Abstract
Main conclusion
This review provides a direction for crop quality improvement and ideas for further research on the application of CRISPR/Cas9 gene editing technology for crop improvement.
Abstract
Various important crops, such as wheat, rice, soybean and tomato, are among the main sources of food and energy for humans. Breeders have long attempted to improve crop yield and quality through traditional breeding methods such as crossbreeding. However, crop breeding progress has been slow due to the limitations of traditional breeding methods. In recent years, clustered regularly spaced short palindromic repeat (CRISPR)/Cas9 gene editing technology has been continuously developed. And with the refinement of crop genome data, CRISPR/Cas9 technology has enabled significant breakthroughs in editing specific genes of crops due to its accuracy and efficiency. Precise editing of certain key genes in crops by means of CRISPR/Cas9 technology has improved crop quality and yield and has become a popular strategy for many breeders to focus on and adopt. In this paper, the present status and achievements of CRISPR/Cas9 gene technology as applied to the improvement of quality in several crops are reviewed. In addition, the shortcomings, challenges and development prospects of CRISPR/Cas9 gene editing technology are discussed.



Data availability
No new data were generated in support of this research.
References
Abe K, Araki E, Suzuki Y et al (2018) Production of high oleic/low linoleic rice by genome editing. Plant Physiol Bioch 131:58–62. https://doi.org/10.1016/j.plaphy.2018.04.033
Achary V, Reddy M (2021) CRISPR-Cas9 mediated mutation in GRAIN WIDTH and WEIGHT2 (GW2) locus improves aleurone layer and grain nutritional quality in rice. Sci Rep 11(1):21941. https://doi.org/10.1038/s41598-021-00828-z
Adli M (2018) The CRISPR tool kit for genome editing and beyond. Nat Commun 9(1):1911. https://doi.org/10.1038/s41467-018-04252-2
Akama K, Akter N, Endo H et al (2020) An in vivo targeted deletion of the calmodulin-binding domain from rice glutamate decarboxylase 3 (OsGAD3) increases γ-aminobutyric acid content in grains. Rice (n y) 13(1):20. https://doi.org/10.1186/s12284-020-00380-w
Al-Babili S, Hoa T, Schaub P (2006) Exploring the potential of the bacterial carotene desaturase CrtI to increase the beta-carotene content in golden rice. J Exp Bot 57(4):1007–1014. https://doi.org/10.1093/jxb/erj086
Arikit S, Yoshihashi T, Wanchana S et al (2015) Deficiency in the amino aldehyde dehydrogenase encoded by GmAMADH2, the homologue of rice Os2AP, enhances 2-acetyl-1-pyrroline biosynthesis in soybeans (Glycine max L). Plant Biotechnol J 9(1):75–87. https://doi.org/10.1111/j.1467-7652.2010.00533.x
Ashokkumar S, Jaganathan D, Ramanathan V et al (2020) Creation of novel alleles of fragrance gene OsBADH2 in rice through CRISPR/Cas9 mediated gene editing. PLoS ONE 15(8):e0237018. https://doi.org/10.1371/journal.pone.0237018
Attar U, Hinge V, Zanan R et al (2017) Identification of aroma volatiles and understanding 2-acetyl-1-pyrroline biosynthetic mechanism in aromatic mung bean (Vigna radiata (L) Wilczek). Physiol Mol Biol Plants 23(2):443. https://doi.org/10.1007/s12298-017-0414-2
Badejo A (2018) Elevated carotenoids in staple crops: the biosynthesis, challenges and measures for target delivery. J Genet Eng Biotechnol 16(2):553–562. https://doi.org/10.1016/j.jgeb.2018.02.010
Barrangou R, Fremaux C, Deveau H et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712. https://doi.org/10.1126/science.1138140
Bates P, Stymne S, Ohlrogge J (2013) Biochemical pathways in seed oil synthesis. Curr Opin Plant Biol 16(3):358–364. https://doi.org/10.1016/j.pbi.2013.02.015
