Abstract
Main conclusion
Members of Apiales are monophyletic and radiated in the Late Cretaceous. Fruit morphologies are critical for Apiales evolution and negative selection and mutation pressure play important roles in environmental adaptation.
Abstract
Apiales include many foods, spices, medicinal, and ornamental plants, but the phylogenetic relationships, origin and divergence, and adaptive evolution remain poorly understood. Here, we reconstructed Apiales phylogeny based on 72 plastid genes from 280 species plastid genomes representing six of seven families of this order. Highly supported phylogenetic relationships were detected, which revealed that each family of Apiales is monophyletic and confirmed that Pennanticeae is a member of Apiales. Genera Centella and Dickinsia are members of Apiaceae, and the genus Hydrocotyle previously classified into Apiaceae is confirmed to belong to Araliaceae. Besides, coalescent phylogenetic analysis and gene trees cluster revealed ten genes that can be used for distinguishing species among families of Apiales. Molecular dating suggested that the Apiales originated during the mid-Cretaceous (109.51 Ma), with the families’ radiation occurring in the Late Cretaceous. Apiaceae species exhibit higher differentiation compared to other families. Ancestral trait reconstruction suggested that fruit morphological evolution may be related to shifts in plant types (herbaceous or woody), which in turn is related to the distribution areas and species numbers. Codon bias and positive selection analyses suggest that negative selection and mutation pressure may play important roles in environmental adaptation of Apiales members. Our results improve the phylogenetic framework of Apiales and provide insights into the origin, divergence, and adaptive evolution of this order and its members.











Data availability
All data generated or analyzed during this study are included in this published article and in its online supplemental material.
Abbreviations
- BEB:
-
Bayesian empirical bayes
- CUB:
-
Codon usage bias
- HPD:
-
Highest posterior density
- PCG:
-
Protein-coding gene
- PSSs:
-
Positively selected amino acid sites
References
Ai B, Gao Y, Zhang XL, Tao JJ, Kang M, Huang HW (2015) Comparative transcriptome resources of eleven Primulina species, a group of “stone plants” from a biodiversity hotspot. Mol Ecol Res 15(3):619–632
Andrews S, Lindenbaum P, Howard B, Ewels P (2011) FastQC: a quality control tool for high throughput sequence data. The Babraham Institute, Cambridge, UK
Baczyński J, Miobdzka A, Banasiak U (2021) Morphology of pollen in Apiales (Asterids, Eudicots). Phytotaxa 478(1):1–32
Bakker K, van Steenis CGGJ (1957) Pittosporaceae. In: van Steenis CGGJ (ed) Flora Malesiana Series I: Spermatophyta, vol 5. Noordhoff-Kolff N.V., Jakarta, Indonesia, pp 345–362
Beaulieu JM, Donoghue MJ (2014) Fruit evolution and diversification in campanulid angiosperms. Evolution 67(11):3132–3144
Bennett MD, Leitch IJ (2005) Plant DNA C-values Database (release 4.0). http://www.rbgkew.org.uk/cval/ database1.html
Bessey CE (1897) Phylogeny and taxonomy of the angiosperms. Science 6(141):398–401
Bittrich V, Kadereit JW (2018) Introduction to the orders of this volume. In: Kadereit JW, Bittrich V (eds) The families and genera of vascular plants, XV. Flowering plants. Eudicots: Apiales, Gentianales (except Rubiaceae). Springer, Cham, pp 1–8
Bremer K, Friis EM, Bremer B (2004) Molecular phylogenetic dating of asterid flowering plants shows early Cretaceous diversification. Syst Biol 53(3):496–505
Calviño CI, Teruel FE, Downie SR (2016) The role of the southern hemisphere in the evolutionary history of Apiaceae, a mostly north temperate plant family. J Biogeogr 43(2):398–409
Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25(15):1972–1973
Carneiro M, Albert FW, Melo-Ferreira J, Galtier N, Gayral P, Blanco-Aguiar JA, Villafuerte R, Nachman MW, Ferrand N (2012) Evidence for widespread positive and purifying selection across the european rabbit (Oryctolagus cuniculus) Genome. Mol Biol Evol 29(7):1837–1849
Chandler G, Plunkett G (2004) Evolution in Apiales: nuclear and chloroplast markers together in (almost) perfect harmony. Bot J Linn Soc 144(2):123–147
