Skip to main content
Log in

RETINOBLASTOMA-RELATED interactions with key factors of the RNA-directed DNA methylation (RdDM) pathway and its influence on root development

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main Conclusion

Our study presents evidence for a novel mechanism for RBR function in transcriptional gene silencing by interacting with key players of the RdDM pathway in Arabidopsis and several plant clades.

Abstract

Transposable elements and other repetitive elements are silenced by the RNA-directed DNA methylation pathway (RdDM). In RdDM, POLIV-derived transcripts are converted into double-stranded RNA (dsRNA) by the activity of RDR2 and subsequently processed into 24 nucleotide short interfering RNAs (24-nt siRNAs) by DCL3. 24-nt siRNAs serve as guides to direct AGO4–siRNA complexes to chromatin-bound POLV-derived transcripts generated from the template/target DNA. The interaction between POLV, AGO4, DMS3, DRD1, RDM1 and DRM2 promotes DRM2-mediated de novo DNA methylation. The Arabidopsis Retinoblastoma protein homolog (RBR) is a master regulator of the cell cycle, stem cell maintenance, and development. We in silico predicted and explored experimentally the protein–protein interactions (PPIs) between RBR and members of the RdDM pathway. We found that the largest subunits of POLIV and POLV (NRPD1 and NRPE1), the shared second largest subunit of POLIV and POLV (NRPD/E2), RDR1, RDR2, DCL3, DRM2, and SUVR2 contain canonical and non-canonical RBR binding motifs and several of them are conserved since algae and bryophytes. We validated experimentally PPIs between Arabidopsis RBR and several of the RdDM pathway proteins. Moreover, seedlings from loss-of-function mutants in RdDM and RBR show similar phenotypes in the root apical meristem. We show that RdDM and SUVR2 targets are up-regulated in the 35S:AmiGO–RBR background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Abbreviations

AGO4:

Argonaute 4

DCL3:

Dicer-like 3

DRM2:

De novo DNA methyltransferase domains rearranged 2

LTR:

Long Terminal Repeat

NRPD:

Nuclear RNA Polymerase D

POLIV:

Polymerase IV

POLV:

Polymerase V

PRC2:

Polycomb repressor complex 2

RBR:

Retinoblastoma-related

RdDM:

RNA-directed DNA methylation pathway

RDM1:

RNA-directed DNA methylation 1

RDR2:

RNA-dependent RNA polymerase 2

SLiM:

Short linear motif

Y2H:

Yeast two-hybrid

References

  • Borges F, Martienssen RA (2015) The expanding world of small RNAs in plants. Nat Rev Mol Cell Biol 16(12):727–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouyer D, Heese M, Chen P, Harashima H, Roudier F, Grüttner C, Schnittger A (2018) Genome-wide identification of RETINOBLASTOMA RELATED 1 binding sites in Arabidopsis reveals novel DNA damage regulators. PLoS Genet 14(11):e1007797

    Article  PubMed  PubMed Central  Google Scholar 

  • Calo E, Quintero-Estades JA, Danielian PS, Nedelcu S, Berman SD, Lees JA (2010) Rb regulates fate choice and lineage commitment in vivo. Nature 466(7310):1110–1114

    Article  PubMed  PubMed Central  Google Scholar 

  • Cruz-Ramírez A, López-Bucio J, Ramírez-Pimentel G, Zurita-Silva A, Sánchez-Calderon L, Ramírez-Chávez E, González-Ortega E, Herrera-Estrella L (2004) The xipotl mutant of Arabidopsis reveals a critical role for phospholipid metabolism in root system development and epidermal cell integrity. Plant Cell 16(8):2020–2034

    Article  PubMed  PubMed Central  Google Scholar 

  • Cruz-Ramírez A, Díaz-Triviño S, Blilou I, Grieneisen VA, Sozzani R, Zamioudis C, Miskolczi P, Nieuwland J, Benjamins R, Dhonukshe P, Caballero-Pérez J, Horvath B, Long Y, Mähönen AP, Zhang H, Xu J, Murray JA, Benfey PN, Bako L, Marée AF, Scheres B (2012) A bistable circuit involving SCARECROW-RETINOBLASTOMA integrates cues to inform asymmetric stem cell division. Cell 150(5):1002–1015

    Article  PubMed  PubMed Central  Google Scholar 

  • Cruz-Ramírez A, Díaz-Triviño S, Wachsman G, Du Y, Arteága-Vázquez M, Zhang H, Benjamins R, Blilou I, Neef AB, Chandler V, Scheres B (2013) A SCARECROW-RETINOBLASTOMA protein network controls protective quiescence in the Arabidopsis root stem cell organizer. PLoS Biol 11(11):e1001724