Borisjuk N, Kishchenko O, Eliby S et al (2019) Genetic modification for wheat improvement: from transgenesis to genome editing. Biomed Res Int 2019:6216304. https://doi.org/10.1155/2019/6216304
Brouns S, Jore M, Lundgren M et al (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321(5891):960–964. https://doi.org/10.1126/science.1159689
Buttery R, Ling L, Juliano B et al (2002) Cooked rice aroma and 2-acetyl-1-pyrroline. J Agric Food Chem 31(4):823–826. https://doi.org/10.1021/jf00118a036
Cao H, Zhao Y, Liu X et al (2022) A metal chaperone OsHIPP16 detoxifies cadmium by repressing its accumulation in rice crops. Environ Pollut 311:120058. https://doi.org/10.1016/j.envpol.2022.120058
Čermák T, Baltes N, Čegan R et al (2015) High-frequency, precise modification of the tomato genome. Genome Biol 16(11):232. https://doi.org/10.1186/s13059-015-0796-9
Chandrasekaran M, Boopathi T, Paramasivan M (2021) A status-quo review on CRISPR-Cas9 gene editing applications in tomato. Int J Biol Macromol 190:120–129. https://doi.org/10.1016/j.ijbiomac.2021.08.169
Chen Y, Fu M, Li H et al (2020a) High-oleic acid content, nontransgenic allotetraploid cotton (Gossypium hirsutum L) generated by knockout of GhFAD2 genes with CRISPR/Cas9 system. Plant Biotechnol J 19(3):424–426. https://doi.org/10.1111/pbi.13507
Chen Y, Zhu A, Xue P et al (2020b) Effects of GS3 and GL3.1 for grain size editing by CRISPR/Cas9 in rice. Rice Sci 27(05):405–414
Christian M, Cermak T, Doyle E et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186(2):757–761. https://doi.org/10.1534/genetics.110.120717
Chu Y, Jang J, Huang Z et al (2019) Tomato locule number and fruit size controlled by natural alleles of lc and fas. Plant Direct 3(7):e00142. https://doi.org/10.1002/pld3.142
Cohen-Tannoudji M, Robine S, Choulika A et al (1998) I-SceI-induced gene replacement at a natural locus in embryonic stem cells. Mol Cell Biol 18(3):1444–1448. https://doi.org/10.1128/MCB.18.3.1444
Cong L, Ran F, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. https://doi.org/10.1126/science.1231143
Cruet-Burgos C, Rhodes D (2023) Unraveling transcriptomics of sorghum grain carotenoids: a step forward for biofortification. BMC Genomics 24(1):233. https://doi.org/10.1186/s12864-023-09323-3
D’Ambrosio C, Stigliani A, Giorio G (2018) CRISPR/Cas9 editing of carotenoid genes in tomato. Transgenic Res 27(4):367–378. https://doi.org/10.1007/s11248-018-0079-9
Deng L, Wang H, Sun C et al (2018) Efficient generation of pink-fruited tomatoes using CRISPR/Cas9 system. J Genet Genomics 45(1):51–54. https://doi.org/10.1016/j.jgg.2017.10.002
Dong O, Yu S, Jain R et al (2020) Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9. Nat Commun 11(1):1178. https://doi.org/10.1038/s41467-020-14981-y
Dong S, Dong X, Han X et al (2021) OsPDCD5 negatively regulates plant architecture and grain yield in rice. Proc Natl Acad Sci USA 118(29):e2018799118. https://doi.org/10.1073/pnas.2018799118
Elango D, Rajendran K, Van L et al (2022) Raffinose family oligosaccharides: friend or foe for human and plant health? Front Plant Sci 17(13):829118. https://doi.org/10.3389/fpls.2022.829118
Endo A, Saika H, Takemura M et al (2019) A novel approach to carotenoid accumulation in rice callus by mimicking the cauliflower Orange mutation via genome editing. Rice (N Y) 12(1):81. https://doi.org/10.1186/s12284-019-0345-3
Fan C, Xing Y, Mao H et al (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112(6):1164–1171. https://doi.org/10.1007/s00122-006-0218-1
Feng F, Li Y, Qin X et al (2017) Changes in rice grain quality of indica and japonica type varieties released in China from 2000 to 2014. Front Plant Sci 8:1863. https://doi.org/10.3389/fpls.2017.01863
