Abstract
Main conclusion
Foliar Se (IV) application at 100 mg/kg can act as a positive bio-stimulator of redox, photosynthesis, and nutrient metabolism in alfalfa via phenotypes, nutritional compositions, biochemistry, combined with transcriptome analysis.
Abstract
Selenium (Se) is an essential element for mammals, and plants are the primary source of dietary Se. However, Se usually has dual (beneficial/toxic) effects on the plant itself. Alfalfa (Medicago sativa L.) is one of the most important forage resources in the world due to its high nutritive value. In this study, we have investigated the effects of sodium selenite (Se (IV)) (0, 100, 200, 300, and 500 mg/kg) on eco-physiological, biochemical, and transcriptional mechanisms in alfalfa. The phenotypic and nutritional composition alterations revealed that lower Se (IV) (100 mg/kg) levels positively affected alfalfa; it enhanced the antioxidant activity, which may contribute to redox homeostasis and chloroplast function. At 100 mg/kg Se (IV) concentration, the H2O2, and malondialdehyde (MDA) contents decreased by 36.72% and 22.62%, respectively, whereas the activity of glutathione peroxidase (GPX) increased by 31.10%. Se supplementation at 100 mg/kg increased the plant pigments contents, the light-harvesting capacity of PSII (Fv/Fm) and PSI (ΔP700max), and the carbon fixation efficiency, which was demonstrated by enhanced photosynthesis (37.6%). Furthermore, alfalfa shifted carbon flux to protein synthesis to improve quality at 100 mg/kg of Se (IV) by upregulating carbohydrate and amino acid metabolic genes. On the contrary, at 500 mg/kg, Se (IV) became toxic. Higher Se (IV) disordered the plant antioxidant system, increasing H2O2 and MDA by 14.2 and 4.3%, respectively. Moreover, photosynthesis was inhibited by 20.2%, and more structural substances, such as lignin, were synthesized. These results strongly suggest that Se (IV) at a concentration of 100 mg/kg act as the positive bio-stimulator of redox metabolism, photosynthesis, and nutrient in alfalfa.








Data availability
All data supporting the findings of this study are available within the paper and within its supplementary data published online. RNA-seq data are available at the NCBI SRA database (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE192349) under accession number GSE192349.
Abbreviations
- ADF:
-
Acid detergent fiber
- ADL:
-
Acid detergent lignin
- CNCPS:
-
Cornell Net Carbohydrate Protein System
- CHO:
-
Carbohydrates
- CP:
-
Rude protein
- EE:
-
Ether extract
- GPX:
-
Glutathione peroxidase
- GSH:
-
Glutathione
- qP:
-
Photochemical quenching
- NDF:
-
Neutral detergent fiber
- NPN:
-
Non-protein nitrogen
- NPQ:
-
Non-photochemical quenching
- POD:
-
Peroxidase
References
Ali B, Wang B, Ali S, Ani MA, Hayat MT, Yang C, Xu L, Zhou WJ (2013) 5-Aminolevulinic acid ameliorates the growth, photosynthetic gas exchange capacity, and ultrastructural changes under cadmium stress in Brassica napus L. J Plant Growth Regul 32(3):604–614. https://doi.org/10.1007/s00344-013-9328-6
Annicchiarico P, Barrett B, Brummer EC, Julier B, Marshall AH (2015) Achievements and challenges in improving temperate perennial forage legumes. Crit Rev Plant Sci 34(1–3):327–380. https://doi.org/10.1080/07352689.2014.898462
Borbély P, Molnár Á, Valyon E, Ördög A, Horváth-Boros K, Csupor D, Fehér A, Kolbert Z (2021) The effect of foliar selenium (Se) treatment on growth, photosynthesis, and oxidative-nitrosative signalling of Stevia rebaudiana leaves. Antioxidants-Basel 10(1):72. https://doi.org/10.3390/antiox10010072
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1):248–254. https://doi.org/10.1016/0003-2697(76)90527-3
