Skip to main content
Log in

Plants detect and respond to sounds

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Specific sound patterns can affect plant development.

Abstract

Plants are responsive to environmental stimuli such as sound. However, little is known about their sensory apparatus, mechanisms, and signaling pathways triggered by these stimuli. Thus, it is important to understand the effect of sounds on plants and their technological potential. This review addresses the effects of sounds on plants, the sensory elements inherent to sound detection by the cell, as well as the triggering of signaling pathways that culminate in plant responses. The importance of sound standardization for the study of phytoacoustics is demonstrated. Studies on the sounds emitted or reflected by plants, acoustic stress in plants, and recognition of some sound patterns by plants are also explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article, as no datasets were generated or analyzed during the current study.

References

  • Ackermann F, Stanislas T (2020) The plasma membrane - an integrating compartment for mechano-signaling. Plants 9:505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akbal E, Tuncer T (2022) A learning model for automated construction site monitoring using ambient sounds. Autom Constr 134:104094

    Article  Google Scholar 

  • Ali MA, Al-Rubaii BA (2021) Study of the effects of audible sounds and magnetic fields on staphylococcus aureus methicillin resistance and mecA gene expression. Trop J Nat Prod Res 5(5):825–830

    Article  CAS  Google Scholar 

  • Altuntas O, Ozkurt H (2020) Effects of different dB sound levels on the plant growth, nutrient elements uptake and essential oil yield of Mentha piperita. J Essent Oil Bear Plant 23:1345–1355

    Article  CAS  Google Scholar 

  • Amaral MN, Arge LWP, Auler PA, Rossatto T, Milech C, Magalhães AMD, Braga EJB (2020) Long-term transcriptional memory in rice plants submitted to salt shock. Planta 251:1–16

    Article  Google Scholar 

  • Annacondia ML, Martinez G (2019) Plant models of transgenerational epigenetic inheritance. In: Annacondia ML (ed) Transgenerational Epigenetics. Academic Press, Massachusetts, USA, pp 263–282

    Chapter  Google Scholar 

  • Appel HM, Cocroft RB (2014) Plants respond to leaf vibrations caused by insect herbivore chewing. Oecologia 175:1257–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avola D, Cinque L, Fagioli A, Foresti G, Mecca A (2021) Ultrasound medical imaging techniques: a survey. ACM Comput Sur 54(3):1–38

    Google Scholar 

  • Basu D, Haswell ES (2017) Plant mechanosensitive ion channels: an ocean of possibilities. Curr Opin Plant Biol 40:43–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batchelor AV, Wilson RI (2019) Sound localization behavior in Drosophila melanogaster depends on inter-antenna vibration amplitude comparisons. J Exp Biol 222:191213

    Article  Google Scholar 

  • Behnami S, Bonetta D (2021) With an ear up against the wall: an update on mechanoperception in Arabidopsis. Plants 10:1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhandawat A, Jayaswall K, Sharma H, Roy J (2020) Sound as a stimulus in associative learning for heat stress in Arabidopsis. Commun Integrat Biol 13:1–5

    Article  CAS  Google Scholar 

  • Bhar A, Chakraborty A, Roy A (2022) Plant responses to biotic stress: old memories matter. Plants 11:84

    Article  CAS  Google Scholar 

  • Bharath P, Gahir S, Raghavendra AS (2021) Abscisic acid-induced stomatal closure: An important component of plant defense against abiotic and biotic stress. Front Plant Sci 12:324

    Article  Google Scholar 

  • Bochu W, Yoshikoshi A, Sakanishi A (1998) Carrot cell growth response in a stimulated ultrasonic environment. Colloids Surf, B 12:89–95

    Article  Google Scholar 

  • Bochu W, Xin C, Zhen W, Qizhong F, Hao Z, Liang R (2003) Biological effect of sound field stimulation on paddy rice seeds. Colloids Surf, B 32:29–34

