Skip to main content
Log in

Transcriptional profiling of long noncoding RNAs associated with flower color formation in Ipomoea nil

Planta Aims and scope Submit manuscript

Abstract

Main conclusion

LncRNAs regulate flower color formation in Ipomoea nil via vacuolar pH, TCA cycle, and oxidative phosphorylation pathways.

Abstract

The significance of long noncoding RNA (lncRNA) in diverse biological processes is crucial in plant kingdoms. Although study on lncRNAs has been extensive in mammals and model plants, lncRNAs have not been identified in Ipomoea nil (I. nil). In this study, we employed whole transcriptome strand-specific RNA sequencing to identify 11,203 expressed lncRNA candidates, including 961 known lncRNA and 10,242 novel lncRNA in the I. nil genome. These lncRNAs in I. nil had fewer exons and were generally shorter in length compared to mRNA genes. Totally, 1141 different expression lncRNAs (DELs) were significantly identified between white and red flowers. The functional analysis indicated that lncRNA-targeted genes were enriched in the TCA cycle, photosynthesis, and oxidative phosphorylation-related pathway, which was also found in differentially expressed genes (DEGs) functional enrichments. LncRNAs can regulate transcriptional levels through cis- or trans-acting mechanisms. LncRNA cis-targeted genes were significantly enriched in potassium and lysosome. For trans-lncRNA, two energy metabolism pathways, TCA cycles and oxidative phosphorylation, were identified from positive association pairs of trans-lncRNA and mRNA. This research advances our understanding of lncRNAs and their role in flower color development, providing valuable insights for future selective breeding of I. nil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig. 5

Data availability

The raw sequence data reported in this paper have been deposited in the Genome Sequence Archive in BIG Data Center, Beijing Institute of Genomics (BIG) (https://bigd.big.ac.cn/gsa/), Chinese Academy of Sciences, under accession numbers CRA008699 that are publicly accessible at https://bigd.big.ac.cn/gsa.

Abbreviations

DEL:

Different expression lncRNA

DEG:

Differentially expressed gene

PCG:

Protein coding gene

lincRNA:

Long intergenic ncRNA

lncNAT:

Natural antisense transcripts

Bi-directional lncRNA:

Opposite strand of a PCG, same promoter.

Sense intergenic upstream lncRNA:

LincRNAs < 5 kb upstream of nearest PCG

Intergenic lncRNA:

LincRNAs > 5 kb upstream of nearest PCG

Antisense exonic lncRNA:

LncNAT of overlapping PCG’s exon

Antisense intronic lncRNA:

LncNAT of overlapping PCG’s intronic

Sense intronic lncRNA:

Within PCG intron

TPM:

Transcript per million reads

References

  • Berry S, Dean C (2015) Environmental perception and epigenetic memory: mechanistic insight through FLC. Plant J 83(1):133–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chekanova JA, Gregory BD, Reverdatto SV et al (2007) Genome-wide high-resolution mapping of exosome substrates reveals hidden features in the Arabidopsis transcriptome. Cell 131(7):1340–1353

    Article  CAS  PubMed  Google Scholar 

  • Chen CY, Shyu AB (1995) AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci 20(11):465–470

    Article  CAS  PubMed  Google Scholar 

  • Chopra S, Hoshino A, Boddu J, Iida S (2006) Flavonoid pigments as tools in molecular genetics. In: Grotewold E (ed) The science of flavonoids. Springer, New York, pp 147–173

    Chapter  Google Scholar 

  • Cui J, Luan Y, Jiang N, Bao H, Meng J (2017) Comparative transcriptome analysis between resistant and susceptible tomato allows the identification of lncRNA16397 conferring resistance to Phytophthora infestans by co-expressing glutaredoxin. Plant J 89(3):577–589

    Article  CAS  PubMed  Google Scholar 

  • Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22(9):1775–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faraco M, Spelt C, Bliek M, Verweij W, Hoshino A, Espen L, Prinsi B, Jaarsma R, Tarhan E, de Boer AHJCR (2014) Hyperacidification of vacuoles by the combined action of two different P-ATPases in the tonoplast determines flower color. Cell Rep 6(1):32–43

    Article  CAS  PubMed  Google Scholar 

  • Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15(1):7–21

    Article  CAS  PubMed  Google Scholar 

  • Feng D, Li Q, Yu H, Kong L, Du SJ (2018) Transcriptional profiling of long non-coding RNAs in mantle of Crassostrea gigas and their association with shell pigmentation. Sci Rep 8(1):1–10

    Google Scholar 

  • Gibb EA, Brown CJ, Lam WL (2011) The functional role of long non-coding RNA in human carcinomas. Mol Cancer 10(1):1–17

    Article  Google Scholar 

  • Heo JB, Lee YS (2015) Molecular functions of long noncoding transcripts in plants. J Plant Biol 58(6):361–365

    Article  CAS  Google Scholar 

  • Iida S, Morita Y, Choi JD, Park KI, Hoshino A (2004) Genetics and epigenetics in flower pigmentation associated with transposable elements in morning glories. Adv Biophys 38:141–159