Calzadilla PI, Carvalho F, Gomez R, Lima Neto M, Signorelli S (2022) Assessing photosynthesis in plant systems: A cornerstone to aid in the selection of resistant and productive crops. Environ Exp Bot 201:104950. https://doi.org/10.1016/j.envexpbot.2022.104950
Cao D, Liu Y, Ma L, Jin X, Guo G, Tan R, Liu Z, Zheng L, Ye F, Liu W (2018) Transcriptome analysis of differentially expressed genes involved in selenium accumulation in tea plant (Camellia sinensis). PLoS ONE 13(6):e0197506. https://doi.org/10.1371/journal.pone.0197506
Chen L, Yang F, Xu J, Hu Y, Hu Q, Zhang Y, Pan G (2002) Determination of selenium concentration of rice in China and effect of fertilization of selenite and selenate on selenium content of rice. J Agr Food Chem 50(18):5128–5130. https://doi.org/10.1021/jf0201374
Chen H, Zeng Y, Yang Y, Huang L, Tang B, Zhang H, Hao F, Liu W, Li Y, Liu Y, Zhang X, Zhang R, Zhang Y, Li Y, Wang K, He H, Wang Z, Fan G, Yang H, Bao A, Shang Z, Chen J, Wang W, Qiu Q (2020) Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nat Commun 11(1):2494. https://doi.org/10.1038/s41467-020-16338-x
D’Amato R, Fontanella MC, Falcinelli B, Beone GM, Bravi E, Marconi O, Benincasa P, Businelli D (2018) Selenium biofortification in rice (Oryza sativa L.) sprouting: Effects on Se yield and nutritional traits with focus on phenolic acid profile. J Agric Food Chem 66(16):4082–4090. https://doi.org/10.1021/acs.jafc.8b00127
Dong C, Qu G, Guo J, Wei F, Gao S, Sun Z, Jin L, Sun X, Rochaix J-D, Miao Y, Wang R (2021a) Rational design of geranylgeranyl diphosphate synthase enhances carotenoid production and improves photosynthetic efficiency in Nicotiana tabacum. Sci Bull 67(3):315–327. https://doi.org/10.1016/j.scib.2021.07.003
Dong R, Sun G, Yu G (2021b) Estimating in vitro ruminal ammonia-N using multiple linear models and artificial neural networks based on the CNCPS nitrogenous fractions of cattle rations with low concentrate/roughage ratios. J Anim Physiol Anim Nutr (Berl). https://doi.org/10.1111/jpn.13588
DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356. https://doi.org/10.1021/ac60111a017
Fang P, Yan M, Chi C, Wang M, Zhou Y, Zhou J, Shi K, Xia X, Foyer CH, Yu J (2019) Brassinosteroids act as a positive regulator of photoprotection in response to chilling stress. Plant Physiol 180(4):2061–2207. https://doi.org/10.1104/pp.19.00088
Fox DG, Tedeschi LO, Tylutki TP, Russell JB, Van Amburgh ME, Chase LE, Pell AN, Overton TR (2004) The Cornell net carbohydrate and protein system model for evaluating herd nutrition and nutrient excretion. Anim Feed Sci Technol 112(1):29–78. https://doi.org/10.1016/j.anifeedsci.2003.10.006
Fu YY, Mu CS, Gao HW, Li J, Wang XM (2014) Cloning of 18S rRNA gene and stability evaluation of reference genes in Medicago sativa. Plant Physiol J 50(12):1809–1815 ((in Chinese))
Gao H, Zhang Y, Wang W, Zhao K, Liu C, Bai L, Li R, Guo Y (2017) Two membrane-anchored aspartic proteases contribute to pollen and ovule development. Plant Physiol 173(1):219–239. https://doi.org/10.1104/pp.16.01719
García-Cerdán JG, Sveshnikov D, Dewez D, Jansson S, Funk C, Schröder WP (2009) Antisense inhibition of the PsbX protein affects PSII integrity in the higher plant Arabidopsis thaliana. Plant Cell Physiol 50(2):191–202. https://doi.org/10.1093/pcp/pcn188
Garg N, Manchanda GJPB (2009) ROS generation in plants: Boon or bane? Plant Biosyst 143(1):81–96. https://doi.org/10.1080/11263500802633626
Gill RA, Zang L, Ali B, Farooq MA, Cui P, Yang S, Ali S, Zhou W (2015) Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L. Chemosphere 120:154–164. https://doi.org/10.1016/j.chemosphere.2014.06.029
