Skip to main content
Log in

Insights on the stem elongation of spur-type bud sport mutant of ‘Red Delicious’ apple

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The decreased capacity of auxin-, CTK-, and BR-mediated cell division and cell enlargement pathways, combined with the enhanced capacity of GA and ETH-, JA-, ABA-, SA-mediated stress-resistant pathways were presumed to be the crucial reasons for the formation of spur-type ‘Red Delicious’ mutants.

Abstract

Vallee Spur’, which exhibit short internodes and compact tree shape, is the fourth generation of the spur-type bud sport mutant of ‘Red Delicious’. However, the underlying molecular mechanism of these properties remains unclear. Here, comparative phenotypic, full-length transcriptome and phytohormone analyses were performed between ‘Red Delicious’ (NSP) and ‘Vallee Spur’ (SP). The new shoot internode length of NSP was ˃ 1.53-fold higher than that of the SP mutant. Cytological analysis showed that the stem cells of the SP mutant were smaller and more tightly arranged relative to the NSP. By Iso-Seq, a total of 1426 differentially expressed genes (DEGs) were detected, including 808 upregulated and 618 downregulated genes in new shoot apex with 2 leaves of the SP mutant. Gene expressions involved in auxin, cytokinin (CTK), and brassinosteroid (BR) signal transduction were mostly downregulated in the SP mutant, whereas those involved in gibberellin (GA), ethylene (ETH), jasmonate (JA), ABA, and salicylic acid (SA) signal transduction were mostly upregulated. The overall thermogram analysis of hormone levels in the shoot apex carrying two leaves detected by LC–MS/MS absolute quantification showed that the levels of IAA-Asp, IAA, iP7G, OPDA, and 6-deoxyCS were significantly upregulated in the SP mutant, while the remaining 28 hormones were significantly downregulated. It is speculated that the decreased capacity of auxin, CTK, and BR-mediated cell division and cell enlargement pathways is crucial for the formation of the SP mutant. GA and stress-resistant pathways of ETH, JA, ABA, and SA also play vital roles in stem elongation. These results highlight the involvement of phytohormones in the formation of stem elongation occurring in ‘Red Delicious’ spur-type bud sport mutants and provide information for exploring its biological mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors confirm that all the experimental data are available and accessible via the main text and/or the supplemental data.

Abbreviations

BRs:

Brassinosteroids

CTKs:

Cytokinins

DEGs:

Differentially expressed genes

DETs:

Differentially expressed transcripts

DMs:

Differential metabolites

ETH:

Ethylene

GAs:

Gibberellins

JA:

Jasmonate

KEGG:

Kyoto Encyclopedia of Genes and Genomes

SA:

Salicylic acid

References

  • An J, Wang X, Zhang X, You C, Hao Y (2021) Apple BT2 protein negatively regulates jasmonic acid-triggered leaf senescence by modulating the stability of MYC2 and JAZ2. Plant Cell Environ 44(1):216–233

    Article  CAS  PubMed  Google Scholar 

  • Ben-Yehudah G, Korchinsky R, Redel G, Ovadya R, Oren-Shamir M, Cohen Y (2005) Colour accumulation patterns and the anthocyanin biosynthetic pathway in ‘Red Delicious’ apple variants. J Horticult Sci Biotechnol 80(2):187–192

    Article  CAS  Google Scholar 

  • Busov VB, Meilan R, Pearce DW, Ma C, Rood SB, Strauss SH (2003) Activation tagging of a dominant gibberellin catabolism gene (GA2-oxidase) from poplar that regulates tree stature. Plant Physiol 132:1283–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costes E, Lauri PÉ, Regnard JL (2010) Analyzing fruit tree architecture: implications for tree management and fruit production. Hortic Res 32:1–61

    Google Scholar 

  • Daccord N, Celton JM, Linsmith G, Becker C, Choisne N, Schijlen E, van de Geest H, Bianco L, Micheletti D, Velasco R (2017) High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat Genet 49(7):1099

