Skip to main content
Log in

Micro- and nano-plastics pollution and its potential remediation pathway by phytoremediation

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

This review proposed that phytoremediation could be applied for the decontamination of MPs/NPs.

Abstract

Micro- and nano-plastics (MPs < 5 mm; NPs < 100 nm) are emerging contaminants. Much of the recent concerns have focused on the investigation of their pollution and their potential eco-toxicity. Yet little review was available on the decontamination of MPs/NPs. Recently, the uptake of MPs/NPs by plants has been confirmed. Here, in view of the current knowledge, this review introduces MPs/NPs pollution and highlights the updated information about the interaction between MPs/NPs and plants. This review proposed that phytoremediation could be a potential possible way for the in situ remediation of MPs/NPs-contaminated environment. The possible mechanisms, influencing factors, and existing problems are summarized, and further research needs are proposed. This review herein provides new insights into the development of plant-based process for emerging pollutants decontamination, as well as the alleviation of MPs/NPs-induced toxicity to the ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Auta HS, Emenike CU, Fauziah SH (2017) Screening of bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation. Environ Pollut 231(Pt 2):1552–1559

    Article  CAS  Google Scholar 

  • Azeem I, Adeel M, Ahmad MA, Shakoor N, Jiangcuo GD, Azeem K, Ishfaq M, Shakoor A, Ayaz M, Xu M, Rui Y (2021) Uptake and accumulation of nano/microplastics in plants: a critical review. Nanomaterials 11(11):2935

    Article  CAS  Google Scholar 

  • Bandmann V, Müller JD, Köhler T, Homann U (2012) Uptake of fluorescent nano beads into BY2-cells involves clathrin-dependent and clathrin-independent endocytosis. FEBS Lett 586(20):3626–3632

    Article  CAS  Google Scholar 

  • Bao Y, Ma J, Pan C, Guo A, Li Y, Xing B (2020) Citric acid enhances Ce uptake and accumulation in rice seedlings exposed to CeO2 nanoparticles and iron plaque attenuates the enhancement. Chemosphere 240:124897–124907

    Article  CAS  Google Scholar 

  • Bhattacharya P, Lin S, Turner JP, Ke PC (2010) Physical adsorption of charged plastic nanoparticles affects algal photosynthesis. J Phys Chem C 114(39):16556–16561

    Article  CAS  Google Scholar 

  • Blanco I, Ingrao C, Siracusa V (2020) Life-cycle assessment in the polymeric sector: a comprehensive review of application experiences on the Italian scale. Polymers 12(6):1212

    Article  CAS  Google Scholar 

  • Boots B, Russell CW, Green DS (2019) Effects of microplastics in soil ecosystems: above and below ground. Environ Sci Technol 53(19):11496–11506

    Article  CAS  Google Scholar 

  • Bora K, Geun Cheol S, Choong-Min R (2016) Root exudation by aphid leaf infestation recruits root-associated Paenibacillus spp. to lead plant insect susceptibility. J Microbiol Biotechnol 26:549–557

    Article  Google Scholar 

  • Bosker T, Bouwman LJ, Brun NR, Behrens P, Vijver MG (2019) Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere 226:774–781

    Article  CAS  Google Scholar 

  • Boucher J, Friot D (2017) Primary microplastics in the oceans: a global evaluation of sources. Iucn Gland, Switzerland

  • Brandts I, Teles M, Gonçalves AP, Barreto A, Franco-Martinez L, Tvarijonaviciute A, Martins MA, Soares AMVM, Tort L, Oliveira M (2018) Effects of nanoplastics on Mytilus galloprovincialis after individual and combined exposure with carbamazepine. Sci Total Environ 643:775–784

    Article  CAS  Google Scholar 

  • Capozzi F, Carotenuto R, Giordano S, Spagnuolo V (2018) Evidence on the effectiveness of mosses for biomonitoring of microplastics in fresh water environment. Chemosphere 205:1–7

    Article  CAS  Google Scholar 

  • Chen G, Feng Q, Wang J (2020) Mini-review of microplastics in the atmosphere and their risks to humans. Sci Total Environ 703:135504–135509

    Article  CAS  Google Scholar 

  • Claessens M, De Meester S, Van Landuyt L, De Clerck K, Janssen CR (2011) Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Mar Pollut Bull 62(10):2199–2204