    Article  CAS  PubMed  Google Scholar 

  • Jain A, Tuteja G (2019) TissueEnrich: Tissue-specific gene enrichment analysis. Bioinformatics 35(11):1966–1967

    Article  CAS  PubMed  Google Scholar 

  • Jin J, Liu J, Wang H, Wong L, Chua NH (2013) PLncDB: plant long non-coding RNA database. Bioinformatics 29(8):1068–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapranov P, Cheng J, Dike S et al (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316:1484–1488

    Article  CAS  PubMed  Google Scholar 

  • Karlik E (2021) Role of long noncoding RNAs during stress in cereal crops. In: Upadhyay SK (ed) Long noncoding RNAs in plants. Elsevier, pp 107–131

    Chapter  Google Scholar 

  • Kim DH, Sung S (2017) Vernalization-triggered intragenic chromatin loop formation by long noncoding RNAs. Dev Cell 40(3):302–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Shao F, Lu S (2015) Identification and characterization of mRNA-like noncoding RNAs in Salvia miltiorrhiza. Planta 241(5):1131–1143

    Article  CAS  PubMed  Google Scholar 

  • Li S, Yamada M, Han X, Ohler U, Benfey PN (2016) High-resolution expression map of the Arabidopsis root reveals alternative splicing and lincRNA regulation. Dev Cell 39(4):508–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Jung C, Xu J, Wang H, Deng S, Bernad L, Arenas-Huertero C, Chua NH (2012) Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. Plant Cell 24(11):4333–4345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Sun Z, Xu M (2018) Identification and characterization of long non-coding RNAs involved in the formation and development of poplar adventitious roots. Ind Crops Prod 118:334–346

    Article  CAS  Google Scholar 

  • Lv Y, Liang Z, Ge M, Qi W, Zhang T, Lin F, Peng Z, Zhao H (2016) Genome-wide identification and functional prediction of nitrogen-responsive intergenic and intronic long non-coding RNAs in maize (Zea mays L.). BMC Genomics 17(1):1–15

    Article  Google Scholar 

  • Ma L, Bajic VB, Zhang Z (2013) On the classification of long non-coding RNAs. RNA Biol 10(6):924–933

    Article  CAS  PubMed Central  Google Scholar 

  • Marchese FP, Raimondi I, Huarte M (2017) The multidimensional mechanisms of long noncoding RNA function. Genome Biol 18(1):1–13

    Article  Google Scholar 

  • Marquardt S, Raitskin O, Wu Z, Liu F, Sun Q, Dean C (2014) Functional consequences of splicing of the antisense transcript COOLAIR on FLC transcription. Mol Cell 54(1):156–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matzke MA, Mosher RA (2014) RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet 15(6):394–408

    Article  CAS  PubMed  Google Scholar 

  • Morita Y, Hoshino A (2018) Recent advances in flower color variation and patterning of Japanese morning glory and petunia. Breed Sci 68(1):128–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nam JW, Bartel DP (2012) Long noncoding RNAs in C. elegans. Genome Res 22(12):2529–2540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nystedt B, Street NR, Wetterbom A et al (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497(7451):579–584

    Article  CAS  PubMed  Google Scholar 

  • Park YJ, Park SY, ValanArasu M, Al-Dhabi NA, Ahn HG, Kim JK, Park SU (2017) Accumulation of carotenoids and metabolic profiling in different cultivars of Tagetes flowers. Molecules 22(2):313

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiao Q, Wu C, Cheng TT, Yan Y, Zhang L, Wan YL, Wang JW, Liu QZ, Feng Z, Liu Y (2022) Comparative analysis of the metabolome and transcriptome between the green and yellow-green regions of variegated leaves in a mutant variety of the tree species Pteroceltis tatarinowii. Int J Mol Sci 23(9):4950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quattrocchio F, Verweij W, Kroon A, Spelt C, Mol J, Koes R (2006) PH4 of petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway. Plant Cell 18(5):1274–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spelt C, Quattrocchio F, Mol J, Koes R (2002) ANTHOCYANIN1 of petunia controls pigment synthesis, vacuolar pH, and seed coat development by genetically distinct mechanisms. Plant Cell 14(9):2121–2135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun M, Kraus WL (2015) From discovery to function: the expanding roles of long noncoding RNAs in physiology and disease. Endocr Rev 36(1):25–64

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Song Y, Du Q, Yang X, Ci D, Chen J, Xie J, Li B, Zhang D (2016) Population genomic analysis of gibberellin-responsive long non-coding RNAs in Populus. J Exp Bot 67(8):2467–2482

    Article  CAS  PubMed  Google Scholar 

  • Ulitsky I, Shkumatava A, Jan CH, Sive H, Bartel DP (2011) Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 147(7):1537–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uszczynska-Ratajczak B, Lagarde J, Frankish A, Guigó R, Johnson R (2018) Towards a complete map of the human long non-coding RNA transcriptome. Nat Rev Genet 19(9):535–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandenbussche M, Chambrier P, Rodrigues Bento S, Morel P (2016) Petunia, your next supermodel? Front Plant Sci 7:72

