Abstract
Main conclusion
Microclimate determines lichens and cyanobacteria distribution in the Negev, with lichens and cyanobacteria inhabit dewy and dewless habitats, respectively. Lichens experiences more frequent and extensive environmental fluctuations than cyanobacteria.
Abstract
The spatial partitioning of chlorolichens (eukaryotes) and cyanobacteria (prokaryotes) are intriguing, especially following recent intense search for extraterrestrial life. This is especially relevant for deserts, where both lithobionts are thought to use rain and dew but may differ in their resilience to environmental extremes and fluctuations. Following the different spatial distribution of lithobionts in a south-facing slope of the Negev Highlands (with cyanobacteria-inhabiting rocks and chlorolichen-inhabiting cobbles), measurements of temperature, non-rainfall water (NRW) and biomass were carried out within the drainage basin aiming to test the hypotheses that (i) cobble-inhabiting lichens may access more water (through NRW) and may be subjected to more extensive environmental fluctuations of temperature and water than bedrock-inhabiting cyanobacteria, and (ii) will therefore have a greater contribution to the ecosystem productivity. In contrast to cyanobacteria, cobble-inhabiting chlorolichens were found to access NRW (up to 0.20 mm of daily amounts in comparison to < 0.04 mm of the cyanobacteria) and to experience higher fluctuations of temperatures (up to 4.1 °C higher and 5.3 °C lower). With lichens and cyanobacteria inhabiting dewy and dewless habitats, respectively, NRW was found responsible for contributing 6.8-fold higher organic carbon to the lithobiontic community. At this site, chlorolichens experience more extensive environmental fluctuations than cyanobacteria, possibly indicating a higher tolerance for environmental fluctuations. These observations may assist in the interpretation of the abiotic conditions responsible for past or present lithobiontic life on Mars.





Data Availability
Data will be available upon request.
Abbreviations
- CRB:
-
Carbohydrates
- NF:
-
North-facing
- NFS:
-
North-facing slope
- NRW:
-
Non-rainfall water
- OC:
-
Organic carbon
- SF:
-
South-facing
- SFS:
-
South-facing slope
References
Ahmadjian V (1993) The lichen symbiosis. Wiley, New York
Armstrong RA (2017) Adaptation of lichens to extreme conditions. In: Shukla V, Kumar S, Kumar N (eds) Plant adaptation strategies in changing environment. Springer, Singapore, pp 1–27. https://doi.org/10.1007/978-981-10-6744-0
Avnir D (2021) Critical review of chirality indicators of extraterrestrial life. New Astron Rev 92:101596. https://doi.org/10.1016/j.newar.2020.101596
Bell RA (1993) Cryptoendolithic algae of hot semiarid lands and deserts. J Phycol 29:133–139. https://doi.org/10.1111/j.0022-3646.1993.00133.x
Bell RA, Athey PV, Sommerfeld MR (1986) Cryptoendolithic algal communities of the Colorado Plateau. J Phycol 22:429–435. https://doi.org/10.1111/j.1529-8817.1986.tb02485.x
Bernhard N, Moskwa LM, Schmidt K, Oeser RA, Aburto F, Bader M et al (2018) Pedogenic and microbial interrelatioins to regional climate and local topography: New insights from a climate gradient (arid to humid) along the Coastal Cordillera of Chile. CATENA 170:335–355. https://doi.org/10.1016/j.catena.2018.06.018
Beysens D (1995) The Formation of Dew Atmos Res 39:215–237. https://doi.org/10.1016/0169-8095(95)00015-J
Beysens D (2018) Dew water. River Publishers, Gistrup, p 305
Büdel B, Darienko T, Deutschewitz K, Dojani S, Friedl T, Mohr K, Salisch M, Reisser W, Weber B (2009) Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb Ecol 57:229–247. https://doi.org/10.1107/s00248-008-9449-9