Fu Y, Sander J, Reyon D et al (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32(3):279–284. https://doi.org/10.1038/nbt.2808
Fu Y, Luo T, Hua Y et al (2022) Assessment of the characteristics of waxy rice mutants generated by CRISPR/Cas9. Front Plant Sci 13:881964. https://doi.org/10.3389/fpls.2022.881964
Gaikwad K, Rani S, Kumar M et al (2020) Enhancing the nutritional quality of major food crops through conventional and genomics-assisted breeding. Front Nutr 7:533453. https://doi.org/10.3389/fnut.2020.533453
Gaj T, Gersbach C, Barbas C (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405. https://doi.org/10.1016/j.tibtech.2013.04.004
Gao H, Gadlage M, Lafitte H et al (2020) Superior field performance of waxy corn engineered using CRISPR-Cas9. Nat Biotechnol 38(5):579–581. https://doi.org/10.1038/s41587-020-0444-0
Gasiunas G, Barrangou R, Horvath P et al (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109(39):E2579-2586. https://doi.org/10.1073/pnas.1208507109
Halstead-Nussloch G, Tanaka T, Copetti D et al (2021) Multiple wheat genomes reveal novel Gli-2 sublocus location and variation of celiac disease epitopes in duplicated α-gliadin genes. Front Plant Sci 12:715985. https://doi.org/10.3389/fpls.2021.715985
Hamada H, Linghu Q, Nagira Y et al (2017) An in planta biolistic method for stable wheat transformation. Sci Rep 7(1):17573. https://doi.org/10.1038/s41598-017-17188-2
Hu C, Sheng O, Deng G et al (2020) CRISPR/Cas9-mediated genome editing of MaACO1 (aminocyclopropane-1-carboxylate oxidase1) promotes the shelf life of banana fruit. Plant Biotechnol J 19(4):654–656. https://doi.org/10.1111/PBI.13534
Huang H, Cui T, Zhang L et al (2020a) Modifications of fatty acid profile through targeted mutation at BnaFAD2 gene with CRISPR/Cas9-mediated gene editing in Brassica napus. Theor Appl Genet 133(8):2401–2411. https://doi.org/10.1007/s00122-020-03607-y
Huang L, Li Q, Zhang C et al (2020b) Creating novel Wx alleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system. Plant Biotechnol J 18(11):2164–2166. https://doi.org/10.1111/pbi.13391
Ishimaru Y, Takahashi R, Bashir K et al (2012) Characterizing the role of rice NRAMP5 in manganese. Iron Cadmium Transport Sci Rep 2:286. https://doi.org/10.1038/srep00286
Ishino Y, Shinagawa H, Makino K et al (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169(12):5429–5433. https://doi.org/10.1128/jb.169.12.5429-5433.1987
Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. https://doi.org/10.1126/science.1225829
Jinek M, East A, Cheng A et al (2013) RNA-programmed genome editing in human cells. Elife 2:e00471. https://doi.org/10.7554/eLife.00471
Kaur N, Alok A, Shivani, et al (2020) CRISPR/Cas9 directed editing of lycopene epsilon-cyclase modulates metabolic flux for β-carotene biosynthesis in banana fruit. Metab Eng 59:76–86. https://doi.org/10.1016/j.ymben.2020.01.008
Khan M, Basnet R, Islam S et al (2019) Mutational analysis of OsPLDα1 reveals its involvement in phytic acid biosynthesis in rice grains. J Agric Food Chem 67(41):11436–11443. https://doi.org/10.1021/acs.jafc.9b05052
Kim Y, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93(3):1156–1160. https://doi.org/10.1073/pnas.93.3.1156
Kim H, Kim S, Ryu J et al (2017) CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat Commun 8:14406. https://doi.org/10.1038/ncomms14406
Kim S, Lee C, Park S et al (2021) Overexpression of the Golden SNP-Carrying Orange Gene Enhances Carotenoid Accumulation and Heat Stress Tolerance in Sweetpotato Plants. Antioxidants 10(1):51. https://doi.org/10.3390/antiox10010051