    Article  Google Scholar 

  • Choi B, Ghosh R, Gururani MA, Shanmugam G, Jeon J, Kim J, Park SC, Jeong MJ, Han KH, Dong-Won Bae DW, Bae H (2017) Positive regulatory role of sound vibration treatment in Arabidopsis thaliana against Botrytis cinerea infection. Sci Rep 7:1–14

    Google Scholar 

  • Clennell B, Steward TG, Elley M, Shin E, Weston M, Drinkwater BW, Whitcomb DJ (2021) Transient ultrasound stimulation has lasting effects on neuronal excitability. Brain Stimul 14(2):217–225

    Article  PubMed  PubMed Central  Google Scholar 

  • Codjoe JM, Miller K, Haswell ES (2022) Plant cell mechanobiology: greater than the sum of its parts. Plant Cell 34:129–145

    Article  PubMed  Google Scholar 

  • Collins ME, Foreman JEK (2001) The effect of sound on the growth of plants. Can Acoust 29:3–8

    Google Scholar 

  • Currier HB, Webster DH (1964) Callose formation and subsequent disappearance: studies in ultrasound stimulation. Plant Physiol 39:843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Roo L, Vergeynst LL, De Baerdemaeker NJ, Steppe K (2016) Acoustic emissions to measure drought-induced cavitation in plants. Appl Sci 6:71

    Article  Google Scholar 

  • Du F, Jiao Y (2020) Mechanical control of plant morphogenesis: concepts and progress. Curr Opin Plant Biol 57:16–23

    Article  CAS  PubMed  Google Scholar 

  • Ekici N, Dane F, Mamedova L, Metin I, Huseyinov M (2007) The effects of different musical elements on root growth and mitosis in onion (Allium cepa) root apical meristem (musical and biological experimental study). Asian J Plant Sci 6:369–373

    Article  Google Scholar 

  • Finazzi G, Petroutsos D, Tomizioli M, Flori S, Sautron E, Villanova V, Rolland N, Seigneurin-Berny D (2015) Ions channels/transporters and chloroplast regulation. Cell Calcium 58:86–97

    Article  CAS  PubMed  Google Scholar 

  • Fruleux A, Verger S, Boudaoud A (2019) Feeling stressed or strained? A biophysical model for cell wall mechanosensing in plants. Front Plant Sci 10:757

    Article  PubMed  PubMed Central  Google Scholar 

  • Gagliano M, Grimonprez M, Depczynski M, Renton M (2017) Tuned in plant roots use sound to locate water. Oecologia 184:151–160

    Article  PubMed  Google Scholar 

  • Gallo M, Ferrara L, Naviglio D (2018) Application of ultrasound in food science and technology: A perspective. Foods 7(10):164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh R, Mishra RC, Choi B, Kwon YS, Bae DW, Park SC, Jeong MJ, Bae H (2016) Exposure to sound vibrations lead to transcriptomic, proteomic and hormonal changes in Arabidopsis. Sci Rep 6:1–17

    Google Scholar 

  • Ghosh R, Gururani MA, Ponpandian LN, Mishra RC, Park SC, Jeong MJ, Bae H (2017) Expression analysis of sound vibration-regulated genes by touch treatment in Arabidopsis. Front Plant Sci 8:100

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorai S, Hazra S (2020) Plant Acoustic Frequency Technology: Sound Waves in Crop Improvement. Agri Food E-Newslet 2:37–40

    Google Scholar 

  • Gu S, Zhang Y, Wu Y (2016) Effects of sound exposure on the growth and intracellular macromolecular synthesis of E coli k-12. Peer J. 4:1920

    Article  Google Scholar 

  • Guedes FA, Nobres P, Ferreira DCR, Menezes-Silva PE, Ribeiro-Alves M, Correa RL, Da Matta FM, Alves-Ferreira M (2018) Transcriptional memory contributes to drought tolerance in coffee (Coffea canephora) plants. Environ Exp Bot 147:220–233