    Article  CAS  PubMed  Google Scholar 

  • Deng B, Wang X, Long X, Fang R, Zhou S, Zhang J, Peng X, An Z, Huang W, Tang W, Gao Y, Yao J (2022) Plant hormone metabolome and transcriptome analysis of dwarf and wild-type banana. J Plant Growth Regul 41:2386–2405

    Article  CAS  Google Scholar 

  • Ding Z, Lin Z, Li Q, Wu H, Xiang C, Wang J (2015) DNL1, encodes cellulose synthase-like D4, is a major QTL for plant height and leaf width in rice (Oryza sativa L.). Biochem Biophys Res Commun 457:133–140

    Article  CAS  PubMed  Google Scholar 

  • Dong Q, Duan D, Zheng W, Huang D, Wang Q, Yang J, Liu C, Li C, Gong X, Li C, Ma F, Mao K (2021) Overexpression of MdVQ37 reduces drought tolerance by altering leaf anatomy and SA homeostasis in transgenic apple. Tree Physiol 42(1):160–174

    Article  Google Scholar 

  • El-Sharkawy I, Liang D, Xu K (2015) Transcriptome analysis of an apple (Malus × domestica) yellow fruit somatic mutation identifies a gene network module highly associated with anthocyanin and epigenetic regulation. J Exp Bot 66(22):7359–7376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Y, Zhang X, Wu T, Xu X, Han Z, Wang Y (2017) Methylation effect on IPT5b gene expression determines cytokinin biosynthesis in apple rootstock. Biochem Biophys Res Commun 482(4):604–609

    Article  CAS  PubMed  Google Scholar 

  • Gan L, Song M, Wang X, Yang N, Liu H, Li Y (2022) Cytokinins are involved in regulation of tomato pericarp thickness and fruit size. Hortic Res. 9:041

    Article  Google Scholar 

  • Giné-Bordonaba J, Echeverria G, Duaigües E, Bobo G, Larrigaudière C (2019) A comprehensive study on the main physiological and biochemical changes occurring during growth and on-tree ripening of two apple varieties with different postharvest behaviour. Plant Physiol Biochem 135:601–610

    Article  PubMed  Google Scholar 

  • Harada T, Kurahashi W, Yanai M, Wakasa Y, Satoh T (2005) Involvement of cell proliferation and cell enlargement in increasing the fruit size of Malus species. Sci Hortic 105(4):447–456

    Article  CAS  Google Scholar 

  • He H, Yamamuro C (2022) Interplays between auxin and GA signaling coordinate early fruit development. Hortic Res. 9:078

    Article  Google Scholar 

  • Hollender CA, Dardick C (2015) Molecular basis of angiosperm tree architecture. New Phytol 6:541–556

    Article  Google Scholar 

  • Hou X, Ding L, Yu H (2013) Crosstalk between GA and JA signaling mediates plant growth and defense. Plant Cell Rep 32:1067–1074

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Jiang Y, Han X, Wang H, Pan J, Yu D (2017) Jasmonate regulates leaf senescence and tolerance to cold stress: crosstalk with other phytohormones. J Exp Bot 68(6):1361–1369

    Article  CAS  PubMed  Google Scholar 

  • Huang YY, Yang WL, Pei Z, Guo XL, Liu DC, Sun JZ, Zhang AM (2012) The genes for gibberellin biosynthesis in wheat. Funct Integr Genomic 12(1):199–206

    Article  CAS  Google Scholar 

  • Jia D, Gong X, Li M, Li C, Sun T, Ma F (2018) Overexpression of a novel apple NAC transcription factor gene, MdNAC1, confers the dwarf phenotype in transgenic apple (Malus domestica). Genes 9:229

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia P, Xing L, Zhang C, Chen H, Lia Y, Zhang D, Ma J, Zhao C, Han M, Ren X, An N (2021) MdKNOX15, a class I knotted-like transcription factor of apple, controls flowering and plant height by regulating GA levels through promoting the MdGA2ox7 transcription. Environ Exp Bot 185:104411