Kim J, Yu J, Kim H et al (2022) Genome editing of golden SNP-carrying lycopene epsilon-cyclase (LcyE) gene using the CRSPR-Cas9/HDR and geminiviral replicon system in rice. Int J Mol Sci 23(18):10383. https://doi.org/10.3390/ijms231810383
Klug A, Rhodes D (1987) Zinc fingers: a novel protein fold for nucleic acid recognition. Cold Spring Harb Symp Quant Biol 52:473–482. https://doi.org/10.1101/sqb.1987.052.01.054
Labroo M, Studer A, Rutkoski J (2021) Heterosis and hybrid crop breeding: A multidisciplinary review. Front Genet 12:643761. https://doi.org/10.3389/fgene.2021.643761
Laing W, Marcela M, Wright M et al (2015) An upstream open reading frame is essential for feedback regulation of ascorbate biosynthesis in Arabidopsis. Plant Cell 27(3):772–786. https://doi.org/10.1105/tpc.114.133777
Le H, Nguyen N, Ta D et al (2020) CRISPR/Cas9-mediated knockout of galactinol synthase-encoding genes reduces raffinose family oligosaccharide levels in soybean seeds. Front Plant Sci 11:612942. https://doi.org/10.3389/fpls.2020.612942
Li N, Xu R, Duan P et al (2018a) Control of grain size in rice. Plant Reprod 31(3):237–251. https://doi.org/10.1007/s00497-018-0333-6
Li X, Wang Y, Chen S et al (2018c) Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing. Front Plant Sci 9:559. https://doi.org/10.3389/fpls.2018.00559
Li H, Qin R, Liu X et al (2019a) CRISPR/Cas9-mediated adenine base editing in rice genome. Rice Sci 26(2):125–128
Li N, Xu R, Li Y (2019b) Molecular networks of seed size control in plants. Annu Rev Plant Biol 70:435–463. https://doi.org/10.1146/annurev-arplant-050718-095851
Li J, Jiao G, Sun Y et al (2020) Modification of starch composition, structure and properties through editing of TaSBEIIa in both winter and spring wheat varieties by CRISPR/Cas9. Plant Biotechnol J 19(5):937–951. https://doi.org/10.1111/pbi.13519
Li X, Mitchell M, Rolland V et al (2023) 'Pink cotton candy'-A new dye-free cotton. Plant Biotechnol J 21(4):677–679. https://doi.org/10.1111/pbi.13990
Li T, Yang X, Yu Y et al (2018b) Domestication of wild tomato is accelerated by genome editing. Nat Biotechnol 36 (12). doi:https://doi.org/10.1038/nbt.4273
Liu J, Van E, Cong B et al (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci U S A 99(20):13302–13306. https://doi.org/10.1073/pnas.162485999
Liu Q, Yang F, Zhang J et al (2021) Application of CRISPR/Cas9 in crop quality improvement. Int J Mol Sci 22(8):4206. https://doi.org/10.3390/ijms22084206
Liu Y, Du Z, Lin S et al (2022) CRISPR/Cas9-targeted mutagenesis of BnaFAE1 genes confers low-erucic acid in Brassica napus. Front Plant Sci 13:848723. https://doi.org/10.3389/fpls.2022.848723
Ma L, Zhang D, Miao Q et al (2017) Essential role of sugar transporter OsSWEET11 during the early stage of rice grain filling. Plant Cell Physiol 58(5):863–873. https://doi.org/10.1093/pcp/pcx040
Ma Y, Ma X, Gao X et al (2021) Light Induced Regulation Pathway of Anthocyanin Biosynthesis in Plants. Int J Mol Sci 22(20):11116. https://doi.org/10.3390/ijms222011116
Mali P, Yang L, Esvelt K et al (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826. https://doi.org/10.1126/science.1232033
Maurya D, Mukherjee A, Akhtar S et al (2021) Development and validation of the OVATE gene-based functional marker to assist fruit shape selection in tomato. 3 Biotech 11(11):474. https://doi.org/10.1007/s13205-021-03029-7
Neelakandan A, Wright D, Traore S et al (2022) CRISPR/Cas9 based site-specific modification of FAD2 cis-regulatory motifs in peanut (Arachis hypogaea L). Front Genet 13:849961. https://doi.org/10.3389/fgene.2022.849961
Nelson O, Rines H (1962) The enzymatic deficiency in the waxy mutant of maize. Biochem Biophys Res Commun 9(4):297–300. https://doi.org/10.1016/0006-291x(62)90043-8