Campbell NA, Reece JB, Mitchell LG (1999) Biology, 5th edn. Benjamin and Cummings, an import of Addison Wesley Longman Inc., Menlo Park
Cockell CS, Lee P, Osinski G, Hornecck G, Broady P (2002) Impact-induced microbial endolithic habitats. Meteorit Planet Sci 37:1287–1298. https://doi.org/10.1111/j.1945-5100.2002.tb01029.x
Danin A, Garty J (1983) Distribution of cyanobacteria and lichens on hillsides of the Negev Highlands and their impact on biogenic weathering. Zeit Geomorph 27:423–444. https://doi.org/10.1127/zfg/27/1983/423
Davila AF, Duport LG, Melchiorri R, Jänchen J, Valea S, de los Rios A, Mohlmann D, McKAY CP, Ascaso C, Wierzchos J (2010) Hygroscopic salts and the potentials for life on Mars. Astrobiology 10:617–628. https://doi.org/10.1089/ast.2009.0421
Davila AF, Hawes I, Araya JG, Gelsinger DR, DiRuggiero J, Ascaso C, Osano A, Wierzchos J (2015) In situ metabolism in halite endolithic microbial communities of the hyperarid Atacama Desert. Front Microbiol 6:1035. https://doi.org/10.3389/fmicb.2015.01035
DiRuggiero J, Wierzchos J, Robinson CK, Souterre T, Ravel J, Artieda O, Souza-Egypsy V, Ascaso C (2013) Microbial colonization of chasmoendolithic habitats in the hyper-arid zone of the Atacama Desert. Biogeosciences 10:2439–2450. https://doi.org/10.5194/bg-10-2439-2013
Evenari M, Shanan L, Tadmor N (1971) The Negev, the challenge of a desert. Harvard Univ Press, Cambridge
Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1945–1053. https://doi.org/10.1126/science.215.4536.1045
Friedmann EI, Galun M (1974) Desert algae, lichens and fungi. In: Brown GW (ed) Desert biology II. Academic Press, New York, pp 165–212
Gauslaa Y (2014) Rain, dew, and humid air as drivers of morphology, function and spatial distribution in epiphytic lichens. Lichenologist 46:1–16. https://doi.org/10.1017/S002428291300753
Gostinčar C, Grube M, Hoog DES, Zalar P, Gunde-Cimerman N (2009) Extremotolerance in fungi: evolution on the edge. FEMS Microbiol Ecol 71:2–11. https://doi.org/10.1111/j.1574-6941.2009.00794.x
Groffman PM, Baron JS, Blett T, Gold AJ, Goodman I, Gunderson LH et al (2006) Ecological thresholds: the key to successful environmental management or an important concept with no practical application? Ecosystems 9:1–13. https://doi.org/10.1007/s10021-003-0142-z
Hale ME (1967) The biology of lichens. Arnold, London
Hassid WZ, Abraham S (1957) Chemical procedures for analysis of polysaccharides. Methods Enzymol 3:34–50
Hinchliffe G, Bollard-Breen B, Cowan DA, Doshi A, Gillman LN, Maggs-Kolling G, de los Rios A, Pointing SB (2017) Advanced photgrammetry to assess lichen colonization in the hyper-arid Namib Desert. Front Microbiol 8:2083. https://doi.org/10.3389/fmicb.2017.02083
Jung P, Baumann K, Lehnert L, Samolov E, Achilles S, Schermer M, Wraase LM, Eckhardt KU, Bader MY, Leinweber P, Karsten U, Bendix J, Büdel B (2020) Desert breath-how fog promotes a novel type of soil biocenosis, forming the coastal Atacama Desert’s living skin. Geobiology 18:113–124. https://doi.org/10.1111/gbi.12368
Kappen L, Lange OL, Schulze E-D, Evenari M, Buschbom V (1979) Ecophysiological investigations on lichens of the Negev Desert, IV: annual course of the photosynthetic production of Ramalina maciformis (Del.) Bory. Flora 168:85–108. https://doi.org/10.1016/S0367-2530(17)31899-6
Kappen L, Lange OL, Schulze E-D, Buschbom V, Evenari M (1980) Ecophysiological investigations on lichens of the Negev Desert, VII: the influence of the habitat exposure on dew imbibition and photosynthetic productivity. Flora 169: 216–229. https:/hdl.handle.net/21.1116/0000-0005-59C0-E
Kidron GJ (1998) A simple weighing method for dew and fog measurements. Weather 53:428–433. https://doi.org/10.1002/j.1477-8696.1998.tb06362.x