    Article  PubMed  PubMed Central  Google Scholar 

  • Dello IR, Linhares FS, Scacchi E, Casamitjana-Martinez E, Heidstra R, Costantino P, Sabatini S (2007) Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr Biol 17(8):678–682

    Article  Google Scholar 

  • Desvoyes B, Gutierrez C (2020) Roles of plant retinoblastoma protein: cell cycle and beyond. EMBO J 39(19):e105802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erdmann RM, Picard CL (2020) RNA-directed DNA methylation. PLoS Genet 16(10):e1009034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haag JR, Pikaard CS (2011) Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing. Nat Rev Mol Cell Biol 12(8):483–492

    Article  CAS  PubMed  Google Scholar 

  • Han YF, Dou K, Ma ZY, Zhang SW, Huang HW, Li L, Cai T, Chen S, Zhu JK, He XJ (2014) SUVR2 is involved in transcriptional gene silencing by associating with SNF2-related chromatin-remodeling proteins in Arabidopsis. Cell Res 24(12):1445–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He XJ, Hsu YF, Zhu S, Liu HL, Pontes O, Zhu J, Cui X, Wang CS, Zhu JK (2009) A conserved transcriptional regulator is required for RNA-directed DNA methylation and plant development. Genes Dev 23(23):2717–2722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Kendall T, Forsythe ES, Dorantes-Acosta A, Li S, Caballero-Pérez J, Chen X, Arteaga-Vázquez M, Beilstein MA, Mosher RA (2015) Ancient origin and recent innovations of RNA polymerase IV and V. Mol Biol Evol 32(7):1788–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jha A, Shankar R (2014) MiRNAting control of DNA methylation. J Biosci 39(3):365–380

    Article  CAS  PubMed  Google Scholar 

  • Johnston AJ, Matveeva E, Kirioukhova O, Grossniklaus U, Gruissem W (2008) A dynamic reciprocal RBR-PRC2 regulatory circuit controls Arabidopsis gametophyte development. Curr Biol 18(21):1680–1686

    Article  CAS  PubMed  Google Scholar 

  • Jullien PE, Mosquna A, Ingouff M, Sakata T, Ohad N, Berger F (2008) Retinoblastoma and its binding partner MSI1 control imprinting in Arabidopsis. PLoS Biol 6(8):e194

    Article  PubMed  PubMed Central  Google Scholar 

  • Jullien PE, Susaki D, Yelagandula R, Higashiyama T, Berger F (2012) DNA methylation dynamics during sexual reproduction in Arabidopsis thaliana. Curr Biol 22(19):1825–1830

    Article  CAS  PubMed  Google Scholar 

  • Kawakatsu T, Stuart T, Valdes M, Breakfield N, Schmitz RJ, Nery JR, Urich MA, Han X, Lister R, Benfey PN, Ecker JR (2016) Unique cell-type-specific patterns of DNA methylation in the root meristem. Nat Plants 2(5):16058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • León-Ruiz J, Cruz-Ramírez A (2022) Predicted landscape of RETINOBLASTOMA-RELATED LxCxE-mediated interactions across the Chloroplastida. Plant J 112(6):1507–1524

    Article  PubMed  Google Scholar 

  • Matos JL, Lau OS, Hachez C, Cruz-Ramírez A, Scheres B, Bergmann DC (2014) Irreversible fate commitment in the Arabidopsis stomatal lineage requires a FAMA and RETINOBLASTOMA-RELATED module. Elife 3:e03271

    Article  PubMed  PubMed Central  Google Scholar 

  • Matzke MA, Mosher RA (2014) RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet 15(6):394–408

    Article  CAS  PubMed  Google Scholar 

  • Matzke MA, Kanno T, Matzke AJ (2015) RNA-directed DNA methylation: The evolution of a complex epigenetic pathway in flowering plants. Annu Rev Plant Biol 66:243–267

    Article  CAS  PubMed  Google Scholar 

  • Mendes MA, Petrella R, Cucinotta M, Vignati E, Gatti S, Pinto SC, Bird DC, Gregis V, Dickinson H, Tucker MR, Colombo L (2020) The RNA-dependent DNA methylation pathway is required to restrict SPOROCYTELESS/NOZZLE expression to specify a single female germ cell precursor in Arabidopsis. Development 147(23):194274