    Article  CAS  Google Scholar 

  • Kumar A, Sharma DP, Kumar P, Sharma G, Suprun II (2022) Comprehensive insights on apple (Malus × domestica Borkh) bud sport mutations and epigenetic regulations. Sci Hortic 297:110979

    Article  Google Scholar 

  • Li H (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34(18):3094–3100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Zhang Y, Einhorn TC, Cheng L (2014) Comparison of phenolic metabolism and primary metabolism between green ‘Anjou’ pear and its bud mutation, red ‘Anjou.’ Physiol Plant 150:339–354

    Article  CAS  PubMed  Google Scholar 

  • Li N, Huang B, Tang N, Jian W, Zou J, Chen J, Cao H, Habib S, Dong X, Wei W, Gao Y, Li Z (2017) The MADS-box gene SlMBP21 regulates sepal size mediated by ethylene and auxin in tomato. Plant Cell Physiol 58:2241–2256

    Article  CAS  PubMed  Google Scholar 

  • Li WF, Ning GX, Mao J, Guo ZG, Chen BH (2019) Whole-genome DNA methylation patterns and complex associations with gene expression associated with anthocyanin biosynthesis in apple fruit skin. Planta 250(3):1833–1847

    Article  CAS  PubMed  Google Scholar 

  • Lim S, Park J, Lee N, Jeong J, Toh S, Watanabe A, Kim J, Kang H, Kim DH, Kawakami N, Choi G (2013) ABA-INSENSITIVE3, ABA-IN-SENSITIVE5, and DELLAs interact to activate the expression of SOMNUS and other high-temperature-inducible genes in imbibed seeds in Arabidopsis. Plant Cell 25(12):4863–4878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using realtime quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Xue H, Zhang L, Zhang F, Ou C, Wang F, Zhang Z (2016) Involvement of auxin and brassinosteroid in dwarfism of autotetraploid apple (Malus x domestica). Sci Rep 6:26719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K (2008) The DDF1 transcriptional activator up-regulates expression of a gibberellin deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. Plant J 56:613–626

    Article  CAS  PubMed  Google Scholar 

  • Meheriuk M (1989) Maturity of spur and standard strains of ‘Mclntosh’ apples. HortScience 24(6):978–979

    Article  Google Scholar 

  • Nomoto M, Skelly MJ, Itaya T, Mori T, Suzuki T, Matsushita T, Kuwata K, Mori H, Yamamoto YY (2021) Suppression of MYC transcription activators by the immune cofactor NPR1 fine-tunes plant immune responses. Cell Rep 37(11):110125

    Article  CAS  PubMed  Google Scholar 

  • Pereda PI, Aroca R (2014) Ethylene role in tomato plant response to plant growth promoting rhizobacteria (PGPR) under drought stress conditions. European Plant Science Retreat Amsterdam

  • Petit RJ, Hampe A (2006) Some evolutionary consequences of being a tree. Annu Rev Ecol Evol S 37:187–214

    Article  Google Scholar 

  • Qi W, Sun F, Wang Q, Chen M, Huang Y, Feng YQ, Luo X, Yang J (2011) Rice ethylene-response AP2/ERF factor OsEATB restricts internode elongation by down-regulating a gibberellin biosynthetic gene. Plant Physiol 157:216–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross JJ, Weston DE, Davidson SE, Reid JB (2011) Plant hormone interactions: how complex are they? Physiol Plant 141:299–309

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Morinaka Y, Ishiyama K, Kobayashi M, Itoh H, Kayano T, Iwahori S, Matsuoka M, Tanaka H (2003) Genetic manipulation of gibberellin metabolism in transgenic rice. Nat Biotechnol 21:909–913