    Article  CAS  Google Scholar 

  • Hagihara T, Toyota M (2020) Mechanical signaling in the sensitive plant Mimosa pudica L. Plants 9:587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedrich R (2012) Ion channels in plants. Physiol Rev 92:1777–1811

    Article  CAS  PubMed  Google Scholar 

  • Hongbo S, Biao L, Bochu W, Kun T, Yilong L (2008) A study on differentially expressed gene screening of Chrysanthemum plants under sound stress. CR Biol 331:329–333

    Article  Google Scholar 

  • Hou TZ, Luan JY, Wang JY, Li MD (1994) Experimental evidence of a plant meridian system iii: the sound characteristics of phylodendron (Alocasia) and effects of acupuncture on those properties. Am J Chin Med 22:205–214

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Jiang S (2011) Effect of six different acoustic frequencies on growth of cowpea (Vigna unguiculata) during its seedling stage. Agri Sci Technol-Hunan 12:847–851

    Google Scholar 

  • Hu-Cheng ZHAO, Bo-Chu WANG, Shao-Xi CAI, Bao-Shu XI (2002) Effect of sound stimulation on the lipid physical states and metabolism of plasma membrane from Chrysanthemum callus. J Integr Plant Biol 44:799–803

    Google Scholar 

  • Humphrey TV, Bonetta DT, Goring DR (2007) Sentinels at the wall: cell wall receptors and sensors. New Phytol 176:7–21

    Article  CAS  PubMed  Google Scholar 

  • Jackson GE, Grace J (1996) Field measurements of xylem cavitation: are acoustic emissions useful? J Exp Bot 47:1643–1650

    Article  CAS  Google Scholar 

  • Jeong MJ, Shim CK, Lee JO, Kwon HB, Kim YH, Lee SK, Byun MO, Park SC (2008) Plant gene responses to frequency-specific sound signals. Mol Breed 21:217–226

    Article  CAS  Google Scholar 

  • Jeong MJ, Cho JI, Park SH, Kim KH, Lee SK, Kwon TR, Park SC, Siddiqui ZS (2014) Sound frequencies induce drought tolerance in rice plant. Pak J Bot 46:2015–2020

    Google Scholar 

  • Jia H, Chen S, Wang X, Shi C, Liu K, Zhang S, Li J (2020) Copper oxide nanoparticles alter cellular morphology via disturbing the actin cytoskeleton dynamics in Arabidopsis roots. Nanotoxicology 14:127–144

    Article  CAS  PubMed  Google Scholar 

  • Jung J, Kim SK, Jung SH, Jeong MJ, Ryu CM (2020) Sound vibration-triggered epigenetic modulation induces plant root immunity against Ralstonia solanacearum. Front Microbiol 11:1978

    Article  PubMed  PubMed Central  Google Scholar 

  • Kafash ZH, Khoramnejadian S, Ghotbi-Ravandi AA, Dehghan SF (2022) Traffic noise induces oxidative stress and phytohormone imbalance in two urban plant species. Basic Appl Ecol 60:1–12

    Article  Google Scholar 

  • Kaur A, Taneja M, Tyagi S, Sharma A, Singh K, Upadhyay SK (2020) Genome-wide characterization and expression analysis suggested diverse functions of the mechanosensitive channel of small conductance-like (MSL) genes in cereal crops. Sci Rep 10:1–14

    Article  Google Scholar 

  • Kefauver JM, Ward AB, Patapoutian A (2020) Discoveries in structure and physiology of mechanically activated ion channels. Nature 587:567–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khait I, Lewin-Epstein O, Sharon R, Saban K, Perelman R, Boonman A, Yovel Y, Hadany L (2019) Plants emit informative airborne sounds under stress. Biorxiv. 577:507590