    Article  Google Scholar 

  • Oliva M, Butenko Y, Hsieh TF, Hakim O, Katz A, Smorodinsky NI, Michaeli D, Fischer RL, Ohad N (2016) FIE, a nuclear PRC2 protein, forms cytoplasmic complexes in Arabidopsis thaliana. J Exp Bot 67(21):6111–6123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olmedo-Monfil V, Durán-Figueroa N, Arteaga-Vázquez M, Demesa-Arévalo E, Autran D, Grimanelli D, Slotkin RK, Martienssen RA, Vielle-Calzada JP (2010) Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 464(7288):628–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ötvös K, Miskolczi P, Marhavý P, Cruz-Ramírez A, Benková E, Robert S, Bakó L (2021) Pickle recruits retinoblastoma related 1 to control lateral root formation in Arabidopsis. Int J Mol Sci 22(8):3862

    Article  PubMed  PubMed Central  Google Scholar 

  • Palopoli N, González Foutel NS, Gibson TJ, Chemes LB (2018) Short linear motif core and flanking regions modulate retinoblastoma protein binding affinity and specificity. Protein Eng Des Sel 31(3):69–77

    Article  CAS  PubMed  Google Scholar 

  • Ramanujan A, Bansal S, Guha M, Pande NT, Tiwari S (2021) LxCxD motif of the APC/C coactivator subunit FZR1 is critical for interaction with the retinoblastoma protein. Exp Cell Res 404(2):112632

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Krajewski M, Mikolajka A, Holak TA (2005) Molecular determinants for the complex formation between the retinoblastoma protein and LXCXE sequences. J Biol Chem 280(45):37868–37876

    Article  CAS  PubMed  Google Scholar 

  • Trujillo JT, Seetharam AS, Hufford MB, Beilstein MA, Mosher RA (2018) Evidence for a unique DNA-dependent RNA polymerase in cereal crops. Mol Biol Evol 35(10):2454–2462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wildwater M, Campilho A, Perez-Perez JM, Heidstra R, Blilou I, Korthout H, Chatterjee J, Mariconti L, Gruissem W, Scheres B (2005) The RETINOBLASTOMA-RELATED gene regulates stem cell maintenance in Arabidopsis roots. Cell 123(7):1337–1349

    Article  CAS  PubMed  Google Scholar 

  • Willemsen V, Wolkenfelt H, de Vrieze G, Weisbeek P, Scheres B (1998) The HOBBIT gene is required for formation of the root meristem in the Arabidopsis embryo. Development 125(3):521–531

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Lasses T, Bako L, Kong D, Zhao B, Chanda B, Bombarely A, Cruz-Ramírez A, Scheres B, Brunner AM, Beers EP (2017a) XYLEM NAC DOMAIN1, an angiosperm NAC transcription factor, inhibits xylem differentiation through conserved motifs that interact with RETINOBLASTOMA-RELATED. New Phytol 216(1):76–89

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Bramsiepe J, Van Durme M, Komaki S, Prusicki MA, Maruyama D, Forner J, Medzihradszky A, Wijnker E, Harashima H, Lu Y, Schmidt A, Guthörl D, Logroño RS, Guan Y, Pochon G, Grossniklaus U, Laux T, Higashiyama T, Lohmann JU, Nowack MK, Schnittger A (2017b) RETINOBLASTOMA RELATED1 mediates germline entry in Arabidopsis. Science 356(6336):6532

    Article  Google Scholar 

  • Zhou W, Lozano-Torres JL, Blilou I, Zhang X, Zhai Q, Smant G, Li C, Scheres B (2019) A jasmonate signaling network activates root stem cells and promotes regeneration. Cell 177(4):942–956e

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Vicki Chandler, Steve Jacobsen, Fred Berger and Pauline Jullien for sharing published plant materials. We also thank Dr. Juan Caballero-Pérez for initial advice on bioinformatics. J L-R (CVU 858608) was supported by Consejo Nacional de Ciencia y Tecnología (CONACYT) with a PhD Fellowship. A C-R was supported by EMBO-ALTF 1114-2006 and CONACYT 000000000092916 grants. Colaborative work between A C-R and IB groups is supported by King Abdullah University of Science and Technology (KAUST), Award No. OSR-2020-CRG9-4381. M A-V was supported by CONACYT grants 158550 and A1-S-38383, UCMEXUS-CONACYT Collaborative Grant CN-20-166 and Newton Fund of the Royal Society grant NA150181.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mario Arteaga-Vázquez or Alfredo Cruz-Ramírez.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

León-Ruiz, J., Espinal-Centeno, A., Blilou, I. et al. RETINOBLASTOMA-RELATED interactions with key factors of the RNA-directed DNA methylation (RdDM) pathway and its influence on root development. Planta 257, 105 (2023). https://doi.org/10.1007/s00425-023-04135-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-023-04135-x

Keywords

Navigation