    Article  CAS  PubMed  Google Scholar 

  • Schäfer M, Brütting C, Canales IM, Großkinsky DK, Vankova R, Baldwin IT, Meldau S (2015) The role of cis-zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions. J Exp Bot 66(16):4873–4884

    Article  PubMed  Google Scholar 

  • Seleznyova A, Thorp G, White M, Tustin S, Costes E (2003) Structural development of branches of Royal Gala apple grafted on different rootstock/interstock combinations. Ann Bot 91:1–8

    Google Scholar 

  • Shao X, Wu S, Dou T, Zhu H, Hu C, Huo H, He W, Deng G, Sheng O, Bi F, Gao H, Dong T, Li C, Yang Q, Yi G (2020) Using CRISPR/Cas9 genome editing system to create MaGA20ox2 gene-modified semi-dwarf banana. Plant Biotechnol J 18(1):17–19

    Article  CAS  PubMed  Google Scholar 

  • Song C, Dong Z, Zheng L, Zhang J, Zhang B, Luo W, Li Y, Li J, Ma J, Han M (2017) miRNA and degradome sequencing reveal miRNA and their target genes that may mediate shoot growth in spur type mutant “Yanfu 6.” Front Plant Sci 8:441

    Article  PubMed  PubMed Central  Google Scholar 

  • Su WR, Huang KL, Shen RS, Chen WS (2002) Abscisic acid affects floral initiation in Polianthes tuberosa. J Plant Physiol 159(5):557–559

    Article  CAS  Google Scholar 

  • Sun X, Wen C, Hou H, Huo H, Zhu J, Dai H, Zhang Y (2020) Genes involved in strigolactone biosyntheses and their expression analyses in columnar apple and standard apple. Biol Plant 64:68–76

    Article  CAS  Google Scholar 

  • Sun C, Wang C, Zhang W, Liu S, Wang W, Yu X, Song T, Yu M, Yu W, Qu S (2021a) The R2R3-type MYB transcription factor MdMYB90-like is responsible for the enhanced skin color of an apple bud sport mutant. Hortic Res 8:156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Wen C, Xu J, Wang Y, Zhu J, Zhang Y (2021b) The apple columnar gene candidate MdCoL and the AP2/ERF factor MdDREB2 positively regulate ABA biosynthesis by activating the expression of MdNCED6/9. Tree Physiol 41(6):1065–1076

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Zhang B, Yang C, Wang W, Xiang L, Wang Y, Chan Z (2022) Jasmonic acid biosynthetic genes TgLOX4 and TgLOX5 are involved in daughter bulb development in tulip (Tulipa gesneriana). Hortic Res 9:006

    Article  Google Scholar 

  • Vallee JE (1989) Apple tree ‘Vallee Spur’. United States Patent: Plant 6702

  • Wang Y, Li J (2008) Molecular basis of plant architecture. Annu Rev Plant Biol 59:253–279

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Liu Z, Sun C, Shi Q, Yao Y, You C, Hao Y (2012) Functional characterization of the apple MhGAI1 gene through ectopic expression and grafting experiments in tomatoes. J Plant Physiol 169:303–310

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Zhao Y, Han P, Yu J, Hao Y, Xu Q, You C, Hu D (2012) Auxin response factor gene MdARF2 is involved in ABA signaling and salt stress response in apple. J Integr Agr 21:2264

    Article  Google Scholar 

  • Wang B, Smith SM, Li J (2018) Genetic regulation of shoot architecture. Annu Rev Plant Biol 69:437–468

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Suzuki A, Komori S, Bessho H (2004) Comparison of endogenous IAA and cytokinins in shoots of columnar and normal type apple trees. Engei Gakkai Zasshi 73(1):19–24

    Article  CAS  Google Scholar 

  • Watanabe D, Takahashi I, Jaroensanti-Tanaka N, Miyazaki S, Jiang K, Nakayasu M, Wada M, Asami T, Mizutani M, Okada K, Nakajima M (2021) The apple gene responsible for columnar tree shape reduces the abundance of biologically active gibberellin. Plant J 105:1026–1034