Nonaka S, Arai C, Takayama M et al (2017) Efficient increase of ɣ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis. Sci Rep 9(1):19822. https://doi.org/10.1038/s41598-019-55119-5
Peng B, Kong H, Li Y et al (2014) OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice. Nat Commun 5:4847. https://doi.org/10.1038/ncomms5847
Peng B, Yu M, Zhang B et al (2020) Differences in PpAAT1 activity in high-and low-aroma peach varieties affect γ-decalactone production. Plant Physiol 182(4):2065–2080. https://doi.org/10.1104/pp.19.00964
Puchta H (2016) Applying CRISPR/Cas for genome engineering in plants: The best is yet to come. Curr Opin Plant Biol 36:1–8. https://doi.org/10.1016/j.pbi.2016.11.011
Qian L, Jin H, Yang Q et al (2022) A sequence variation in GmBADH2 enhances soybean aroma and is a functional marker for improving soybean flavor. Int J Mol Sci 23(8):4116. https://doi.org/10.3390/ijms23084116
Qin S, Zhang K, Ding X et al (2022) Microbiome-metabolomics analysis insight into the effects of dietary resistant starch on intestinal integrity. Food Chem 401:134148. https://doi.org/10.1016/j.foodchem.2022.134148
Quesada M, Blanco-Portales R, Posé S et al (2009) Antisense down-regulation of the FaPG1 gene reveals an unexpected central role for polygalacturonase in strawberry fruit softening. Plant Physiol 150(2):1022–1032. https://doi.org/10.1104/pp.109.138297
Rasheed A, Gill R, Hassan M et al (2021) A critical review: recent advancements in the use of CRISPR/Cas9 technology to enhance crops and alleviate global food crises. Curr Issues Mol Biol 43(3):1950–1976. https://doi.org/10.3390/cimb43030135
Ricroch A, Clairand P, Harwood W (2017) Use of CRISPR systems in plant genome editing: toward new opportunities in agriculture. Emerg Top Life Sci 1(2):169–182. https://doi.org/10.1042/ETLS20170085
Rodríguez-Suárez C, Requena-Ramírez M, Hornero-Méndez D et al (2022) The breeder’s tool-box for enhancing the content of esterified carotenoids in wheat: From extraction and profiling of carotenoids to marker-assisted selection of candidate genes. Methods Enzymol 671:99–125. https://doi.org/10.1016/bs.mie.2021.09.010
Sánchez-León S, Gil-Humanes J, Ozuna G et al (2018) Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol J 16(4):902–910. https://doi.org/10.1111/pbi.12837
Sandhu K, Mihalyov P, Lewien M et al (2021) Genomic selection and genome-wide association studies for grain protein content stability in a nested association mapping population of wheat. Agron 11(12):2528. https://doi.org/10.3390/AGRONOMY11122528
Sapranauskas R, Gasiunas G, Fremaux C et al (2011) The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39(21):9275–9282. https://doi.org/10.1093/nar/gkr606
Sarka E, Dvoracek V (2017) New processing and applications of waxy starch (a review). J Food Eng 206:77–87. https://doi.org/10.1016/j.jfoodeng.2017.03.006
Sashidhar N, Harloff H, Potgieter L et al (2020) Gene editing of three BnITPK genes in tetraploid oilseed rape leads to significant reduction of phytic acid in seeds. Plant Biotechnol J 18(11):2241–2250. https://doi.org/10.1111/pbi.13380
Shan Q, Wang Y, Li J et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31(8):686–688. https://doi.org/10.1038/nbt.2650
Shen L, Wang C, Fu Y et al (2018) QTL editing confers opposing yield performance in different rice varieties. J Integr Plant Biol 60(02):89–93. https://doi.org/10.1111/jipb.12501
Shlush I, Samach A, Melamed-Bessudo C et al (2020) CRISPR/Cas9 induced somatic recombination at the CRTISO locus in tomato. Genes (Basel) 12(1):59. https://doi.org/10.3390/genes12010059
Solo T, Tan H, Nazamid S et al (2022) A review: resistant starch, a promising prebiotic for obesity and weight management. Food Biosci 50:101965. https://doi.org/10.1016/J.FBIO.2022.101965