Clarkson JJ, Zuntini AR, Maurin O, Dowine SR, Plunkett GM, Nicolas AN, Smith JF, Feist MAE, Gutierrez K, Malakasi P, Bailey P, Brewer GE, Epitawalage N, Zmarzty S, Forest F, Baker WJ (2021) A higher-level nuclear phylogenomic study of the carrot family (Apiaceae). Am J Bot 108(7):1252–1269
Cronquist A (1988) The evolution and classification of flowering plants, 2nd edn. New York Botanical Garden, New York
Dalla Costa TP, Silva MC, de Santana LA, Pacheco TG, de Oliveira J, de Baura VA, Balsanelli E, de Souza EM, de Oliveira PF, Rogalski M (2022) The plastome of Melocactus glaucescens Buining & Brederoo reveals unique evolutionary features and loss of essential tRNA genes. Planta 255(3):57
Darriba DD, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Method 9(8):772
Di Marco M, Santini L (2015) Human pressures predict species’ geographic range size better than biological traits. Glob Change Biol 21(6):2169–2178
Dierckxsens N, Mardulyn P, Smits G (2017) NOVOPlasty: denovo assembly of organelle genomes from whole genome data. Nucleic Acids Res 45(4):e18
Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214
Duret L (2002) Evolution of synonymous codon usage in metazoans. Curr Opin Genet Dev 12(6):640–649
Friis E, Bremer B (2004) Molecular phylogenetic dating of Asterid flowering plants shows early Cretaceous diversification. Syst Biol 53(3):496–505
Galtier N, Roux C, Rousselle M, Romiguier J, Figuet E, Glémin S, Bierne N, Duret L (2018) Codon usage bias in animals: disentangling the effects of natural selection, effective population size, and GC-biased gene conversion. Mol Biol Evol 35(5):1092–1103
Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755
Hurst LD (2002) The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends Genet 18(9):486–487
Jiménez-Mejías P, Vargas P (2015) Taxonomy of the tribe Apieae (Apiaceae) revisited as revealed by molecular phylogenies and morphological characters. Phytotaxa 212(1):57–79
Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24(11):1403–1405
Kårehed J (2003) The family Pennantiaceae and its relationships to Apiales. Bot J Linn Soc 141:1–24
Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30(14):3059–3066
Kawabe A, Miyashita NT (2003) Patterns of codon usage bias in three dicot and four monocot plant species. Genes Genet Syst 78(5):343–352
Kendall M, Colijn C (2016) Mapping phylogenetic trees to reveal distinct patterns of evolution. Mol Biol Evol 33(10):2735–2743
Kliman RM, Irving N, Santiago M (2003) Selection conflicts, gene expression, and codon usage trends in yeast. J Mol Evol 57(1):98–109
Lagomarsino LP, Antonelli A, Muchhala N, Timmermann A, Mathews S, Davis CC (2014) Phylogeny, classification, and fruit evolution of the species-rich neotropical bellflowers (Campanulaceae: Lobelioideae). Am J Bot 101(12):2097–2112
Lan Y, Sun J, Tian RM, Bartlett DH, Li RS, Wong YH, Zhang WP, Qiu JW, Xu T, He LS, Tabata HG, Qian PY (2017) Molecular adaptation in the world’s deepestliving animal: insights from transcriptome sequencing of the hadal amphipod Hirondellea gigas. Mol Ecol 26(14):3732–3743
Li HT, Yi TS, Gao LM, Ma PF, Li D (2019) Origin of angiosperms and the puzzle of the Jurassic gap. Nat Plants 5(5):461–470
Li J, Cai J, Qin HH, Price M, Zhang Z, Yu Y, Xie DF, He XJ, Zhou SD, Gao XF (2022) Phylogeny, age, and evolution of tribe Lilieae (Liliaceae) based on whole plastid genomes. Front Plant Sci 12:699226
Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11):1451–1452
Liu MR, Downie SR (2017) The phylogenetic significance of fruit anatomical and micromorphological structures in Chinese Heracleum species and related taxa (Apiaceae). Syst Bot 42(2):313–325
Magallón S, Gómez-Acevedo S, Sánchez-Reyes L, Hernández-Hernández T (2015) A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytol 207(2):437–453
Magallon S, Sanderson MJ (2001) Absolute diversification rates in angiosperm clades. Evolution 55(9):1762–1780
Manchester SR, Collinson ME, Soriano C, Sykes D (2017) Homologous fruit characters in geographically separated genera of extant and fossil Torricelliaceae (Apiales). Int J Plant Sci 178(7):567–579
Martínez-Millán M (2010) Fossil record and age of the Asteridae. Bot Rev 76(1):83–135