    Google Scholar 

  • Kim JY, Lee JS, Kwon TR, Lee SI, Kim JA, Lee GM, Park SC, Jeong MJ (2015) Sound waves delay tomato fruit ripening by negatively regulating ethylene biosynthesis and signaling genes. Postharvest Biol Technol 110:43–50

    Article  CAS  Google Scholar 

  • Kim JY, Lee SI, Kim JA, Muthusamy M, Jeong MJ (2021) Specific audible sound waves improve flavonoid contents and antioxidative properties of sprouts. Sci Hortic 276:109746

    Article  CAS  Google Scholar 

  • Lhamo D, Wang C, Gao Q, Luan S (2021) Recent advances in genome-wide analyses of plant potassium transporter families. Curr Genomics 22:164–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Wei J, Wei X, Tang K, Liang Y, Shu K, Wang B (2008) Effect of sound wave stress on antioxidant enzyme activities and lipid peroxidation of Dendrobium candidum. Colloids Surf, B 63:269–275

    Article  CAS  Google Scholar 

  • Li C, Yeh FL, Cheung AY, Duan Q, Kita D, Liu MC, Maman J, Luu EJ, Wu HM (2015) Glycosylphosphatidylinositol-anchored proteins as chaperones and co-receptors for FERONIA receptor kinase signaling in Arabidopsis. Elife 4:e06587

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang P, Schmitz C, Lace B, Ditengou FA, Su C, Schulze E, Knerr J, Grosse R, Keller J, Libourel C, Delaux PM, Ott T (2021) Formin-mediated bridging of cell wall, plasma membrane, and cytoskeleton in symbiotic infections of Medicago truncatula. Curr Biol 31:2712–2719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin C, Romano P, Iliceto S, Tona F, Vitiello G (2022) On collective molecular dynamics in biological systems: a review of our experimental observations and theoretical modeling. Int J Mol Sci 23(9):5145

    Article  Google Scholar 

  • Lin C, Radu CM, Vitiello G, Romano P, Polcari A, Iliceto S, Simioni P, Tona F (2021) Stimulation on in-vitro HL1cells A pilot study and a theoretical physical model. Inter J Mol Sci. 22: 156.

  • Liu Y, Yoshikoshi A, Wang B, Sakanishi A (2003) Influence of ultrasonic stimulation on the growth and proliferation of Oryza sativa Nipponbare callus cells. Colloids Surf, B 27:287–293

    Article  CAS  Google Scholar 

  • Liu Y, Yang H, Takatsuki H, Sakanishi A (2006) Effect of ultrasonic exposure on Ca2+-ATPase activity in plasma membrane from Aloe arborescens callus cells. Ultrason Sonochem 13:232–236

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Jiao J, Lu TJ, Xu F, Pickard BG, Genin GM (2017) Arabidopsis leaf trichomes as acoustic antennae. Biophys J 113:2068–2076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Tang D, Zhang S, Leng X, Hu K, He L (2021) Method for feature analysis and intelligent recognition of infrasound signals of soil landslides. Bull Eng Geol Env 80(2):917–932

    Article  Google Scholar 

  • López-Ribera I, Vicient CM (2017) Drought tolerance induced by sound in Arabidopsis plants. Plant Signal Behav 12:e1368938

    Article  PubMed  PubMed Central  Google Scholar 

  • Measures M, Weinberger P (1973) Effects of an audible sound frequency on total amino acids and major free alcohol-soluble amino acids of Rideau wheat grains. Can J Plant Sci 53:737–742

    Article  CAS  Google Scholar 

  • Melo HC (2022) The Sensory Biology, Communication. Cambridge Scholars Publishing, Newcastle upon Tyne, UK, Memory and Intelligence of Plants

    Google Scholar 

  • Melo HC, Rodrigues FJ, Queiros SF, Portes TA (2019) A aplicação exógena foliar de ácido abscísico desencadeia mecanismos de tolerância à deficiência hídrica em seringueira. Ciência Florestal 29:40–49

