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simonini S, Kater MM (2014) Class I BASIC PENTACYSTEINE factors regulate HOMEOBOX genes involved in meristem size maintenance. J Exp Bot 65(6):1455–1465

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simonini S, Roig-Villanova I, Gregis V, Colombo B, Colombo L, Kater MM (2012) Basic pentacysteine proteins mediate MADS domain complex binding to the DNA for tissue-specific expression of target genes in Arabidopsis. Plant Cell 24(10):4163–4172

    CAS  PubMed Central  PubMed  Google Scholar 

  • Singh R, Dwivedi A, Singh Y, Kumar K, Ranjan A, Verma PK (2022a) Global transcriptome and co-expression analysis reveal robust host defence pathway reprogramming and identify key regulators of early phases of Cicer-Ascochyta interactions. Mol Plant Microbe Interact. https://doi.org/10.1094/MPMI-06-22-0134-R

    Article  PubMed  Google Scholar 

  • Singh R, Kumar K, Purayannur S, Chen W, Verma PK (2022b) Ascochyta rabiei: a threat to global chickpea production. Mol Plant Pathol 23(9):1241–1261

    PubMed Central  PubMed  Google Scholar 

  • Sreekumar J, Muhammed Sadiq PA, Raju S, Mukherjee A (2022) In silico analysis of carotenoid biosynthesis pathway in cassava (Manihot esculenta Crantz). J Genet 101:2

    CAS  PubMed  Google Scholar 

  • Steber CM, McCourt P (2001) A role for brassinosteroids in germination in Arabidopsis. Plant Physiol 125:763–769

    CAS  PubMed Central  PubMed  Google Scholar 

  • Strader L, Weijers D, Wagner D (2022) Plant transcription factors—being in the right place with the right company. Curr Opin Plant Biol 65:102136

    CAS  PubMed  Google Scholar 

  • Strejčková B, Čegan R, Pecinka A, Milec Z, Šafář J (2020) Identification of polycomb repressive complex 1 and 2 core components in hexaploid bread wheat. BMC Plant Biol 20(Suppl 1):175

    PubMed Central  PubMed  Google Scholar 

  • Sun H, Pang B, Yan J, Wang T, Wang L, Chen C, Li Q, Ren Z (2018) Comprehensive analysis of cucumber gibberellin oxidase family genes and functional characterization of CsGA20ox1 in root development in Arabidopsis. Int J Mol Sci 19(10):3135

    PubMed Central  PubMed  Google Scholar 

  • Theune ML, Hummel S, Jaspert N, Lafos M, Wanke D (2017) Dimerization of the BASIC PENTACYSTEINE domain in plant GAGA-factors is mediated by disulfide bonds and required for DNA-binding. J Adv Plant Biol 1(1):26

    Google Scholar 

  • Theune ML, Bloss U, Brand LH, Ladwig F, Wanke D (2019) Phylogenetic Analyses and GAGA-Motif Binding Studies of BBR/BPC Proteins Lend to Clues in GAGA-Motif Recognition and a Regulatory Role in Brassinosteroid Signaling. Front Plant Sci 10:466

    PubMed Central  PubMed  Google Scholar 

  • Tóth G, Gáspári Z, Jurka J (2000) Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res 10(7):967–981

    PubMed Central  PubMed  Google Scholar 

  • Vieira ML, Santini L, Diniz AL, Munhoz C (2016) Microsatellite markers: what they mean and why they are so useful. Genet Mol Biol 39(3):312–328

    PubMed Central  PubMed  Google Scholar 

  • Wang YK, Li YL, Fu ZL, Huang Q, Yue XG, Wang Y, Zhu KM, Wang Z, Ge YS, Wang ZH, Tan XL (2019) Transcriptome analysis of Brassica napus wax-deficient mutant revealed the dynamic regulation of leaf wax biosynthesis is associated with basic pentacysteine 6. Int J Agric Biol 21:1228–1234

    CAS  Google Scholar 

  • Wang X, Ding J, Lin S, Liu D, Gu T, Wu H, Trigiano RN, McAvoy R, Huang J, Li Y (2020) Evolution and roles of cytokinin genes in angiosperms 2: Do ancient CKXs play housekeeping roles while non-ancient CKXs play regulatory roles? Horticulture Res 7:29