Kidron GJ (2000) Dew moisture regime of endolithic and epilithic lichens inhabiting calcareous rock particles and bedrock, Negev Desert, Israel. Flora 195:145–153. https://doi.org/10.1016/S0367-2530(17)30962-3
Kidron GJ (2019) The enigmatic absence of cyanobacterial biocrusts from the Namib fog belt: do dew and fog hold the key? Flora 257:151416. https://doi.org/10.1016/j.flora.2019.06.002
Kidron GJ, Kronenfeld R (2020) Assessing the likelihood of the soil surface to condense vapor: the Negev experience. Ecohydrology. https://doi.org/10.1002/eco.2200
Kidron GJ, Kronenfeld R (2022a) Lithic cyanobacteria as bioindicators for dewless habitats within a dew desert. Flora 288:152027. https://doi.org/10.1016/j.flora.2022.152027
Kidron GJ, Kronenfeld R (2022b) Dew and fog as possible evolutionary drivers? The expansion of crustose and fruticose lichens in the Negev is respectively mainly dictated by dew and fog. Planta 255:32. https://doi.org/10.1007/s00425-021-03817-8
Kidron GJ, Starinsky A (2012) Chemical composition of dew and rain in an extreme desert (Negev): Cobbles serve as sink for nutrients. J Hydrol 420–421:284. https://doi.org/10.1016/j.hydrol.2011.12.014
Kidron GJ, Starinsky A (2019) Measurements and ecological implications of non-rainfall water in desert ecosystems—a review. Ecohydrology. https://doi.org/10.1002/eco.2121
Kidron GJ, Temina M (2013) The effect of dew and fog on lithic lichens along an altitudinal gradient in the Negev Desert. Geomicrobiol J 30:281–290. https://doi.org/10.1080/01490451.2012.672542
Kidron GJ, Yair A, Danin A (2000) Dew variability within a small arid drainage basin in the Negev Highlands, Israel. Quart J Royal Meteorol Soc 126:63–80. https://doi.org/10.1002/qj.49712656204
Kidron GJ, Vonshak A, Abeliovich A (2009) Microbiotic crusts as biomarkers for surface stability and wetness duration in the Negev Desert. Earth Surf Process Landf 34:1594–1604. https://doi.org/10.1002/esp.1843
Kidron GJ, Temina M, Starinsky A (2011) An investigation of the role of water (rain and dew) in controlling the growth form of lichens on cobbles in the Negev Desert. Geomicrobiol J 28:335–346. https://doi.org/10.1080/01490451.2010.501707
Kidron GJ, Starinsky A, Yaalon DH (2014) Dewless habitat within a dew desert: Implications for weathering and terrestrial evolution. J Hydrol 519:3606–3614. https://doi.org/10.1016/j.jhydrol.2014.11.010
Lange OL (1969) Experimentell-ökologische Untersuchungen an Flechten der Negev-Wüste. III. CO2- Gaswechsel von Ramalina maciformis (Del.) Bory unter kontrollierten Bedingungen im Laboratorium. Flora 158:324–359. https://doi.org/10.1016/S0367-1801(17)30221-1
Lange OL, Tenhunen JD (1981) Moisture content and CO2 exchange of lichens. II. Depression of net photosynthesis in Ramalina maciformis at high water content is caused by increased thallus carbon dioxide diffusion resistance. Oecologia 51:426–429. https://doi.org/10.1007/BF00540917
Lange OL, Schulze ED, Koch W (1970) Experimentell-ökologische Untersuchungen an Flechten der Negev-Wüste. III. CO2- Gaswechsel und Wasserhaushalt von Krusten und Blattflechten am natürlichen Standort während der sommerlichen Trokenperiode. Flora 159:525–538. https://doi.org/10.1016/S0367-2530(17)31062-9
Lange OL, Kilian E, Ziegler H (1986) Water vapor uptake and photosynthesis of lichens: performance differences in species with green and blue-green algae as phycobionts. Oecologia 71:104–110. https://doi.org/10.1007/BF00377327
Lange OL, Kidron GJ, Büdel B, Meyer A, Killian E, Abeliovich A (1992) Taxonomic composition and photosynthetic characteristics of the “biological soil crusts” covering sand dunes in the Western Negev Desert. Funct Ecol 6:519–527. https://doi.org/10.2307/2390048
