Skip to main content
Log in

Plastid phylogenomic insights into relationships, divergence, and evolution of Apiales

Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Members of Apiales are monophyletic and radiated in the Late Cretaceous. Fruit morphologies are critical for Apiales evolution and negative selection and mutation pressure play important roles in environmental adaptation.

Abstract

Apiales include many foods, spices, medicinal, and ornamental plants, but the phylogenetic relationships, origin and divergence, and adaptive evolution remain poorly understood. Here, we reconstructed Apiales phylogeny based on 72 plastid genes from 280 species plastid genomes representing six of seven families of this order. Highly supported phylogenetic relationships were detected, which revealed that each family of Apiales is monophyletic and confirmed that Pennanticeae is a member of Apiales. Genera Centella and Dickinsia are members of Apiaceae, and the genus Hydrocotyle previously classified into Apiaceae is confirmed to belong to Araliaceae. Besides, coalescent phylogenetic analysis and gene trees cluster revealed ten genes that can be used for distinguishing species among families of Apiales. Molecular dating suggested that the Apiales originated during the mid-Cretaceous (109.51 Ma), with the families’ radiation occurring in the Late Cretaceous. Apiaceae species exhibit higher differentiation compared to other families. Ancestral trait reconstruction suggested that fruit morphological evolution may be related to shifts in plant types (herbaceous or woody), which in turn is related to the distribution areas and species numbers. Codon bias and positive selection analyses suggest that negative selection and mutation pressure may play important roles in environmental adaptation of Apiales members. Our results improve the phylogenetic framework of Apiales and provide insights into the origin, divergence, and adaptive evolution of this order and its members.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Data availability

All data generated or analyzed during this study are included in this published article and in its online supplemental material.

Abbreviations

BEB:

Bayesian empirical bayes

CUB:

Codon usage bias

HPD:

Highest posterior density

PCG:

Protein-coding gene

PSSs:

Positively selected amino acid sites

References

  • Ai B, Gao Y, Zhang XL, Tao JJ, Kang M, Huang HW (2015) Comparative transcriptome resources of eleven Primulina species, a group of “stone plants” from a biodiversity hotspot. Mol Ecol Res 15(3):619–632

    Article  CAS  Google Scholar 

  • Andrews S, Lindenbaum P, Howard B, Ewels P (2011) FastQC: a quality control tool for high throughput sequence data. The Babraham Institute, Cambridge, UK

    Google Scholar 

  • Baczyński J, Miobdzka A, Banasiak U (2021) Morphology of pollen in Apiales (Asterids, Eudicots). Phytotaxa 478(1):1–32

    Article  Google Scholar 

  • Bakker K, van Steenis CGGJ (1957) Pittosporaceae. In: van Steenis CGGJ (ed) Flora Malesiana Series I: Spermatophyta, vol 5. Noordhoff-Kolff N.V., Jakarta, Indonesia, pp 345–362

    Google Scholar 

  • Beaulieu JM, Donoghue MJ (2014) Fruit evolution and diversification in campanulid angiosperms. Evolution 67(11):3132–3144

    Article  Google Scholar 

  • Bennett MD, Leitch IJ (2005) Plant DNA C-values Database (release 4.0). http://www.rbgkew.org.uk/cval/ database1.html

  • Bessey CE (1897) Phylogeny and taxonomy of the angiosperms. Science 6(141):398–401

    Article  CAS  PubMed  Google Scholar 

  • Bittrich V, Kadereit JW (2018) Introduction to the orders of this volume. In: Kadereit JW, Bittrich V (eds) The families and genera of vascular plants, XV. Flowering plants. Eudicots: Apiales, Gentianales (except Rubiaceae). Springer, Cham, pp 1–8

  • Bremer K, Friis EM, Bremer B (2004) Molecular phylogenetic dating of asterid flowering plants shows early Cretaceous diversification. Syst Biol 53(3):496–505

    Article  PubMed  Google Scholar 

  • Calviño CI, Teruel FE, Downie SR (2016) The role of the southern hemisphere in the evolutionary history of Apiaceae, a mostly north temperate plant family. J Biogeogr 43(2):398–409