Maurin K (2020) A dated phylogeny of the genus Pennantia (Pennantiaceae) based on whole chloroplast genome and nuclear ribosomal 18S–26S repeat region sequences. PhytoKeys 155(2):15–32
Mugal CF, Weber CC, Ellegren H (2015) GC-biased gene conversion links the recombination landscape and demography to genomic base composition: GC-biased gene conversion drives genomic base composition across a wide range of species. BioEssays 37(12):1317–1326
Nicolas AN, Plunkett GM (2009) The demise of subfamily Hydrocotyloideae (Apiaceae) and the re-alignment of its genera across the entire order Apiales. Mol Phylogenet Evol 53(1):134–151
Nicolas AN, Plunkett GM (2014) Diversification times and biogeographic patterns in Apiales. Bot Rev 80(1):30–58
Nielsen R (2005) Molecular signatures of natural selection. Annu Rev Genet 39:197–218
Nuraliev MS, Sokoloff DD, Oskolski AA (2017) Evolutionary floral morphology of Araliaceae: a case study of the Asian Schefflera: MAKS Press. Russia, Moscow
Nuraliev MS, Sokoloff DD, Karpunina PV, Oskolski AA (2019) Patterns of diversity of floral symmetry in angiosperms: a case study of the order Apiales. Symmetry 11(4):1–26
Nylander J (2004) MrModeltest v2. Program distributed by the author. Evolutionary biology centre uppsala university
Pimenov MG, Kljuykov EV (2003) Notes on some Sino-Himalayan species of Angelica and Ostericum (Umbelliferae). Willdenowia 33(1):121–137
Plunkett GM, Lowry II (2001) Relationships among “Ancient Araliads” and their significance for the systematics of Apiales. Mol Phylogenet Evol 19(2):259–276
Plunkett GM, Soltis DE, Soltis PS (1996) Higher level relationships of Apiales (Apiaceae and Araliaceae) based on phylogenetic analysis of rbcL sequences. Am J Bot 83(4):499–515
Plunkett GM, Soltis DE, Soltis PS (1997) Clarification of the relationship between Apiaceae and Araliaceae based on matK and rbcL sequence data. Am J Bot 84(4):565–580
Plunkett GM, Chandler GT, Ii P, Pinney SM, Sprenkle TS, Wyk B, Tilney PM (2004) Recent advances in understanding Apiales and a revised classification. S Afr J Bot 70(3):371–381
Ramírez-Barahona S, Sauquet H, Magallon S (2020) The delayed and geographically heterogeneous diversification of flowering plant families. Nat Ecol Evol 4(9):1232–1238
Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574
Shi L, Chen H, Jiang M, Wang L, Wu X, Huang L, Liu C (2019) CPGAVAS2, an integrated plastome sequence annotator and analyzer. Nucleic Acids Res 47(1):65–73
Smith JF (2001) High species diversity in fleshy-fruited tropical understory plants. Am Nat 157(6):646–653
Sokoloff DD, Karpunina PV, Nuraliev MS, Oskolski AA (2018) Flower structure and development in Melanophylla (Torricelliaceae: Apiales): lability in direction of corolla contortion and orientation of pseudomonomerous gynoecium in a campanulid eudicot. Bot J Linn Soc 187(2):247–271
Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313
Sueoka N (1988) Directional mutation pressure and neutral molecular evolution. Proc Natl Acad Sci USA 85:2653–2657
Sueoka N (1995) Intrastrand parity rules of DNA base composition and usage biases of synonymous codons. J Mol Evol 40(3):318–325
Sueoka N (1999) Translation-coupled violation of Parity Rule 2 in human genes is not the cause of heterogeneity of the DNA G+C content of third codon position. Gene 238(1):53–58
Tank DC, Eastman JM, Pennell MW, Soltis PS, Soltis DE, Hinchliff C, Brown JW, Sessa EB, Harmon LJ (2015) Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications. New Phytol 207(2):454–467
Taylor DW, Brenner GJ, Basha SH (2008) Scutifolium jordanicum gen. et sp. nov. (Cabombaceae), an aquatic fossil plant from the lower Cretaceous of Jordan, and the relationships of related leaf fossils to living genera. Am J Bot 95(3):340–352
Uddin A, Chakraborty S (2014) Mutation pressure dictates codon usage pattern in mitochondrial Atpase8 in some mammalian species. Int J Sci Res 3:2206–2212
Vieira C, Steen F, D’Hondt S, Bafort Q, Tyberghein L, Fernandez-García C, Wysor B, Tronholm A, Mattio L, Payri C (2021) Global biogeography and diversification of a group of brown seaweeds (Phaeophyceae) driven by clade-specific evolutionary processes. J Biogeogr 48:703–715