    Article  CAS  Google Scholar 

  • Cunningham EM, Ehlers SM, Dick JTA, Sigwart JD, Linse K, Dick JJ, Kiriakoulakis K (2020) High abundances of microplastic pollution in deep-sea sediments: evidence from antarctica and the southern ocean. Environ Sci Technol 54(21):13661–13671

    Article  CAS  Google Scholar 

  • Dodson GZ, Shotorban AK, Hatcher PG, Waggoner DC, Ghosal S, Noffke N (2020) Microplastic fragment and fiber contamination of beach sediments from selected sites in Virginia and North Carolina, USA. Mar Pollut Bull 151:110869–110879

    Article  CAS  Google Scholar 

  • Dong Y, Gao M, Qiu W, Song Z (2021) Uptake of microplastics by carrots in presence of As (III): combined toxic effects. J Hazard Mater 411:125055

    Article  CAS  Google Scholar 

  • Dovidat LC, Brinkmann BW, Vijver MG, Bosker T (2020) Plastic particles adsorb to the roots of freshwater vascular plant Spirodela polyrhiza but do not impair growth. Limnol Oceanogr Lett 5(1):37–45

    Article  Google Scholar 

  • Eriksen M, Mason S, Wilson S, Box C, Zellers A, Edwards W, Farley H, Amato S (2013) Microplastic pollution in the surface waters of the Laurentian Great Lakes. Mar Pollut Bull 77(1–2):177–182

    Article  CAS  Google Scholar 

  • Gao M, Liu Y, Dong Y, Song Z (2021) Effect of polyethylene particles on dibutyl phthalate toxicity in lettuce (Lactuca sativa L.). J Hazard Mater 401:123422

    Article  CAS  Google Scholar 

  • Giorgetti L, Spanò C, Muccifora S, Bottega S, Barbieri F, Bellani L, Ruffini Castiglione M (2020) Exploring the interaction between polystyrene nanoplastics and Allium cepa during germination: internalization in root cells, induction of toxicity and oxidative stress. Plant Physiol Bioch 149:170–177

    Article  CAS  Google Scholar 

  • Gong X, Huang D, Liu Y, Zeng G, Wang R, Wan J, Zhang C, Cheng M, Qin X, Xue W (2017) Stabilized nanoscale zerovalent iron mediated cadmium accumulation and oxidative damage of Boehmeria nivea (L.) Gaudich cultivated in cadmium contaminated sediments. Environ Sci Technol 51(19):11308–11316

    Article  CAS  Google Scholar 

  • Guo JJ, Huang XP, Xiang L, Wang YZ, Wong MH (2020) Source, migration and toxicology of microplastics in soil. Environ Int 137:105263–105275

    Article  CAS  Google Scholar 

  • Gutow L, Eckerlebe A, Gimenez L, Saborowski R (2016) Experimental evaluation of seaweeds as a vector for microplastics into marine food webs. Environ Sci Technol 50(2):915–923

    Article  CAS  Google Scholar 

  • Guzzetti E, Sureda A, Tejada S, Faggio C (2018) Microplastic in marine organism: environmental and toxicological effects. Environ Toxicol Pharmacol 64:164–171

    Article  CAS  Google Scholar 

  • Hodson ME, Duffus-Hodson CA, Clark A, Prendergast-Miller MT, Thorpe KL (2017) Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates. Environ Sci Technol 51(8):4714–4721

    Article  CAS  Google Scholar 

  • Huang Y, Liu Q, Jia W, Yan C, Wang J (2020) Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environ Pollut 260:114096

    Article  CAS  Google Scholar 

  • Jeong CB, Kang HM, Lee YH, Kim MS, Lee JS, Seo JS, Wang M, Lee JS (2018) Nanoplastic ingestion enhances toxicity of persistent organic pollutants (POPs) in the monogonont rotifer brachionus koreanus via multixenobiotic resistance (MXR) disruption. Environ Sci Technol 52(19):11411–11418

    Article  CAS  Google Scholar 

  • Jiang X, Chen H, Liao Y, Ye Z, Li M, Klobučar G (2019) Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environ Pollut 250:831–838

    Article  CAS  Google Scholar 

  • Kelly A, Lannuzel D, Rodemann T, Meiners KM, Auman HJ (2020) Microplastic contamination in east Antarctic sea ice. Mar Pollut Bull 154:111130–111136