    Article  Google Scholar 

  • Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25(15):1972–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carneiro M, Albert FW, Melo-Ferreira J, Galtier N, Gayral P, Blanco-Aguiar JA, Villafuerte R, Nachman MW, Ferrand N (2012) Evidence for widespread positive and purifying selection across the european rabbit (Oryctolagus cuniculus) Genome. Mol Biol Evol 29(7):1837–1849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandler G, Plunkett G (2004) Evolution in Apiales: nuclear and chloroplast markers together in (almost) perfect harmony. Bot J Linn Soc 144(2):123–147

    Article  Google Scholar 

  • Clarkson JJ, Zuntini AR, Maurin O, Dowine SR, Plunkett GM, Nicolas AN, Smith JF, Feist MAE, Gutierrez K, Malakasi P, Bailey P, Brewer GE, Epitawalage N, Zmarzty S, Forest F, Baker WJ (2021) A higher-level nuclear phylogenomic study of the carrot family (Apiaceae). Am J Bot 108(7):1252–1269

    Article  PubMed  Google Scholar 

  • Cronquist A (1988) The evolution and classification of flowering plants, 2nd edn. New York Botanical Garden, New York

    Google Scholar 

  • Dalla Costa TP, Silva MC, de Santana LA, Pacheco TG, de Oliveira J, de Baura VA, Balsanelli E, de Souza EM, de Oliveira PF, Rogalski M (2022) The plastome of Melocactus glaucescens Buining & Brederoo reveals unique evolutionary features and loss of essential tRNA genes. Planta 255(3):57

    Article  CAS  PubMed  Google Scholar 

  • Darriba DD, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Method 9(8):772

    Article  CAS  Google Scholar 

  • Di Marco M, Santini L (2015) Human pressures predict species’ geographic range size better than biological traits. Glob Change Biol 21(6):2169–2178

    Article  Google Scholar 

  • Dierckxsens N, Mardulyn P, Smits G (2017) NOVOPlasty: denovo assembly of organelle genomes from whole genome data. Nucleic Acids Res 45(4):e18

    PubMed  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  PubMed  PubMed Central  Google Scholar 

  • Duret L (2002) Evolution of synonymous codon usage in metazoans. Curr Opin Genet Dev 12(6):640–649

    Article  CAS  PubMed  Google Scholar 

  • Friis E, Bremer B (2004) Molecular phylogenetic dating of Asterid flowering plants shows early Cretaceous diversification. Syst Biol 53(3):496–505

    Article  PubMed  Google Scholar 

  • Galtier N, Roux C, Rousselle M, Romiguier J, Figuet E, Glémin S, Bierne N, Duret L (2018) Codon usage bias in animals: disentangling the effects of natural selection, effective population size, and GC-biased gene conversion. Mol Biol Evol 35(5):1092–1103

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755

    Article  CAS  PubMed  Google Scholar 

  • Hurst LD (2002) The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends Genet 18(9):486–487

    Article  PubMed  Google Scholar 

  • Jiménez-Mejías P, Vargas P (2015) Taxonomy of the tribe Apieae (Apiaceae) revisited as revealed by molecular phylogenies and morphological characters. Phytotaxa 212(1):57–79

    Article  Google Scholar 

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24(11):1403–1405

    Article  CAS  PubMed  Google Scholar 

  • Kårehed J (2003) The family Pennantiaceae and its relationships to Apiales. Bot J Linn Soc 141:1–24

    Article  Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30(14):3059–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawabe A, Miyashita NT (2003) Patterns of codon usage bias in three dicot and four monocot plant species. Genes Genet Syst 78(5):343–352

    Article  CAS  PubMed  Google Scholar 

  • Kendall M, Colijn C (2016) Mapping phylogenetic trees to reveal distinct patterns of evolution. Mol Biol Evol 33(10):2735–2743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kliman RM, Irving N, Santiago M (2003) Selection conflicts, gene expression, and codon usage trends in yeast. J Mol Evol 57(1):98–109

    Article  CAS  PubMed  Google Scholar 

  • Lagomarsino LP, Antonelli A, Muchhala N, Timmermann A, Mathews S, Davis CC (2014) Phylogeny, classification, and fruit evolution of the species-rich neotropical bellflowers (Campanulaceae: Lobelioideae). Am J Bot 101(12):2097–2112