    Article  Google Scholar 

  • Meng Q, Zhou Q, Zheng S, Gao Y (2012) Responses on photosynthesis and variable chlorophyll fluorescence of Fragaria ananassa under sound wave. Energy Procedia 16:346–352

    Article  Google Scholar 

  • Migicovsky Z, Kovalchuk I (2015) Transgenerational inheritance of epigenetic response to cold in Arabidopsis thaliana. Biocatal Agric Biotechnol 4:1–10

    Article  Google Scholar 

  • Mishra RC, Ghosh R, Bae H (2016) Plant acoustics: in the search of a sound mechanism for sound signaling in plants. J Exp Bot 67:4483–4494

    Article  CAS  PubMed  Google Scholar 

  • Muehsam D, Ventura C (2014) Life rhythm as a symphony of oscillatory patterns: electromagnetic energy and sound vibration modulate gene expression for biological signaling and healing. Global Adv Health Med 3:40–55

    Article  Google Scholar 

  • Nishii K, Möller M, Iida H (2021) Mix and match: Patchwork domain evolution of the land plant-specific Ca2+-permeable mechanosensitive channel MCA. PLoS ONE 16:e0249735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozkurt H, Altuntas O (2016) The effect of sound waves at different frequencies upon the plant element nutritional uptake of snake plant (Sansevieria trifasciata) plants. Indian J Sci Technol 9:1–5

    Article  CAS  Google Scholar 

  • Pelling AE, Sehati S, Gralla EB, Gimzewski JK (2005) Time dependence of the frequency and amplitude of the local nanomechanical motion of yeast. Nanomedicine 1(2):178–183

    Article  CAS  PubMed  Google Scholar 

  • Pirayesh N, Giridhar M, Khedher AB, Vothknecht UC, Chigri F (2021) Organellar calcium signaling in plants: An update. Biochem Biophys Acta 1868:118948

    Article  CAS  Google Scholar 

  • Qin YC, Lee WC, Choi YC, Kim TW (2003) Biochemical and physiological changes in plants as a result of different sonic exposures. Ultrasonics 41:407–411

    Article  CAS  PubMed  Google Scholar 

  • Quadrana L, Colot V (2016) Plant transgenerational epigenetics. Annu Rev Genet 50:467–491

    Article  CAS  PubMed  Google Scholar 

  • Rajasekharan G, Nandini K (2021) Plant acoustic responses concept and significance. In: Rajasekharan G, Nandini K, Parvathi MS (eds) Plant growth responses for smart agriculture: prospects and applications. CRC Press-NIPA, New Delhi, India, p 87

    Google Scholar 

  • Raza A, Charagh S, Zahid Z, Mubarik MS, Javed R, Siddiqui MH, Hasanuzzaman M (2021) Jasmonic acid: a key frontier in conferring abiotic stress tolerance in plants. Plant Cell Rep 40:1513–1541

    Article  CAS  PubMed  Google Scholar 

  • Rodrigo-Moreno A, Bazihizina N, Azzarello E, Masi E, Tran D, Bouteau F, Baluska F, Mancuso S (2017) Root phonotropism: early signalling events following sound perception in Arabidopsis roots. Plant Sci 264:9–15

    Article  CAS  PubMed  Google Scholar 

  • Schöner MG, Schöner CR, Kerth G, Suhaini SNBP, Grafe TU (2017) Handle with care: enlarged pads improve the ability of Hardwicke’s woolly bat, Kerivoula hardwickii (Chiroptera: Vespertilionidae), to roost in a carnivorous pitcher plant. Biol J Lin Soc 122:643–650

    Article  Google Scholar 

  • Sens P, Plastino J (2015) Membrane tension and cytoskeleton organization in cell motility. J Phys: Condens Matter 27:273103

    PubMed  Google Scholar 

  • Shi YJ, Shi M, Xiao LJ, Li L, Zou LH, Li CY, Ma L (2018) Inhibitive effects of FGF2/FGFR1 pathway on astrocyte-mediated inflammation in vivo and in vitro after infrasound exposure. Front Neurosci 12:582