    Article  CAS  Google Scholar 

  • Klein S, Worch E, Knepper TP (2015) Occurrence and spatial distribution of microplastics in river shore sediments of the rhine-main area in Germany. Environ Sci Technol 49(10):6070–6076

    Article  CAS  Google Scholar 

  • Koelmans AA, Bakir A, Burton GA, Janssen CR (2016) Microplastic as a vector for chemicals in the aquatic environment: critical review and model-supported reinterpretation of empirical studies. Environ Sci Technol 50(7):3315–3326

    Article  CAS  Google Scholar 

  • Lehner R, Weder C, Petri-Fink A, Rothen-Rutishauser B (2019) Emergence of nanoplastic in the environment and possible impact on human health. Environ Sci Technol 53(4):1748–1765

    Article  CAS  Google Scholar 

  • Lett Z, Hall A, Skidmore S, Alves NJ (2021) Environmental microplastic and nanoplastic: exposure routes and effects on coagulation and the cardiovascular system. Environ Pollut 291:118190

    Article  CAS  Google Scholar 

  • Li R, Zhang L, Xue B, Wang Y (2019) Abundance and characteristics of microplastics in the mangrove sediment of the semi-enclosed Maowei Sea of the south China sea: new implications for location, rhizosphere, and sediment compositions. Environ Pollut 244:685–692

    Article  CAS  Google Scholar 

  • Li L, Liu D, Song K, Zhou Y (2020a) Performance evaluation of MBR in treating microplastics polyvinylchloride contaminated polluted surface water. Mar Pollut Bull 150:110724

    Article  CAS  Google Scholar 

  • Li L, Luo Y, Li R, Zhou Q, Peijnenburg WJGM, Yin N, Yang J, Tu C, Zhang Y (2020b) Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nat Sustain 3:929–937

    Article  Google Scholar 

  • Li L, Luo Y, Peijnenburg WJGM, Li R, Yang J, Zhou Q (2020c) Confocal measurement of microplastics uptake by plants. MethodsX 7:100750–100756

    Article  Google Scholar 

  • Li Z, Li Q, Li R, Zhou J, Wang G (2021) The distribution and impact of polystyrene nanoplastics on cucumber plants. Environ Sci Pollut R 28:1–12

    Google Scholar 

  • Li J, Yu S, Yu Y, Xu M (2022) Effects of microplastics on higher plants: a review. B Environ Contam Tox 109(2):241–265

    Article  CAS  Google Scholar 

  • Lian J, Wu J, Xiong H, Zeb A, Yang T, Su X, Su L, Liu W (2020) Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.). J Hazard Mater 385:121620–121630

    Article  CAS  Google Scholar 

  • Liu W, Hou J, Wang Q, Yang H, Luo Y, Christie P (2014) Collection and analysis of root exudates of Festuca arundinacea L. and their role in facilitating the phytoremediation of petroleum-contaminated soil. Plant Soil 389(1–2):109–119

    Google Scholar 

  • Liu K, Wang X, Song Z, Wei N, Li D (2020) Terrestrial plants as a potential temporary sink of atmospheric microplastics during transport. Sci Total Environ 742:140523–140529

    Article  CAS  Google Scholar 

  • Liu D, Guo Z-F, Xu Y-Y, Ka Shun Chan F, Xu Y-Y, Johnson M, Zhu Y-G (2022) Widespread occurrence of microplastics in marine bays with diverse drivers and environmental risk. Environ Int 168:107483

    Article  CAS  Google Scholar 

  • Lozano YM, Rillig MC (2020) Effects of microplastic fibers and drought on plant communities. Environ Sci Technol 54(10):6166–6173

    Article  CAS  Google Scholar 

  • Luo H, Xiang Y, He D, Li Y, Zhao Y, Wang S, Pan X (2019) Leaching behavior of fluorescent additives from microplastics and the toxicity of leachate to Chlorella vulgaris. Sci Total Environ 678:1–9

    Article  CAS  Google Scholar 

  • Luo Y, Zhang Y, Xu Y, Guo X, Zhu L (2020) Distribution characteristics and mechanism of microplastics mediated by soil physicochemical properties. Sci Total Environ 726:138389–138395