    Article  PubMed  Google Scholar 

  • Lan Y, Sun J, Tian RM, Bartlett DH, Li RS, Wong YH, Zhang WP, Qiu JW, Xu T, He LS, Tabata HG, Qian PY (2017) Molecular adaptation in the world’s deepestliving animal: insights from transcriptome sequencing of the hadal amphipod Hirondellea gigas. Mol Ecol 26(14):3732–3743

    Article  CAS  PubMed  Google Scholar 

  • Li HT, Yi TS, Gao LM, Ma PF, Li D (2019) Origin of angiosperms and the puzzle of the Jurassic gap. Nat Plants 5(5):461–470

    Article  PubMed  Google Scholar 

  • Li J, Cai J, Qin HH, Price M, Zhang Z, Yu Y, Xie DF, He XJ, Zhou SD, Gao XF (2022) Phylogeny, age, and evolution of tribe Lilieae (Liliaceae) based on whole plastid genomes. Front Plant Sci 12:699226

    Article  PubMed  PubMed Central  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11):1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Liu MR, Downie SR (2017) The phylogenetic significance of fruit anatomical and micromorphological structures in Chinese Heracleum species and related taxa (Apiaceae). Syst Bot 42(2):313–325

    Article  Google Scholar 

  • Magallón S, Gómez-Acevedo S, Sánchez-Reyes L, Hernández-Hernández T (2015) A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytol 207(2):437–453

    Article  PubMed  Google Scholar 

  • Magallon S, Sanderson MJ (2001) Absolute diversification rates in angiosperm clades. Evolution 55(9):1762–1780

    Article  CAS  PubMed  Google Scholar 

  • Manchester SR, Collinson ME, Soriano C, Sykes D (2017) Homologous fruit characters in geographically separated genera of extant and fossil Torricelliaceae (Apiales). Int J Plant Sci 178(7):567–579

    Article  Google Scholar 

  • Martínez-Millán M (2010) Fossil record and age of the Asteridae. Bot Rev 76(1):83–135

    Article  Google Scholar 

  • Maurin K (2020) A dated phylogeny of the genus Pennantia (Pennantiaceae) based on whole chloroplast genome and nuclear ribosomal 18S–26S repeat region sequences. PhytoKeys 155(2):15–32

    Article  PubMed  PubMed Central  Google Scholar 

  • Mugal CF, Weber CC, Ellegren H (2015) GC-biased gene conversion links the recombination landscape and demography to genomic base composition: GC-biased gene conversion drives genomic base composition across a wide range of species. BioEssays 37(12):1317–1326

    Article  CAS  PubMed  Google Scholar 

  • Nicolas AN, Plunkett GM (2009) The demise of subfamily Hydrocotyloideae (Apiaceae) and the re-alignment of its genera across the entire order Apiales. Mol Phylogenet Evol 53(1):134–151

    Article  CAS  PubMed  Google Scholar 

  • Nicolas AN, Plunkett GM (2014) Diversification times and biogeographic patterns in Apiales. Bot Rev 80(1):30–58

    Article  Google Scholar 

  • Nielsen R (2005) Molecular signatures of natural selection. Annu Rev Genet 39:197–218

    Article  CAS  PubMed  Google Scholar 

  • Nuraliev MS, Sokoloff DD, Oskolski AA (2017) Evolutionary floral morphology of Araliaceae: a case study of the Asian Schefflera: MAKS Press. Russia, Moscow

    Google Scholar 

  • Nuraliev MS, Sokoloff DD, Karpunina PV, Oskolski AA (2019) Patterns of diversity of floral symmetry in angiosperms: a case study of the order Apiales. Symmetry 11(4):1–26

    Article  Google Scholar 

  • Nylander J (2004) MrModeltest v2. Program distributed by the author. Evolutionary biology centre uppsala university

  • Pimenov MG, Kljuykov EV (2003) Notes on some Sino-Himalayan species of Angelica and Ostericum (Umbelliferae). Willdenowia 33(1):121–137