Spadaro J, Gardner H (1979) Food uses for cottonseed protein. J Am Oil Chem Soc 56(3):422–424. https://doi.org/10.1007/BF02671529
Sprague G, Brimhall B, Hixon R (1943) Some effects of the Waxy gene in corn on properties of the endosperm starch 1. Agron J 35(9):817–822. https://doi.org/10.2134/agronj1943.00021962003500090008x
Stein J, Sachdev S, Qaim M (2006) Potential impact and cost-effectiveness of Golden Rice. Nat Biotechnol 24(10):1200–1201. https://doi.org/10.1038/nbt1006-1200b
Sun Y, Jiao G, Liu Z et al (2017) Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front Plant Sci 8:298. https://doi.org/10.3389/fpls.2017.00298
Tang X, Zheng X, Qi Y et al (2016) A single transcript CRISPR-Cas9 system for efficient genome editing in plants. Mol Plant 9(7):1088–1091. https://doi.org/10.1016/j.molp.2016.05.001
Tang Y, Huang J, Ji H et al (2022) Identification of AhFatB genes through genome-wide analysis and knockout of AhFatB reduces the content of saturated fatty acids in peanut (Arichis hypogaea L.). Plant Sci 319:111247. https://doi.org/10.1016/j.plantsci.2022.111247
Tanksley S (2004) The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell. https://doi.org/10.1105/tpc.018119
Trono D (2019) Carotenoids in cereal food crops: composition and retention throughout grain storage and food processing. Plants (Basel) 8(12):551. https://doi.org/10.3390/plants8120551
Tzuri G, Zhou X, Chayut N et al (2015) A 'golden' SNP in CmOr governs the fruit flesh color of melon ( Cucumis melo ). Plant J 82(2):267–279. https://doi.org/10.1111/tpj.12814
Vejlupkova Z, Warman C, Sharma R et al (2020) No evidence for transient transformation via pollen magnetofection in several monocot species. Nat Plants 6(11):1323–1324. https://doi.org/10.1038/s41477-020-00798-6
Vu T, Sivankalyani V, Kim E et al (2020) Highly efficient homology-directed repair using CRISPR/Cpf1-geminiviral replicon in tomato. Plant Biotechnol J 18(10):2133–2143. https://doi.org/10.1111/pbi.13373
Wang W, Pan Q, He F et al (2018) Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat. CRISPR J 1(1):65–74. https://doi.org/10.1089/crispr.2017.0010
Wang W, Pan Q, Tian B et al (2019) Gene editing of the wheat homologs of TONNEAU1-recruiting motif encoding gene affects grain shape and weight in wheat. Plant J 100(2):251–264. https://doi.org/10.1111/tpj.14440
Wang S, Yang Y, Guo M et al (2020) Targeted mutagenesis of amino acid transporter genes for rice quality improvement using the CRISPR/Cas9 system. The Crop Journal 8(3):457–464. https://doi.org/10.1016/j.cj.2020.02.005
Wang T, Zhang C, Zhang H et al (2021a) CRISPR/Cas9-mediated gene editing revolutionizes the improvement of horticulture food crops. J Agric Food Chem 69(45):13260–13269. https://doi.org/10.1021/acs.jafc.1c00104
Wang Z, Wang L, Han L et al (2021b) HECATE2 acts with GLABROUS3 and Tu to boost cytokinin biosynthesis and regulate cucumber fruit wart formation. Plant Physiol 187(3):1619–1635. https://doi.org/10.1093/plphys/kiab377
White P, Broadley M (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10(12):586–593. https://doi.org/10.1016/j.tplants.2005.10.001
Wyman C, Kanaar R (2006) DNA double-strand break repair: all’s well that ends well. Annu Rev Genet 40:363–383. https://doi.org/10.1146/annurev.genet.40.110405.090451
Xia X, Cheng X, Li R et al (2021) Advances in application of genome editing in tomato and recent development of genome editing technology. Theor Appl Genet 134(9):2727–2747. https://doi.org/10.1007/s00122-021-03874-3
Xu C, Liberatore K, MacAlister C et al (2015) A cascade of arabinosyltransferases controls shoot meristem size in tomato. Nat Genet 47(7):784–792. https://doi.org/10.1038/ng.3309