    Article  CAS  Google Scholar 

  • Mao Y, Ai H, Chen Y, Zhang Z, Zeng P, Kang L, Li W, Gu W, He Q, Li H (2018) Phytoplankton response to polystyrene microplastics: perspective from an entire growth period. Chemosphere 208:59–68

    Article  CAS  Google Scholar 

  • Mateos-Cárdenas A, Scott DT, Seitmaganbetova G, van Pelt Frank NAM, John OH, Marcel AKJ (2019) Polyethylene microplastics adhere to Lemna minor (L.), yet have no effects on plant growth or feeding by Gammarus duebeni (Lillj.). Sci Total Environ 689:413–421

    Article  Google Scholar 

  • Oliviero M, Tato T, Schiavo S, Fernandez V, Manzo S, Beiras R (2019) Leachates of micronized plastic toys provoke embryotoxic effects upon sea urchin Paracentrotus lividus. Environ Pollut 247:706–715

    Article  CAS  Google Scholar 

  • Paço A, Duarte K, da Costa JP, Santos PSM, Pereira R, Pereira ME, Freitas AC, Duarte AC, Rocha-Santos TAP (2017) Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. Sci Total Environ 586:10–15

    Article  Google Scholar 

  • Pfohl P, Wagner M, Meyer L, Domercq P, Praetorius A, Hüffer T, Hofmann T, Wohlleben W (2022) Environmental degradation of microplastics: how to measure fragmentation rates to secondary micro- and nanoplastic fragments and dissociation into dissolved organics. Environ Sci Technol 56(16):11323–11334

    Article  CAS  Google Scholar 

  • Pico Y, Alfarhan A, Barcelo D (2019) Nano- and microplastic analysis: focus on their occurrence in freshwater ecosystems and remediation technologies. TrAC Trends Anal Chem 113:409–425

    Article  CAS  Google Scholar 

  • Pignattelli S, Broccoli A, Renzi M (2020) Physiological responses of garden cress (L. sativum) to different types of microplastics. Sci Total Environ 727:138609–138616

    Article  CAS  Google Scholar 

  • Pino NJ, Muñera LM, Peñuela GA (2016) Root exudates and plant secondary metabolites of different plants enhance polychlorinated biphenyl degradation by rhizobacteria. Biorem J 20(2):108–116

    Article  CAS  Google Scholar 

  • PlasticsEurope (2021) Plastics–the facts 2020. PlasticsEurope 1:1–64

    Google Scholar 

  • Qi Y, Yang X, Pelaez AM, Huerta Lwanga E, Beriot N, Gertsen H, Garbeva P, Geissen V (2018) Macro- and micro- plastics in soil-plant system: effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci Total Environ 645:1048–1056

    Article  CAS  Google Scholar 

  • Rajala K, Grönfors O, Hesampour M, Mikola A (2020) Removal of microplastics from secondary wastewater treatment plant effluent by coagulation/flocculation with iron, aluminum and polyamine-based chemicals. Water Res 183:116045

    Article  CAS  Google Scholar 

  • Rogers KL, Carreres Calabuig JA, Gorokhova E, Posth NR (2020) Micro-by-micro interactions: how microorganisms influence the fate of marine microplastics. Limnol Oceanogr Lett 5(1):18–36

    Article  CAS  Google Scholar 

  • Rotjan RD, Sharp KH, Gauthier AE, Yelton R, Urban-Rich J (2019) Patterns, dynamics and consequences of microplastic ingestion by the temperate coral, Astrangia poculata. P Roy Soc B Biol Sci 286(1905):20190726

    CAS  Google Scholar 

  • Rozman U, Jemec Kokalj A, Dolar A, Drobne D, Kalčíková G (2022) Long-term interactions between microplastics and floating macrophyte Lemna minor: the potential for phytoremediation of microplastics in the aquatic environment. Sci Total Environ 831:154866

    Article  CAS  Google Scholar 

  • Seng N, Lai S, Fong J, Saleh MF, Cheng C, Cheok ZY, Todd PA (2020) Early evidence of microplastics on seagrass and macroalgae. Mar Freshwater Res 71(8):922–928

    Article  Google Scholar 

  • Shahul Hamid F, Bhatti MS, Anuar N, Anuar N, Mohan P, Periathamby A (2018) Worldwide distribution and abundance of microplastic: how dire is the situation? Waste Manag Res 36(10):873–897