Hall JA, Bobe G, Vorachek WR, Hugejiletu GME, Mosher WD, Pirelli GJ (2013) Effects of feeding selenium-enriched alfalfa hay on immunity and health of weaned beef calves. Biol Trace Elem Res 156(1–3):96–110. https://doi.org/10.1007/s12011-013-9843-0
Horwitz W, Latimer GW (eds) (2005) Official methods of analysis of AOAC international, 18th edn. AOAC International, Gaithersburg, MD, USA
Hossain A, Skalicky M, Brestic M, Maitra S, Sarkar S, Ahmad Z, Vemuri H, Garai S, Mondal M, Bhatt R, Kumar P, Banerjee P, Saha S, Islam T, Laing AM (2021) Selenium biofortification: Roles, mechanisms, responses and prospects. Molecules-Basel 26(4):881. https://doi.org/10.3390/molecules26040881
Hu H, Hu C, Jie X, Liu S, Guo X, Hua D, Ma C, Lu J, Liu H (2010) Effects of selenium on herbage yield, selenium nutrition and quality of alfalfa. J Food Agric Environ 8:23
Jiang C, Zu C, Lu D, Zheng Q, Shen J, Wang H, Li D (2017) Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Sci Rep 7:42039. https://doi.org/10.1038/srep42039
Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480-484. https://doi.org/10.1093/nar/gkm882
Khalvandi M, Amerian M, Pirdashti H, Keramati S (2021) Does co-inoculation of mycorrhiza and Piriformospora indica fungi enhance the efficiency of chlorophyll fluorescence and essential oil composition in peppermint under irrigation with saline water from the Caspian Sea? PLoS ONE 16(7):e0254076. https://doi.org/10.1371/journal.pone.0254076
Khoury CK, Bjorkman AD, Dempewolf H, Ramirez-Villegas J, Guarino L, Jarvis A, Rieseberg LH, Struik PC (2014) Increasing homogeneity in global food supplies and the implications for food security. Proc Natl Acad Sci USA 111(11):4001–4006. https://doi.org/10.1073/pnas.1313490111
Kim D, Langmead B, Salzberg SA-O (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357–360. https://doi.org/10.1038/nmeth.3317
Kirst H, Gabilly ST, Niyogi KK, Lemaux PG, Melis A (2017) Photosynthetic antenna engineering to improve crop yields. Planta 245(5):1009–1020. https://doi.org/10.1007/s00425-017-2659-y
Kolbert Z, Molnár Á, Feigl G, Van Hoewyk D (2019) Plant selenium toxicity: proteome in the crosshairs. J Plant Physiol 232:291–300. https://doi.org/10.1016/j.jplph.2018.11.003
Kovács Z, Soós Á, Kovács B, Kaszás L, Elhawat N, Bákonyi N, Razem M, Fári MG, Prokisch J, Domokos-Szabolcsy É, Alshaal T (2021) Uptake dynamics of ionic and elemental selenium forms and their metabolism in multiple-harvested alfalfa (Medicago sativa L.). Plants-Basel 10(7):1277. https://doi.org/10.3390/plants10071277
Kurepa J, Toh-E A, SmalleJAJPJfC, Biology M, (2010) 26S proteasome regulatory particle mutants have increased oxidative stress tolerance. Plant J 53(1):102–114. https://doi.org/10.1111/j.1365-313X.2007.03322.X
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359. https://doi.org/10.1038/nmeth.1923
Li H-F, McGrath SP, Zhao F-J (2008) Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol 178(1):92–102. https://doi.org/10.1111/j.1469-8137.2007.02343.x
Li H, Wang Y, Xiao J, Xu K (2015) Reduced photosynthetic dark reaction triggered by ABA application increases intercellular CO2 concentration, generates H2O2 and promotes closure of stomata in ginger leaves. Environ Exp Bot 113:11–17. https://doi.org/10.1016/j.envexpbot.2015.01.002
Li X, Zhang Y, Yu P (2016) Association of bio-energy processing-induced protein molecular structure changes with CNCPS-based protein degradation and digestion of co-products in dairy cows. J Agric Food Chem 64(20):4086–4094. https://doi.org/10.1021/acs.jafc.6b00688