    Article  Google Scholar 

  • Plunkett GM, Lowry II (2001) Relationships among “Ancient Araliads” and their significance for the systematics of Apiales. Mol Phylogenet Evol 19(2):259–276

    Article  CAS  PubMed  Google Scholar 

  • Plunkett GM, Soltis DE, Soltis PS (1996) Higher level relationships of Apiales (Apiaceae and Araliaceae) based on phylogenetic analysis of rbcL sequences. Am J Bot 83(4):499–515

    Article  CAS  Google Scholar 

  • Plunkett GM, Soltis DE, Soltis PS (1997) Clarification of the relationship between Apiaceae and Araliaceae based on matK and rbcL sequence data. Am J Bot 84(4):565–580

    Article  CAS  PubMed  Google Scholar 

  • Plunkett GM, Chandler GT, Ii P, Pinney SM, Sprenkle TS, Wyk B, Tilney PM (2004) Recent advances in understanding Apiales and a revised classification. S Afr J Bot 70(3):371–381

    Article  Google Scholar 

  • Ramírez-Barahona S, Sauquet H, Magallon S (2020) The delayed and geographically heterogeneous diversification of flowering plant families. Nat Ecol Evol 4(9):1232–1238

    Article  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Shi L, Chen H, Jiang M, Wang L, Wu X, Huang L, Liu C (2019) CPGAVAS2, an integrated plastome sequence annotator and analyzer. Nucleic Acids Res 47(1):65–73

    Article  Google Scholar 

  • Smith JF (2001) High species diversity in fleshy-fruited tropical understory plants. Am Nat 157(6):646–653

    Article  CAS  PubMed  Google Scholar 

  • Sokoloff DD, Karpunina PV, Nuraliev MS, Oskolski AA (2018) Flower structure and development in Melanophylla (Torricelliaceae: Apiales): lability in direction of corolla contortion and orientation of pseudomonomerous gynoecium in a campanulid eudicot. Bot J Linn Soc 187(2):247–271

    Article  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sueoka N (1988) Directional mutation pressure and neutral molecular evolution. Proc Natl Acad Sci USA 85:2653–2657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sueoka N (1995) Intrastrand parity rules of DNA base composition and usage biases of synonymous codons. J Mol Evol 40(3):318–325

    Article  CAS  PubMed  Google Scholar 

  • Sueoka N (1999) Translation-coupled violation of Parity Rule 2 in human genes is not the cause of heterogeneity of the DNA G+C content of third codon position. Gene 238(1):53–58

    Article  CAS  PubMed  Google Scholar 

  • Tank DC, Eastman JM, Pennell MW, Soltis PS, Soltis DE, Hinchliff C, Brown JW, Sessa EB, Harmon LJ (2015) Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications. New Phytol 207(2):454–467

    Article  PubMed  Google Scholar 

  • Taylor DW, Brenner GJ, Basha SH (2008) Scutifolium jordanicum gen. et sp. nov. (Cabombaceae), an aquatic fossil plant from the lower Cretaceous of Jordan, and the relationships of related leaf fossils to living genera. Am J Bot 95(3):340–352

    Article  PubMed  Google Scholar 

  • Uddin A, Chakraborty S (2014) Mutation pressure dictates codon usage pattern in mitochondrial Atpase8 in some mammalian species. Int J Sci Res 3:2206–2212

    Google Scholar 

  • Vieira C, Steen F, D’Hondt S, Bafort Q, Tyberghein L, Fernandez-García C, Wysor B, Tronholm A, Mattio L, Payri C (2021) Global biogeography and diversification of a group of brown seaweeds (Phaeophyceae) driven by clade-specific evolutionary processes. J Biogeogr 48:703–715

    Article  Google Scholar 

  • Weiss H, Friedrich T, Hofhaus G, Preis D (1991) The respiratorychain NADH dehydrogenase (complex I) of mitochondria. Eur J Biochem 3:563–576

    Article  Google Scholar 

  • Wen J, Yu Y, Xie DF, Peng C, Liu Q, Zhou SD, He XJ (2020) A transcriptome-based study on the phylogeny and evolution of the taxonomically controversial subfamily Apioideae (Apiaceae). Ann Bot 125(6):937–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen J, Xie DF, Price M, Ren T, Deng YQ, Gui LJ, Guo XL, He XJ (2021) Backbone phylogeny and evolution of Apioideae (Apiaceae): New insights from phylogenomic analyses of plastome data. Mol Phylogenet Evol 161:107183