    Article  CAS  PubMed  Google Scholar 

  • Yan T, Mei C, Song H, Shan D, Sun Y, Hu Z, Wang L, Zhang T, Wang J, Kong J (2022) Potential roles of melatonin and ABA on apple dwarfing in semi-arid area of Xinjiang China. PeerJ 10:e13008

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang DL, Yao J, Mei CS, Tong XH, Zeng LJ, Li Q, Xiao LT, Sun TP, Li J, Deng XW, Lee CM, Thomashow MF (2012) Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc Nat Acad Sci USA 109(19):E1192–E1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Mao J, Zuo CW, Tian FJ, Li WF, Dawuda MM, Ma ZH, Chen BH (2019) Branch age and angle as crucial drivers of leaf photosynthetic performance and fruiting in high-density planting: A study case in spur-type apple “Vallee Spur” (Malus domestica). Sci Hortic 246:898–906

    Article  Google Scholar 

  • Yu X, Li L, Zola J, Aluru M, Ye H, Foudree A, Guo H, Anderson S, Aluru S, Liu P, Rodermel S, Yin Y (2011) A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. Plant J 65:634–646

    Article  CAS  PubMed  Google Scholar 

  • Zahra S, Amin B, Mehdi Y (2010) The salicylic acid effect on the tomato (Lycopersicum esculentum Mill) germination, growth and photosynthetic pigment under salinity stress (NaCl). J Stress Physiol Biochem. 6(3):4–16

    Google Scholar 

  • Zhang D, Shen X, Zhang H, Huang X, He H, Ye J, Cardinale F, Liu J, Liu J, Li G (2022) Integrated transcriptomic and metabolic analyses reveal that ethylene enhances peach susceptibility to Lasiodiplodia theobromae-induced gummosis. Hortic Res 9:019

    Article  Google Scholar 

  • Zhao X, Sun XF, Zhao LL, Huang LJ, Wang PC (2022) Morphological, transcriptomic and metabolomic analyses of Sophora davidii mutants for plant height. BMC Plant Biol 22:144

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng L, Gao C, Zhao C, Zhang L, Han M, An N, Ren X (2019) Effects of brassinosteroid associated with auxin and gibberellin on apple tree growth and gene expression patterns. Hortic Plant J 5(3):93–108

    Article  Google Scholar 

  • Zhou X, Lindsa H, Robinson MD (2014) Robustly detecting differential expression in RNA sequencing data using observation weights. Nucleic Acids Res 42(11):91

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Gansu Agricultural University Public Recruitment Doctoral Research Project (GAU-KYQD-2020-28), Education science and technology innovation project of Gansu Province (GSSYLXM-02), Gansu Provincial Science and Technology Planning Project (21JR7RA845), 2021 Sheng Tongsheng Innovation Fund Special Project of Gansu Agricultural University (GSAU-STS-2021-28), and the Science and Technology Major Project of Gansu Province (22ZD6NA045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bai-Hong Chen.

Ethics declarations

Conflict of interest

Authors declare that they do not have any conflict of interest.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 Table S1 Sequence of primers used for qRT-PCR analysis (DOC 40 KB)

425_2023_4086_MOESM2_ESM.xls

Supplementary file2 Dataset S1 The classification and concentration of plant hormones in shoot apex of NSP and SP. (XLS 66 KB)

425_2023_4086_MOESM3_ESM.xls

Supplementary file3 Dataset S2 Gene composition and mean CPM (counts per million) value of the plant hormone signal transduction (ko04075), alpha-linolenic acid metabolism (ko00592), and cysteine and methionine metabolism (ko00270) pathways. (XLS 74 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, WF., Ma, ZH., Guo, ZG. et al. Insights on the stem elongation of spur-type bud sport mutant of ‘Red Delicious’ apple. Planta 257, 48 (2023). https://doi.org/10.1007/s00425-023-04086-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-023-04086-3

Keywords

Navigation