Li A, Liu A, Du X, Chen J-Y, Yin M, Hu H-Y, Shrestha N, Wu S-D, Wang H-Q, Dou Q-W, Liu Z-P, Liu J-Q, Yang Y-Z, Ren G-P (2020) A chromosome-scale genome assembly of a diploid alfalfa, the progenitor of autotetraploid alfalfa. Hortic Res-England 7(1):194. https://doi.org/10.1038/s41438-020-00417-7
Li K, Jia Q, Guo J, Zhu Z, Shao M, Wang J, Li W, Dai J, Guo M, Li R, Song J, Yang F, Du J, Botella JR, Song C-P, Miao Y (2022) The high chlorophyll fluorescence 244 (HCF244) Is potentially involved in glutathione peroxidase 7-regulated high light stress in Arabidopsis thaliana. Environ Exp Bot 195:104767. https://doi.org/10.1016/j.envexpbot.2021.104767
Licitra G, Hernandez TM, Van Soest PJ (1996) Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim Feed Sci Tech 57(4):347–358. https://doi.org/10.1016/0377-8401(95)00837-3
Liu K, Li S, Han J, Zeng X, Ling M, Mao J, Li Y, Jiang J (2021) Effect of selenium on tea (Camellia sinensis) under low temperature: changes in physiological and biochemical responses and quality. Environ Exp Bot 188:104475. https://doi.org/10.1016/j.envexpbot.2021.104475
Lu Y, Gan Q, Iwai M, Alboresi A, Burlacot A, Dautermann O, Takahashi H, Crisanto T, Peltier G, Morosinotto T, Melis A, Niyogi KK (2021) Role of an ancient light-harvesting protein of PSI in light absorption and photoprotection. Nat Commun 12(1):679. https://doi.org/10.1038/s41467-021-20967-1
Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. Embnet J 17(1):10–12
Matić P, Sabljić M, Jakobek L (2017) Validation of spectrophotometric methods for the determination of total polyphenol and total flavonoid content. J AOAC Int 100(6):1795–1803. https://doi.org/10.5740/jaoacint.17-0066
Mostofa MG, Hossain MA, Siddiqui MN, Fujita M, Tran LS (2017) Phenotypical, physiological and biochemical analyses provide insight into selenium-induced phytotoxicity in rice plants. Chemosphere 178:212–223. https://doi.org/10.1016/j.chemosphere.2017.03.046
Newman R, Waterland N, Moon Y, Tou JC (2019) Selenium biofortification of agricultural crops and effects on plant nutrients and bioactive compounds important for human health and disease prevention - a review. Plant Food Hum Nutr 74(4):449–460. https://doi.org/10.1007/s11130-019-00769-z
Nishikawa Y, Hiraki K, Tamari Y, Fukunaga Y, Nishikawa Y, Shigematsu T (1985) Fluorometric determination of inorganic selenium (IV), selenium (VI) and organic selenium in natural waters. Anal Sci 1(3):247–252. https://doi.org/10.2116/analsci.1.247
Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33(3):290–295. https://doi.org/10.1038/nbt.3122
Pezzarossa B, Remorini D, Gentile ML, Massai R (2012) Effects of foliar and fruit addition of sodium selenate on selenium accumulation and fruit quality. J Sci Food Agric 92(4):781–786. https://doi.org/10.1002/jsfa.4644
Quinlan KP, DeSesa MA (1955) Spectrophotometric determination of phosphorus as molybdovanadophosphoric acid. Anal Chem 27(10):1626–1629. https://doi.org/10.1021/ac60106a039
Rady MM, Desoky EM, Ahmed SM, Majrashi A, Ali EF, Arnaout S, Selem E (2021) Foliar nourishment with nano-selenium dioxide promotes physiology, biochemistry, antioxidant defenses, and salt tolerance in Phaseolus vulgaris. Plants (Basel) 10(6):1189. https://doi.org/10.3390/plants10061189
Renault H, Roussel V, El Amrani A, Arzel M, Renault D, Bouchereau A, Deleu C (2010) The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance. BMC Plant Biol 10:20. https://doi.org/10.1186/1471-2229-10-20
Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140. https://doi.org/10.1093/bioinformatics/btp616