Lange OL, Green TGA, Melzer B, Meyer A, Zellner H (2006) Water relations and CO2 exchange of the terrestrial lichen Teloschistes capensis in the Namib fog Desert: measurements during two seasons in the field and under controlled conditions. Flora 201:268–280
McKay CP, Davis WL (1991) Duration of liquid water habitats on early Mars. Icarus 90:214–221. https://doi.org/10.1016/0019-1035(91)90102-Y
McKay CP, Friedemann EI, Gómez-Silva B, Cáceres-Villanueve L, Anderson DT, Landheim R (2003) Temperature and moisture conditions for life in the extreme arid region of the Atacama Desert: four years of observations including the El Nino of 1997–1998. Astrobiology 3:393–406. https://doi.org/10.1089/153110703769016460
Nash TH III, White SL, Marsh JE (1977) Lichen and moss distribution and biomass in hot desert ecosystems. Bryologist 80:470–479. https://doi.org/10.2307/3242022
Nienow JA (2009) Extremophiles: dry environments (including cryptoendoliths). In: Schaechter M (ed) Encylopedia of microbiology. Elsevier, Oxford, pp 159–173
Omelon CR, Pollard WH, Ferris FG (2006) Environmental controls on microbial colonization of high Arctic cryptoendolithic habitats. Polar Biol 30:19–29. https://doi.org/10.1007/s00300-006-0155-0
Phinney NH, Solhaug KA, Gauslaa Y (2019) Photobiont-dependent humidity threshold for chlorolichen photosystem II activation. Planta 250:2023–2031. https://doi.org/10.1007/s00425-019-03282-4
Potts M (1999) Mechanisms of desiccation tolerance in cyanobacteria. Eur J Phycol 34:319–328. https://doi.org/10.1080/09670269910001736382
Price C, Michaelides S, Pashiardis S, Alpert P (1999) Long term changes in diurnal temperature range in Cyprus. Atmos Res 51:85–98. https://doi.org/10.1016/S0169-8095(99)00022-8
Pulschen AA, Rodriguez F, Duarte RTD, Araujo GG, Santiago IF, Paulino-Lima IG, Rosa CA, Kato MJ, Pellizari VH, Galante D (2015) UV‐resistant yeasts isolated from a high‐altitude volcanic area on the Atacama Desert as eukaryotic models for astrobiology. MicrobiologyOpen 4:574–588. https://doi.org/10.1002/mbo.262
Rajeev L, Nunes de Rocha U, Klitgord N, Luning EC, Fortney J, Axen SD et al (2013) Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust. ISME J 7:2178–2191. https://doi.org/10.1038/ismej.2013.83
Raven PH, Evert RF, Eichhorn SE (2005) Biology of plants, 7th edn. Worth Publishers Inc., New York, p 944
Rosenan N, Gliad MH (1985) Rainfall, Humidity, Evaporation, Climatic Regions. Section 12 in Adler (ed). Atlas of Israel. 3rd edn. Tel Aviv: Survey of Israel
Schieferstein B, Loris K (1992) Ecological investigations on lichen fields of the Central Namib, I. Distribution patterns and habitat conditions. Vegetatio 98:113–128. https://doi.org/10.1007/BF00045550
Scott GD (1960) Studies of the lichen symbiosis. 1. The relationship between nutrition and moisture content in the maintenance of the symbiotic state. New Phytol 59:374–381
Shachak M, Jones CG, Granot Y (1987) Herbivory in rocks and a weathering of a desert. Science 236:1098–1099. https://doi.org/10.1126/science.236.4805.1098
Smith DC (1962) The biology of lichen thalli. Biol Rev 37:537–570. https://doi.org/10.1111/j1469-185X-1962.tb01336.x
Smith BJ, Warke PA, Moses CA (2000) Limestone weathering in contemporary arid environments: a case study from southern Tunisia. Earth Surf Process Landf 25:1343–1354. https://doi.org/10.1002/1096-9837(200011)25:12%3c1343::AIDF-ESP142%3e3.0.CO;2-2
Squyres SW, Grotzinger JP, Arvidson RE, Bell III JF, Calvin W, Christensen PR, Clark BC, Crisp JA, Farrand WH, Herkenhoff KE, Johnson JR, Klinghöfer G, Knoll AH, McLennan SM, McSween Jr HY, Morris RV, Rice JW, Rieder R, Soderblom LA (2004) In situ evidence for an ancient aqueous environment at meridiani planum, Mars. Science 306:1709–1714. https://doi.org/10.1126/science.1104559.