    CAS  Google Scholar 

  • Wanke D, Hohenstatt ML, Dynowski M, Bloss U, Hecker A, Elgass K, Hummel S, Hahn A, Caesar K, Schleifenbaum F, Harter K, Berendzen KW (2011) Alanine zipper-like coiled-coil domains are necessary for homotypic dimerization of plant GAGA-factors in the nucleus and nucleolus. PLoS ONE 6(2):e16070

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wind JJ, Peviani A, Snel B, Hanson J, Smeekens SC (2013) ABI4: versatile activator and repressor. Trends Plant Sci 18(3):125–132

    CAS  PubMed  Google Scholar 

  • Wu J, Mohamed D, Dowhanik S, Petrella R, Gregis V, Li J, Wu L, Gazzarrini S (2020) Spatiotemporal restriction of FUSCA3 expression by class I BPCs promotes ovule development and coordinates embryo and endosperm growth. Plant Cell 32(6):1886–1904

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xian J, Wang Y, Niu K, Ma H, Ma X (2020) Transcriptional regulation and expression network responding to cadmium stress in a Cd-tolerant perennial grass Poa Pratensis. Chemosphere 250:126158

    CAS  PubMed  Google Scholar 

  • Xiao J, Jin R, Yu X, Shen M, Wagner JD, Pai A, Song C, Zhuang M, Klasfeld S, He C, Santos AM, Helliwell C, Pruneda-Paz JL, Kay SA, Lin X, Cui S, Garcia MF, Clarenz O, Goodrich J, Zhang X, Austin RS, Bonasio R, Wagner D (2017) Cis and trans determinants of epigenetic silencing by Polycomb repressive complex 2 in Arabidopsis. Nat Genet 49(10):1546–1552

    CAS  PubMed  Google Scholar 

  • Yang J, Lee S, Hang R, Ki SR, Lee YS, Cao X, Amasino R, An G (2013) OsVIL2 functions with PRC2 to induce flowering by repressing OsLFL1 in rice. Plant J Cell Mol Biol 73(4):566–578

    CAS  Google Scholar 

  • Yan B, Lv Y, Zhao C, Wang X (2020) Knowing when to silence: roles of polycomb-group proteins in SAM maintenance, root development, and developmental phase transition. Int J Mol Sci 21(16):5871

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yan J, Liu Y, Yang L, He H, Huang Y, Fang L, Scheller HV, Jiang M, Zhang A (2021) Cell wall β-1,4-galactan regulated by the BPC1/BPC2-GALS1 module aggravates salt sensitivity in Arabidopsis thaliana. Mol Plant 14(3):411–425

    CAS  PubMed  Google Scholar 

  • Yue Z, Liu H, Ma F (2015) The Malus carotenoid cleavage dioxygenase 7 is involved in stress response and regulated by basic pentacysteine 1. Sci Hortic 192:264–270

    CAS  Google Scholar 

  • Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR (2006) Genome-wide high-reso lution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126(6):1189–1201

    CAS  PubMed  Google Scholar 

  • Zhang S, Cai Z, Wang X (2009) The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. Proc Natl Acad Sci USA 106:4543–4548

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang S, Yao J, Wang L, Wu N, Van Nocker S, Li Z, Gao M, Wang X (2022) Role of grapevine SEPALLATA-related MADS-box gene VvMADS39 in flower and ovule development. Plant J Cell Mol Biol 111(6):1565–1579

    CAS  Google Scholar 

  • Zhao S, Zhang Q, Liu M, Zhou H, Ma C, Wang P (2021) Regulation of plant responses to salt stress. Int J Mol Sci 22(9):4609

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Funding

No funding was granted for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Kumar Verma.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author(s).

Additional information

Communicated by Gerhard Leubner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, A., Singh, R. & Verma, P.K. Plant BBR/BPC transcription factors: unlocking multilayered regulation in development, stress and immunity. Planta 258, 31 (2023). https://doi.org/10.1007/s00425-023-04188-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-023-04188-y

Keywords

Navigation