Schiavon M, Berto C, Malagoli M, Trentin A, Sambo P, Dall’Acqua S, Pilon-Smits EA (2016) Selenium biofortification in radish enhances nutritional quality via accumulation of methyl-selenocysteine and promotion of transcripts and metabolites related to glucosinolates, phenolics, and amino acids. Front Plant Sci 7:1371. https://doi.org/10.3389/fpls.2016.01371
Schwanninger M, Hinterstoisser B (2002) Klason lignin: modifications to improve the precision of the standardized determination. Holzforschung 56(2):161–166. https://doi.org/10.1515/HF.2002.027
Seboussi R, Tremblay GF, Ouellet V, Chouinard PY, Chorfi Y, Belanger G, Charbonneau E (2016) Selenium-fertilized forage as a way to supplement lactating dairy cows. J Dairy Sci 99(7):5358–5369. https://doi.org/10.3168/jds.2015-10758
Sharifi P, Amirnia R, Torkian M, Bidabadi SS (2021) Protective role of exogenous selenium on salinity-stressed Stachys byzantine plants. J Soil Sci Plant Nut 21(4):2660–2672. https://doi.org/10.1007/s42729-021-00554-5
Shen Y, Li J, He F, Zhu J, Han Q, Zhan X, Xing B (2019) Phenanthrene-triggered tricarboxylic acid cycle response in wheat leaf. Sci Total Environ 665:107–112. https://doi.org/10.1016/j.scitotenv.2019.02.119
Shinde S, Zhang X, Singapuri SP, Kalra I, Liu X, Morgan-Kiss RM, Wang X (2020) Glycogen metabolism supports photosynthesis start through the oxidative pentose phosphate pathway in cyanobacteria. Plant Physiol 182(1):507–517. https://doi.org/10.1104/pp.19.01184
Sniffen CJ, O’Connor JD, Soest P, Fox DG, Russell JB (1992) A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J Anim Sci 70(11):3562–3577. https://doi.org/10.2527/1992.70113562x
Sung J, Lee S, Chung J-W, Edwards G, Ryu H, Kim T (2017) Photosynthesis, metabolite composition and anatomical structure of Oryza sativa and two wild relatives, O. grandiglumis and O. alta. Rice Sci 24(4):218–227. https://doi.org/10.1016/j.rsci.2017.04.002
Takahashi S, Badger MR (2011) Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci 16(1):53–60. https://doi.org/10.1016/j.tplants.2010.10.001
Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13(4):178–182. https://doi.org/10.1016/j.tplants.2008.01.005
Tobiasz A, Walas S, Filek M, Mrowiec H, Samsel K, Sieprawska A, Hartikainen H (2014) Effect of selenium on distribution of macro- and micro-elements to different tissues during wheat ontogeny. Biol Plant 58(2):370–374. https://doi.org/10.1007/s10535-014-0407-8
Ulhassan Z, Gill RA, Ali S, Mwamba TM, Ali B, Wang J, Huang Q, Aziz R, Zhou W (2019) Dual behavior of selenium: Insights into physio-biochemical, anatomical and molecular analyses of four Brassica napus cultivars. Chemosphere 225:329–341. https://doi.org/10.1016/j.chemosphere.2019.03.028
Van Hoewyk D (2013) A tale of two toxicities: malformed selenoproteins and oxidative stress both contribute to selenium stress in plants. Ann Bot-London 6:965–972. https://doi.org/10.1093/aob/mct163
Vega-Mas I, Cukier C, Coleto I, Gonzalez-Murua C, Limami AM, Gonzalez-Moro MB, Marino D (2019) Isotopic labelling reveals the efficient adaptation of wheat root TCA cycle flux modes to match carbon demand under ammonium nutrition. Sci Rep 9(1):8925. https://doi.org/10.1038/s41598-019-45393-8
Volenec JJ (1999) Physiological control of alfalfa growth and yield. In: Smith DL, Hamel C (eds) Crop yield: Physiology and processes. Springer, Berlin, pp 425–442
Wang W, Li R, Zhu Q, Tang X, Zhao Q (2016) Transcriptomic and physiological analysis of common duckweed Lemna minor responses to NH4+ toxicity. BMC Plant Biol 16(1):92. https://doi.org/10.1186/s12870-016-0774-8
Wang Q, Zhang Y, Hu H, Hu J, Xiang M, Yang Q (2021a) Comparative proteomics analysis of selenium responses in selenium-enriched alfalfa (Medicago sativa L.) leaves. Plant Physiol Biochem 165:265–273. https://doi.org/10.1016/j.plaphy.2021.04.039