    Article  Google Scholar 

  • Shang H, Guo H, Ma C, Li C, Chefetz B, Polubesova T, Xing B (2019) Maize (Zea mays L.) root exudates modify the surface chemistry of CuO nanoparticles: altered aggregation, dissolution and toxicity. Sci Total Environ 690:502–510

    Article  CAS  Google Scholar 

  • Sun XD, Yuan XZ, Jia Y, Feng LJ, Zhu FP, Dong SS, Liu J, Kong X, Tian H, Duan JL, Ding Z, Wang SG, Xing B (2020) Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nat Nanotechnol 15(9):755–760

    Article  CAS  Google Scholar 

  • Sun H, Lei C, Xu J, Li R (2021) Foliar uptake and leaf-to-root translocation of nanoplastics with different coating charge in maize plants. J Hazard Mater 416:125854

    Article  CAS  Google Scholar 

  • Sundbæk KB, Koch IDW, Villaro CG, Rasmussen NS, Holdt SL, Hartmann NB (2018) Sorption of fluorescent polystyrene microplastic particles to edible seaweed Fucus vesiculosus. J Appl Phycol 30(5):2923–2927

    Article  Google Scholar 

  • Taylor SE, Pearce CI, Sanguinet KA, Hu D, Chrisler WB, Kim YM, Wang Z, Flury M (2020) Polystyrene nano- and microplastic accumulation at Arabidopsis and wheat root cap cells, but no evidence for uptake into roots. Environ Sci-Nano 7:1942–1953

    Article  CAS  Google Scholar 

  • Teng J, Zhao J, Zhu X, Shan E, Zhang C, Zhang W, Wang Q (2021) Toxic effects of exposure to microplastics with environmentally relevant shapes and concentrations: accumulation, energy metabolism and tissue damage in oyster Crassostrea gigas. Environ Pollut 269:116169

    Article  CAS  Google Scholar 

  • Teng M, Zhao X, Wang C, Wang C, White JC, Zhao W, Zhou L, Duan M, Wu F (2022) Polystyrene nanoplastics toxicity to zebrafish: dysregulation of the brain–intestine–microbiota axis. ACS Nano 16(5):8190–8204

    Article  CAS  Google Scholar 

  • Thompson RC, Olsen Y, Mitchell RP, Davis A, Rowland SJ, Anthony WGJ, McGonigle D, Russell AE (2004) Lost at sea: where is all the plastic? Science 304(5672):838

    Article  CAS  Google Scholar 

  • Tian C, Lv J, Zhang W, Wang H, Chao J, Chai L, Lin Z (2022) Accelerated degradation of microplastics at the liquid interface of ice crystals in frozen aqueous solutions. Angew Chem Int Ed 61(31):e202206947

    Article  CAS  Google Scholar 

  • Torrent L, Iglesias M, Marguí E, Hidalgo M, Verdaguer D, Llorens L, Kodre A, Kavčič A, Vogel-Mikuš K (2020) Uptake, translocation and ligand of silver in Lactuca sativa exposed to silver nanoparticles of different size, coatings and concentration. J Hazard Mater 384:121201–121214

    Article  CAS  Google Scholar 

  • Urbina MA, Correa F, Aburto F, Ferrio JP (2020) Adsorption of polyethylene microbeads and physiological effects on hydroponic maize. Sci Total Environ 741:140216–140225

    Article  CAS  Google Scholar 

  • Vianello A, Boldrin A, Guerriero P, Moschino V, Rella R, Sturaro A, Da Ros L (2013) Microplastic particles in sediments of Lagoon of Venice, Italy: first observations on occurrence, spatial patterns and identification. Estuar Coast Shelf S 130:54–61

    Article  CAS  Google Scholar 

  • Wang F, Zhang X, Zhang S, Zhang S, Sun Y (2020) Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil. Chemosphere 254:126791–126800

    Article  CAS  Google Scholar 

  • Wang X, Bolan N, Tsang DCW, Sarkar B, Bradney L, Li Y (2021) A review of microplastics aggregation in aquatic environment: influence factors, analytical methods, and environmental implications. J Hazard Mater 402:123496