Xu R, Yang Y, Qin R et al (2016) Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice. J Genet Genomics 43(8):529–532. https://doi.org/10.1016/j.jgg.2016.07.003
Xu Y, Lin Q, Li X et al (2020) Fine-tuning the amylose content of rice by precise base editing of the Wx gene. Plant Biotechnol J 19(1):11–13. https://doi.org/10.1111/pbi.13433
Yali W, Mitiku T (2022) Mutation breeding and its importance in modern plant breeding. J Plant Sci 10(2):64–70. https://doi.org/10.11648/J.JPS.20221002.13
Yang T, Deng L, Zhao W et al (2019a) Rapid breeding of pink-fruited tomato hybrids using the CRISPR/Cas9 system. J Genet Genomics 46(10):505–508. https://doi.org/10.1016/j.jgg.2019.10.002
Yang Y, Guo M, Sun S et al (2019b) Natural variation of OsGluA2 is involved in grain protein content regulation in rice. Nat Commun 10(1):1949. https://doi.org/10.1038/s41467-019-09919-y
Yang Y, Shen Z, Li Y et al (2022) Rapid improvement of rice eating and cooking quality through gene editing toward glutelin as target. J Integr Plant Biol 64(10):1860–1865. https://doi.org/10.1111/jipb.13334
Yu Q, Wang B, Li N et al (2017) CRISPR/Cas9-induced targeted mutagenesis and gene replacement to generate long-shelf life tomato lines. Sci Rep 7(1):11874. https://doi.org/10.1038/s41598-017-12262-1
Yuan M, Zhu J, Gong L et al (2019) Mutagenesis of FAD2 genes in peanut with CRISPR/Cas9 based gene editing. BMC Biotechnol 19(1):24. https://doi.org/10.1186/s12896-019-0516-8
Yuste-Lisbona F, Fernández-Lozano A, Pineda B et al (2020) ENO regulates tomato fruit size through the floral meristem development network. Proc Natl Acad Sci U S A 117(14):8187–8195. https://doi.org/10.1073/pnas.1913688117
Zhai Y, Yu K, Cai S et al (2020) Targeted mutagenesis of BnTT8 homologs controls yellow seed coat development for effective oil production in Brassica napus L. Plant Biotechnol J 18(5):1153–1168. https://doi.org/10.1111/pbi.13281
Zhang J, Zhang H, Botella J et al (2018) Generation of new glutinous rice by CRISPR/Cas_9-targeted mutagenesis of the Waxy gene in elite rice varieties. J Integr Plant Biol 60(5):369–375. https://doi.org/10.1111/jipb.12620
Zhang D, Tang S, Xie P et al (2022) Creation of fragrant sorghum by CRISPR/Cas9. J Integr Plant Biol 64(05):961–964. https://doi.org/10.1111/jipb.13232
Zhao X, Meng Z, Wang Y et al (2017) Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nat Plants 3(12):956–964. https://doi.org/10.1038/s41477-017-0063-z
Zhao D, Li Q, Zhang C et al (2018) GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nat Commun 9(1):1240. https://doi.org/10.1038/s41467-018-03616-y
Zhou J, Xin X, He Y et al (2018) Multiplex QTL editing of grain-related genes improves yield in elite rice varieties. Plant Cell Rep 38(4):475–485. https://doi.org/10.1007/s00299-018-2340-3
Zhu J, Song N, Sun S et al (2016) Efficiency and inheritance of targeted mutagenesis in maize using CRISPR-Cas9. J Genet Genomics 43(1):25–36. https://doi.org/10.1016/j.jgg.2015.10.006
Zsögön A, Čermák T, Naves ER et al (2018) De novo domestication of wild tomato using genome editing. Nat Biotechnol 36(12):1211. https://doi.org/10.1038/nbt.4272
Acknowledgements
This work was supported by the National Natural Science Foundation of China (31971823).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no competing interests.
Additional information
Communicated by Gerhard Leubner.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Guo, Y., Zhao, G., Gao, X. et al. CRISPR/Cas9 gene editing technology: a precise and efficient tool for crop quality improvement. Planta 258, 36 (2023). https://doi.org/10.1007/s00425-023-04187-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00425-023-04187-z