Wang X, Li Y, Wei S, Pan L, Miao J, Lin Y, Wu J (2021b) Toxicity evaluation of butyl acrylate on the photosynthetic pigments, chlorophyll fluorescence parameters, and oxygen evolution activity of Phaeodactylum tricornutum and Platymonas subcordiformis. Environ Sci Pollut Res Int 28(43):60954–60967. https://doi.org/10.1007/s11356-021-15070-3
White PJ (2018) Selenium metabolism in plants. BBA-Gen Subjects 1862(11):2333–2342. https://doi.org/10.1016/j.bbagen.2018.05.006
Xue Y, Li X, Mao M, He Y, OwusuAdjei M, Zhou X, Hu H, Liu J, Li X, Ma J (2021) AbhemC encoding porphobilinogen deaminase plays an important role in chlorophyll biosynthesis and function in albino Ananas comosus var bracteatus leaves. PeerJ 9:e11118. https://doi.org/10.7717/peerj.11118
Yin H, Qi Z, Li M, Ahammed GJ, Chu X, Zhou J (2019) Selenium forms and methods of application differentially modulate plant growth, photosynthesis, stress tolerance, selenium content and speciation in Oryza sativa L. Ecotoxicol Environ Saf 169:911–917. https://doi.org/10.1016/j.ecoenv.2018.11.080
Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11(2):R14. https://doi.org/10.1186/gb-2010-11-2-r14
Yu C, Zhao X, Qi G, Bai Z, Wang Y, Wang S, Ma Y, Liu Q, Hu R, Zhou G (2017) Integrated analysis of transcriptome and metabolites reveals an essential role of metabolic flux in starch accumulation under nitrogen starvation in duckweed. Biotechnol Biofuels 10:167. https://doi.org/10.1186/s13068-017-0851-8
Zhang L, Hu B, Li W, Che R, Deng K, Li H, Yu F, Ling H, Li Y, Chu C (2014a) OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice. New Phytol 201(4):1183–1191. https://doi.org/10.1111/nph.12596
Zhang M, Tang S, Huang X, Zhang F, Pang Y, Huang Q, Yi Q (2014b) Selenium uptake, dynamic changes in selenium content and its influence on photosynthesis and chlorophyll fluorescence in rice (Oryza sativa L.). Environ Exp Bot 107:39–45. https://doi.org/10.1016/j.envexpbot.2014.05.005
Zhou Q, Guo JJ, He CT, Shen C, Huang YY, Chen JX, Guo JH, Yuan JG, Yang ZY (2016) Comparative transcriptome analysis between low- and high-cadmium-accumulating genotypes of pakchoi (Brassica chinensis L.) in response to cadmium stress. Environ Sci Technol 50(12):6485–6494. https://doi.org/10.1021/acs.est.5b06326
Acknowledgements
This study was supported by grants from Special Fund for Agro-scientific Research in the Public Interest (Grant No. 201503134), the National Natural Science Foundation of China (Grant No. 51508518), the Natural Science Foundation of Henan Province (Grant No. 162300410127) and Henan Provincial Science and Technology Research Project (Grant No. 222102110388).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Dorothea Bartels.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
425_2022_4027_MOESM1_ESM.png
Supplementary file1 Pearson correlation between samples between Low Se and CK groups. R-values are represented by the depth of the red colour; the darker the colour, the smaller is the R-value and the lower is the overlap (PNG 339 KB)
425_2022_4027_MOESM2_ESM.png
Supplementary file2 Pearson correlation of Correlation of RNA-seq and qPCR. Data using the log2 fold change measure of the genes differentially expressed P value under correlation analysis (PNG 64 KB)
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wang, Q., Hu, J., Hu, H. et al. Integrated eco-physiological, biochemical, and molecular biological analyses of selenium fortification mechanism in alfalfa. Planta 256, 114 (2022). https://doi.org/10.1007/s00425-022-04027-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00425-022-04027-6