Sterflinger K, Tesei D, Zakharova K (2012) Fungi in hot and cold deserts with particular reference to microcolonial fungi. Fung Ecol 5:453–462. https://doi.org/10.1016/j.funeco.2011.12.007
Warren-Rhodes K, Weinstein S, Piatek JL, Dohm J, Hock A, Minkley E et al (2007) Robotic ecological mapping: Habitats and the search for life in the Atacama Desert. J Geophys Res Biogeosci 112:G4. https://doi.org/10.1029/2006JG000301
Warren-Rhodes KA, McKay CP, Boyle LN, Wing MR, Kiekebusch EM, Cowan DA, Stomeo F, Pointing SB, Kaseke KF, Eckardt F, Henschel JR, Anisfeld A, Seely M, Rhodes KL (2013) Physical ecology of hypolithic communities in the central Namib Desert: the role of fog, rain, rock habitat and light. J Geophys Res Biogeosci 118:1451–1460. https://doi.org/10.1002/jgrg.20117
Weber B, Wessels DCJ, Büdel B (1996) Biology and ecology of cryptoendolithic cyanobacteria of a sandstone outcrop in the Northern province, South Africa. Algol Stud 83:565–579
Wessels DCJ (1989) Lichens of the Namib Desert. South West Africa/Namibia I. The chasmoendolithic habitat. Dinteria 20:3–22
Wetzel RG, Westlake DF (1969) Periphyton. In: Vollenweider RA (ed) A manual on methods for measuring primary production in aquatic environments. Blackwell Scientific Publ, Oxford, pp 33–40
Wierzchos J, Ascaso C, McKay CP (2006) Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology 6:415–422. https://doi.org/10.1089/AST.2006.6.415
Wierzchos J, Cámara B, de los Ríos A, Davila AF, Sánchez Almazo IM, Artieda O, Wierzchos K, Gómez-Silva B, McKay CP, Ascaso C (2011) Microbial colonization of Ca-sulfate crusts in the hyperarid core of the Atacama Desert: implications for the search of life on Mars. Geobiology 9:44–60. https://doi.org/10.1111/j.1472-4669.2010.00254.x
Wierzchos J, DiRuggiero J, Vítek P, Artieda O, Souza-Egypsy V, Škaloud P, Tisza M, Davila AF, Vílchez C, Garbayo I, Ascaso C (2015) Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert. Feont Microbiol 6:934. https://doi.org/10.3389/fmicb.2015.00934
WMO (1992) International glossary of hydrology. Paris, United Nations Educational Scientific and Cultural Organization (UNESCO); Geneva, Switzerland
Young KE, Grover HS, Bowker MA (2016) Altering biocrusts for an altered climate. New Phytol 210:18–22
Zangvil A (1996) Six years of dew observation in the Negev Desert, Israel. J Arid Environ 32:361–372. https://doi.org/10.1016/jare.1996.0030
Acknowledgements
The research was supported by grant 1358/04 of the Israel Science Foundation (ISF). We wish to thank the late Avinoam Danin for his support in the early stages of the research, and Shlomo Tubul for his valuable technical assistance. We would like to thank the Israeli Meteorological Service (IMS) for allowing us to access the meteorological data in Sde Boker. The very important contribution of two anonymous reviewers is greatly appreciated.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The author declare no conflict of interest.
Additional information
Communicated by Dorothea Bartels.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Kidron, G.J., Kronenfeld, R., Tal, S.Y. et al. The effect of the water source on niche partioning of chlorolichens and cyanobacteria—implications for resilience?. Planta 258, 8 (2023). https://doi.org/10.1007/s00425-023-04165-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00425-023-04165-5