    Article  PubMed  PubMed Central  Google Scholar 

  • Verweij W, Spelt C, Di Sansebastiano GP, Vermeer J, Reale L, Ferranti F, Koes R, Quattrocchio F (2008) An H+ P-ATPase on the tonoplast determines vacuolar pH and flower colour. Nat Cell Biol 10(12):1456–1462

    Article  CAS  PubMed  Google Scholar 

  • Verweij W, Spelt CE, Bliek M, de Vries M, Wit N, Faraco M, Koes R, Quattrocchio FM (2016) Functionally similar WRKY proteins regulate vacuolar acidification in petunia and hair development in Arabidopsis. Plant Cell 28(3):786–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang HV, Chekanova JA (2017) Long noncoding RNAs in plants. Adv Exp Med Biol 1008:133–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Chung PJ, Liu J, Jang IC, Kean MJ, Xu J, Chua NH (2014) Genome-wide identification of long noncoding natural antisense transcripts and their responses to light in Arabidopsis. Genome Res 24(3):444–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Ai G, Zhang C, Cui L, Wang J, Li H, Zhang J, Ye Z (2016) Expression and diversification analysis reveals transposable elements play important roles in the origin of Lycopersicon-specific lncRNAs in tomato. New Phytol 209(4):1442–1455

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Qu Z, Yang L, Zhang Q, Liu ZH, Do T, Adelson DL, Wang ZY, Searle I, Zhu JK (2017) Transposable elements (TEs) contribute to stress-related long intergenic noncoding RNAs in plants. Plant J 90(1):133–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Xia X, Jiang H, Lu Z, Cui J, Cao F, Jin B (2018) Genome-wide identification and characterization of novel lncRNAs in Ginkgo biloba. Trees 32(5):1429–1442

    Article  CAS  Google Scholar 

  • Wierzbicki AT, Haag JR, Pikaard CS (2008) Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell 135(4):635–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Shi T, Iqbal S, Zhang Y, Liu L, Gao Z (2019) Genome-wide discovery and characterization of flower development related long non-coding RNAs in Prunus mume. BMC Plant Biol 19(1):1–17

    Article  Google Scholar 

  • Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, Jacobsen SE, Carrington JC (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2(5):E104

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye X, Wang S, Zhao X, Gao N, Wang Y, Yang Y, Wu E, Jiang C, Cheng Y, Wu W, Liu S (2022) Role of lncRNAs in cis- and trans-regulatory responses to salt in Populus trichocarpa. Plant J 110(4):978–993

    Article  CAS  PubMed  Google Scholar 

  • Yu T, Tzeng DTW, Li R, Chen J, Zhong S, Fu D, Zhu B, Luo Y, Zhu H (2019) Genome-wide identification of long non-coding RNA targets of the tomato MADS box transcription factor RIN and function analysis. Ann Bot 123(3):469–482

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Zhang Y, Dong J, Sun Y, Lim BL, Liu D, Lu ZJ (2016) Systematic characterization of novel lncRNAs responding to phosphate starvation in Arabidopsis thaliana. BMC Genomics 17(1):1–16

    Article  Google Scholar 

  • Zhang YC, Liao JY, Li ZY, Yu Y, Zhang JP, Li QF, Qu LH, Shu WS, Chen YQ (2014) Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice. Genome Biol 15(12):1–16

    Article  Google Scholar 

  • Zhao DQ, Wei MR, Liu D, Tao J (2016) Anatomical and biochemical analysis reveal the role of anthocyanins in flower coloration of herbaceous peony. Plant Physiol Biochem 102:97–106

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Zhu J, Kapoor A, Zhu JK (2007) Role of Arabidopsis AGO6 in siRNA accumulation, DNA methylation and transcriptional gene silencing. EMBO J 26(6):1691–1701

    Article  CAS  PubMed Central  Google Scholar 

  • Zhou C, Zhou H, Ma X, Yang H, Wang P, Wang G, Zheng L, Zhang Y, Liu X (2021) Genome-wide identification and characterization of main histone modifications in sorghum decipher regulatory mechanisms involved by mRNA and long noncoding RNA genes. J Agric Food Chem 69(7):2337–2347

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Fu H, Wu Y, Zheng X (2013) Function of lncRNAs and approaches to lncRNA-protein interactions. Sci China Life Sci 56(10):876–885

    Article  CAS  PubMed  Google Scholar 

  • Zilberman D, Cao X, Jacobsen SE (2003) ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299(5607):716–719

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Zongxiu Sun (China Agricultural University) for providing and identifying Ipomoea nil strain at China National Rice Research Institute.

Funding

A fund supported this work from the Open Project of Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine) Grant No. WDCM2022005 (to C.Z.). These funders did not play any roles in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Zhou or Zhengquan He.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval and consent to participate

Not applicable.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Yan, R., He, H. et al. Transcriptional profiling of long noncoding RNAs associated with flower color formation in Ipomoea nil. Planta 258, 6 (2023). https://doi.org/10.1007/s00425-023-04142-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-023-04142-y

Keywords

Navigation