    Article  CAS  Google Scholar 

  • Wojcieszek J, Jimenez-Lamana J, Bierla K, Ruzik L, Asztemborska M, Jarosz M, Szpunar J (2019) Uptake, translocation, size characterization and localization of cerium oxide nanoparticles in radish (Raphanus sativus L.). Sci Total Environ 683:284–292

    Article  CAS  Google Scholar 

  • Wright SL, Kelly FJ (2017) Plastic and human health: a micro issue? Environ Sci Technol 51(12):6634–6647

    Article  CAS  Google Scholar 

  • Wu S, Zhang X, Chen B, Wu Z, Li T, Hu Y, Sun Y, Wang Y (2016) Chromium immobilization by extraradical mycelium of arbuscular mycorrhiza contributes to plant chromium tolerance. Environ Exp Bot 122:10–18

    Article  CAS  Google Scholar 

  • Wu X, Lyu X, Li Z, Gao B, Zeng X, Wu J, Sun Y (2020) Transport of polystyrene nanoplastics in natural soils: Effect of soil properties, ionic strength and cation type. Sci Total Environ 707:136065–136071

    Article  CAS  Google Scholar 

  • Xiong X, Zhang K, Chen X, Shi H, Luo Z, Wu C (2018) Sources and distribution of microplastics in China’s largest inland lake - Qinghai Lake. Environ Pollut 235:899–906

    Article  CAS  Google Scholar 

  • Xiong YW, Li XW, Wang TT, Gong Y, Zhang CM, Xing K, Qin S (2020) Root exudates-driven rhizosphere recruitment of the plant growth-promoting rhizobacterium Bacillus flexus KLBMP 4941 and its growth-promoting effect on the coastal halophyte Limonium sinense under salt stress. Ecotoxicol Environ Saf 194:110374–110383

    Article  CAS  Google Scholar 

  • Xu B, Liu F, Cryder Z, Huang D, Lu Z, He Y, Wang H, Lu Z, Brookes PC, Tang C, Gan J, Xu J (2020a) Microplastics in the soil environment: occurrence, risks, interactions and fate – a review. Crit Rev Env Sci Tec 50(21):2175–2222

    Article  CAS  Google Scholar 

  • Xu Y, Li J, Guo Z, Wang J (2020b) Changes of soil physical and chemical properties and heavy metals after planting different plants. IOP Conf Ser Earth Environ Sci 514:52007–52011

    Article  Google Scholar 

  • Ye X, Li H, Wang Q, Chai R, Ma C, Gao H, Mao J (2018) Influence of aspartic acid and lysine on the uptake of gold nanoparticles in rice. Ecotoxicol Environ Saf 148:418–425

    Article  CAS  Google Scholar 

  • Yuan J, Ma J, Sun Y, Zhou T, Zhao Y, Yu F (2020) Microbial degradation and other environmental aspects of microplastics/plastics. Sci Total Environ 715:136968–136976

    Article  CAS  Google Scholar 

  • Zhang T-R, Wang C-X, Dong F-Q, Gao Z-Y, Zhang C-J, Zhang X-J, Fu L-M, Wang Y, Zhang J-P (2019a) Uptake and translocation of styrene maleic anhydride nanoparticles in Murraya exotica plants as revealed by noninvasive, real-time optical bioimaging. Environ Sci Technol 53(3):1471–1481

    Article  CAS  Google Scholar 

  • Zhang X, Chen J, Liu X, Chen X, Liu L, Niu Y, Wang R (2019b) The relief effects of organic acids on Scirpus triqueter L. under pyrene-lead stress. Environ Sci Pollut Res Int 26(16):15828–15837

    Article  CAS  Google Scholar 

  • Zhang Q, Xu EG, Li J, Chen Q, Ma L, Zeng EY, Shi H (2020) A review of microplastics in table salt, drinking water, and air: direct human exposure. Environ Sci Technol 54(7):3740–3751

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Hunan Province, China (No. 2021JJ40258, No. 2021JJ0098, No. 2020JJ5984 and No. 2018JJ3522), the Program for the National Natural Science Foundation of China (No. 51809019) and the Innovation platform and talent plan of Hunan Province (No. 2020RC2056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomin Gong.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, X., Shi, G., Zou, D. et al. Micro- and nano-plastics pollution and its potential remediation pathway by phytoremediation. Planta 257, 35 (2023). https://doi.org/10.1007/s00425-023-04069-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-023-04069-4

Keywords

Navigation