    Article  PubMed  Google Scholar 

  • Wikström N, Savolainen V, Chase MW (2001) Evolution of the angiosperms: calibrating the family tree. P Roy Soc b:-Biol Sci 268(1482):2211–2220

    Article  Google Scholar 

  • Wojewódzka A, Baczyński J, Banasiak Ł, Downie SR, Czarnocka-Cieciura A, Gierek M, Frankiewicz K, Spalik K (2019) Evolutionary shifts in fruit dispersal syndromes in Apiaceae tribe Scandiceae. Plant Syst Evol 305(2):401–414

    Article  Google Scholar 

  • Wright F (1990) The ‘effective number of codons’ used in a gene. Gene 87(1):23–29

    Article  CAS  PubMed  Google Scholar 

  • Xie DF, Huan-Xi YU, Price M, Xie C, He XJ (2019) Phylogeny of chinese Allium species in section Daghestanica and adaptive evolution of Allium (Amaryllidaceae, Allioideae) species revealed by the chloroplast complete genome. Front Plant Sci 10:1–15

    Article  Google Scholar 

  • Xie DF, Tan JB, Yu Y, Gui LJ, Su DM, Zhou SD, He XJ (2020) Insights into phylogeny, age and evolution of Allium (Amaryllidaceae) based on the whole plastome sequences. Ann Bot 125(7):1039–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto H, Peng L, Fukao Y, Shikanai T (2011) An Src homology 3 domain-like fold protein forms a ferredoxin binding site for the chloroplast NADH dehydrogenase-like complex in Arabidopsis. Plant Cell 23(4):1480–1493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang ZH (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Bielawski JP (2000) Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15(12):496–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang ZH, Dos RM (2011) Statistical properties of the branch-site test of positive selection. Mol Biol Evol 28(3):1217–1228

    Article  CAS  PubMed  Google Scholar 

  • Yang ZH, Wong WSW, Nielsen R (2005) Bayes Empirical Bayes Inference of amino acid sites under positive selection. Mol Biol Evol 22(4):1107–1118

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Luo X, Cai X (2014) Analysis of codon usage pattern in Taenia saginata based on a transcriptome dataset. Parasites Vectors 7:527

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Blair C, He X (2020) RASP 4: Ancestral state reconstruction tool for multiple genes and characters. Mol Biol Evol 37(2):604–606

    Article  CAS  PubMed  Google Scholar 

  • Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, Fitzjohn RG, Mcglinn DJ, O’Meara BC, Moles AT, Reich PB (2014) Correction: Corrigendum: Three keys to the radiation of angiosperms into freezing environments. Nature 514(7522):394–394

    Article  CAS  Google Scholar 

  • Zhang WJ, Jie Z, Li ZF, Wang L, Xun G, Zhong Y (2007) Comparative analysis of codon usage patterns among mitochondrion, chloroplast and nuclear genes in Triticum aestivum L. J Integr Plant Biol 49(2):246–254

    Article  CAS  Google Scholar 

  • Zhao Y, Zhang R, Jiang K, Qi J, Ma H (2021) Nuclear phylotranscriptomics/phylogenomics support numerous polyploidization events and hypotheses for the evolution of rhizobial nitrogen-fixing symbiosis in Fabaceae. Mol Plant 14(5):748–773

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Guo J, Cha J, Chae M, Chen S, Barral JM, Sachs MS, Liu Y (2013) Non-optimal codon usage affects expression, structure and function of clock protein FRQ. Nature 495(7439):111–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 32100180, 32070221, and 32170209), the China Postdoctoral Science Foundation (2020M683303), and the Fundamental Research Funds for the Central Universities (2021SCU12097, SCU2022D003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Jin He.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, DF., Xie, C., Ren, T. et al. Plastid phylogenomic insights into relationships, divergence, and evolution of Apiales. Planta 256, 117 (2022). https://doi.org/10.1007/s00425-022-04031-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-022-04031-w

Keywords

Navigation