    Article  PubMed  PubMed Central  Google Scholar 

  • Simon C, Caorsi V, Campillo C, Sykes C (2018) Interplay between membrane tension and the actin cytoskeleton determines shape changes. Phys Biol 15:065004

    Article  PubMed  Google Scholar 

  • Sparke MA, Wünsche JN (2020) Mechanosensing of plants. Hortic Rev 47:43–83

    Article  CAS  Google Scholar 

  • Suzuki Y, Yamamura H, Imaizumi Y, Clark RB, Giles WR (2020) K+ and Ca2+ channels regulate Ca2+ signaling in chondrocytes: An illustrated review. Cells 9:1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi H, Suge H, Kato T (1991) Growth promotion by vibration at 50 Hz in rice and cucumber seedlings. Plant Cell Physiol 32:729–732

    Article  Google Scholar 

  • Tan L, Tees D, Qian J, Kareem S, Kieliszewski MJ (2018) Intermolecular interactions between glycomodules of plant cell wall arabinogalactan-proteins and extensins. The Cell Surf 1:25–33

    Article  CAS  PubMed  Google Scholar 

  • Tyerman SD, McGaughey SA, Qiu J, Yool AJ, Byrt CS (2021) Adaptable and multifunctional ion-conducting aquaporins. Annu Rev Plant Biol 72:703–736

    Article  CAS  PubMed  Google Scholar 

  • Uchida A, Yamamoto KT (2002) Effects of mechanical vibration on seed germination of Arabidopsis thaliana (L.) Heynh. Plant Cell Physiol 43:647–651

    Article  CAS  PubMed  Google Scholar 

  • Uzer G, Thompson WR, Sen B, Xie Z, Yen SS, Miller S, Bas G, Styner M, Rubin CT, Judex S (2015) Cell mechanosensitivity to extremely low-magnitude signals is enabled by a LINCed nucleus. Stem Cells 33:2063–2076

    Article  PubMed  Google Scholar 

  • Vallejo-Marín M (2022) How and why do bees buzz? Implications for buzz pollination. J Exp Bot 73:1080–1092

    Article  PubMed  Google Scholar 

  • Vavakou A, Scherberich J, Nowotny M, van der Heijden M (2021) Tuned vibration modes in a miniature hearing organ: Insights from the bushcricket. Proc Natl Acad Sci 118:e2105234118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veits M, Khait I, Obolski U, Zinger E, Boonman A, Goldshtein A, Saban K, Seltzer R, Ben-Dor U, Estlein P, Ar K, Peretz D, Ratzersdorfer I, Krylov S, Chamovitz D, Sapir Yossi Y, Hadany L (2019) Flowers respond to pollinator sound within minutes by increasing nectar sugar concentration. Ecol Lett 22:1483–1492

    Article  PubMed  PubMed Central  Google Scholar 

  • Verdus MC, Ripoll C, Norris V, Thellier M (2012) The role of calcium in the recall of stored morphogenetic information by plants. Acta Biotheor 60:83–97

    Article  PubMed  Google Scholar 

  • Vogler H, Santos-Fernandez G, Mecchia MA, Grossniklaus U (2019) To preserve or to destroy, that is the question: the role of the cell wall integrity pathway in pollen tube growth. Curr Opin Plant Biol 52:131–139

    Article  CAS  PubMed  Google Scholar 

  • Volkov AG, Foster JC, Ashby TA, Walker RK, Johnson JA, Markin VS (2010) Mimosa pudica: electrical and mechanical stimulation of plant movements. Plant, Cell Environ 33:163–173

    Article  PubMed  Google Scholar 

  • Voxeur A, Höfte H (2020) Pectin-derived immune elicitors in response to lignin modification in plants. Proc Natl Acad Sci 117:4442–4444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Zhao H, Wang X, Duan C, Wang D, Sakanishi A (2002) Influence of sound stimulation on plasma membrane H+-ATPase activity. Colloids Surf, B 25:183–188