Weiss H, Friedrich T, Hofhaus G, Preis D (1991) The respiratorychain NADH dehydrogenase (complex I) of mitochondria. Eur J Biochem 3:563–576
Wen J, Yu Y, Xie DF, Peng C, Liu Q, Zhou SD, He XJ (2020) A transcriptome-based study on the phylogeny and evolution of the taxonomically controversial subfamily Apioideae (Apiaceae). Ann Bot 125(6):937–953
Wen J, Xie DF, Price M, Ren T, Deng YQ, Gui LJ, Guo XL, He XJ (2021) Backbone phylogeny and evolution of Apioideae (Apiaceae): New insights from phylogenomic analyses of plastome data. Mol Phylogenet Evol 161:107183
Wikström N, Savolainen V, Chase MW (2001) Evolution of the angiosperms: calibrating the family tree. P Roy Soc b:-Biol Sci 268(1482):2211–2220
Wojewódzka A, Baczyński J, Banasiak Ł, Downie SR, Czarnocka-Cieciura A, Gierek M, Frankiewicz K, Spalik K (2019) Evolutionary shifts in fruit dispersal syndromes in Apiaceae tribe Scandiceae. Plant Syst Evol 305(2):401–414
Wright F (1990) The ‘effective number of codons’ used in a gene. Gene 87(1):23–29
Xie DF, Huan-Xi YU, Price M, Xie C, He XJ (2019) Phylogeny of chinese Allium species in section Daghestanica and adaptive evolution of Allium (Amaryllidaceae, Allioideae) species revealed by the chloroplast complete genome. Front Plant Sci 10:1–15
Xie DF, Tan JB, Yu Y, Gui LJ, Su DM, Zhou SD, He XJ (2020) Insights into phylogeny, age and evolution of Allium (Amaryllidaceae) based on the whole plastome sequences. Ann Bot 125(7):1039–1055
Yamamoto H, Peng L, Fukao Y, Shikanai T (2011) An Src homology 3 domain-like fold protein forms a ferredoxin binding site for the chloroplast NADH dehydrogenase-like complex in Arabidopsis. Plant Cell 23(4):1480–1493
Yang ZH (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591
Yang Z, Bielawski JP (2000) Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15(12):496–503
Yang ZH, Dos RM (2011) Statistical properties of the branch-site test of positive selection. Mol Biol Evol 28(3):1217–1228
Yang ZH, Wong WSW, Nielsen R (2005) Bayes Empirical Bayes Inference of amino acid sites under positive selection. Mol Biol Evol 22(4):1107–1118
Yang X, Luo X, Cai X (2014) Analysis of codon usage pattern in Taenia saginata based on a transcriptome dataset. Parasites Vectors 7:527
Yu Y, Blair C, He X (2020) RASP 4: Ancestral state reconstruction tool for multiple genes and characters. Mol Biol Evol 37(2):604–606
Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, Fitzjohn RG, Mcglinn DJ, O’Meara BC, Moles AT, Reich PB (2014) Correction: Corrigendum: Three keys to the radiation of angiosperms into freezing environments. Nature 514(7522):394–394
Zhang WJ, Jie Z, Li ZF, Wang L, Xun G, Zhong Y (2007) Comparative analysis of codon usage patterns among mitochondrion, chloroplast and nuclear genes in Triticum aestivum L. J Integr Plant Biol 49(2):246–254
Zhao Y, Zhang R, Jiang K, Qi J, Ma H (2021) Nuclear phylotranscriptomics/phylogenomics support numerous polyploidization events and hypotheses for the evolution of rhizobial nitrogen-fixing symbiosis in Fabaceae. Mol Plant 14(5):748–773
Zhou M, Guo J, Cha J, Chae M, Chen S, Barral JM, Sachs MS, Liu Y (2013) Non-optimal codon usage affects expression, structure and function of clock protein FRQ. Nature 495(7439):111–115
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant Nos. 32100180, 32070221, and 32170209), the China Postdoctoral Science Foundation (2020M683303), and the Fundamental Research Funds for the Central Universities (2021SCU12097, SCU2022D003).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Communicated by Dorothea Bartels.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
425_2022_4031_MOESM3_ESM.tif
Supplementary file3 The detailed estimated divergence time of each species in Apiales. Blue bars and numbers above represent the 95 % highest posterior density (95% HPD) for each node, and the node ages are listed after the nodes (TIF 7397 KB)
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Xie, DF., Xie, C., Ren, T. et al. Plastid phylogenomic insights into relationships, divergence, and evolution of Apiales. Planta 256, 117 (2022). https://doi.org/10.1007/s00425-022-04031-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00425-022-04031-w