    Article  CAS  Google Scholar 

  • Wang Y, Li X, Fan B, Zhu C, Chen Z (2021a) Regulation and function of defense-related callose deposition in plants. Int J Mol Sci 22:2393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Mostafa S, Zeng W, Jin B (2021b) Function and mechanism of jasmonic acid in plant responses to abiotic and biotic stresses. Int J Mol Sci 22:8568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wassermann B, Korsten L, Berg G (2021) Plant health and sound vibration: analyzing implications of the microbiome in grape wine leaves. Pathogens 10:63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei M, Yang CY, Wei SH (2012) Enhancement of the differentiation of protocorm-like bodies of Dendrobium officinale to shoots by ultrasound treatment. J Plant Physiol 169:770–774

    Article  CAS  PubMed  Google Scholar 

  • Weinberger P, Burton C (1981) The effect of sonication on the growth of some tree seeds. Can J for Res 11:840–844

    Article  Google Scholar 

  • Weinberger P, Measures M (1979) Effects of the intensity of audible sound on the growth and development of Rideau winter wheat. Can J Bot 57:1036–1039

    Article  Google Scholar 

  • Wolf S (2017) Plant cell wall signalling and receptor-like kinases. Biochemical J 474:471–492

    Article  CAS  Google Scholar 

  • Wolf CB, Mohammad RK (2009) Mechano-transduction and its role in stem cell biology. In: Baharvand H (ed) Trends in stem cell biology and technology. Humana Press, Totowa, NJ, pp 389–403

    Chapter  Google Scholar 

  • Wu Z, Plotnikov SV, Moalim AY, Waterman CM, Liu J (2017) Two distinct actin networks mediate traction oscillations to confer focal adhesion mechanosensing. Biophys J 112:780–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiaocheng Y, Bochu W, Chuanren D, Yi J (2003) Effects of sound stimulation on ATP content of Actinidia chinensis callus. J Chin Biotechnol 23:95–97

    Google Scholar 

  • Xiujuan W, Bochu W, Yi J, Chuanren D, Sakanishi A (2003a) Effect of sound wave on the synthesis of nucleic acid and protein in chrysanthemum. Colloids Surf, B 29:99–102

    Article  Google Scholar 

  • Xiujuan W, Bochu W, Yi J, Danqun H, Chuanren D (2003b) Effect of sound stimulation on cell cycle of chrysanthemum (Gerbera jamesonii). Colloids and surfaces. B, Biointerfaces 29:103–107

    Article  Google Scholar 

  • Xiujuan W, Bochu W, Yi J, Defang L, Chuanren D, Xiaocheng Y, Sakanishi A (2003c) Effects of sound stimulation on protective enzyme activities and peroxidase isoenzymes of chrysanthemum. Colloids Surf, B 27:59–63

    Article  Google Scholar 

  • Yang XC, Wang BC, Liu YY, Duan CR, Dai CY (2002) Biological effects of Actinidia chinensis callus on mechanical vibration. Colloids Surf, B 25:197–203

    Article  CAS  Google Scholar 

  • Yoneda A, Ohtani M, Katagiri D, Hosokawa Y, Demura T (2020) Hechtian strands transmit cell wall integrity signals in plant cells. Plants 9:604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng Y, Zhang XF, Fu BM, Tarbell JM (2018) The role of endothelial surface glycocalyx in mechanosensing and transduction. In: Fu B, Wright N (eds) Molecular, cellular, and tissue engineering of the vascular system. Springer, New York, USA, pp 1–27

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyrandir Cabral de Melo.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Communicated by Gerhard Leubner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Melo, H.C. Plants detect and respond to sounds. Planta 257, 55 (2023). https://doi.org/10.1007/s00425-023-04088-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-023-04088-1

Keywords

Navigation