Abstract
Main conclusion
We report the genome assembly of P. cochinchinensis, as the first high-quality chromosome-level genome of Phyllanthaceae which is rich in medicinal plants.
Abstract
Phyllanthus cochinchinensis, a member of the Phyllanthaceae, is one of the famous medicinal plants in South China. Here, we report a de novo chromosome-level genome assembly for P. cochinchinensis using a combination of Nanopore and Illumina sequencing technologies. In total, the assembled genome consists of 284.88 Mb genomic sequences with a contig N50 of 10.32 Mb, representing ~ 95.49% of the estimated genome size. By applying Hi-C data, 13 pseudochromosomes of P. cochinchinensis were constructed, covering ~ 99.87% of the assembled sequences. The genome is annotated with 59.12% repetitive sequences and 20,836 protein-coding genes. Whole-genome duplication of P. cochinchinensis is likely shared with Ricinus communis as well as Vitis vinifera. Homologous genes within the flavonoid pathway for P. cochinchinensis were identified and copy numbers and expression level of related genes revealed potential critical genes involved in flavonoid biosynthesis. This study provides the first whole-genome sequence for the Phyllanthaceae, confirms the evolutionary status of Phyllanthus from the genomic level, and provides foundations for accelerating functional genomic research of species from Phyllanthus.







Data availability
The datasets generated and analyzed during the current study are available in the NCBI repository (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA825722).
References
Abd Rani NZ, Lam KW, Jalil J, Mohamad HF, Mat Ali MS, Husain K (2021) Mechanistic studies of the antiallergic activity of Phyllanthus amarus Schum. & Thonn. and its compounds. Molecules 26(3):695
Adil MD, Kaiser P, Satti NK, Zargar AM, Vishwakarma RA, Tasduq SA (2010) Effect of Emblica officinalis (fruit) against UVB-induced photo-aging in human skin fibroblasts. J Ethnopharmacol 132(1):109–114. https://doi.org/10.1016/j.jep.2010.07.047
Ahmad B, Hafeez N, Rauf A, Bashir S, Linfang H, Rehman M-u, Mubarak MS, Uddin MS, Bawazeer S, Shariati MA, Daglia M, Wan C, Rengasamy KRR (2021) Phyllanthus emblica: a comprehensive review of its therapeutic benefits. S Afr J Bot 138:278–310. https://doi.org/10.1016/j.sajb.2020.12.028
Boakye YD, Agyare C, Ayande GP, Titiloye N, Asiamah EA, Danquah KO (2018) Assessment of wound-healing properties of medicinal plants: the case of Phyllanthus muellerianus. Front Pharmacol 9:945. https://doi.org/10.3389/fphar.2018.00945
Bose Mazumdar A, Chattopadhyay S (2016) Sequencing, de novo assembly, functional annotation and analysis of Phyllanthus amarus leaf transcriptome using the illumina platform. Front Plant Sci 6:1199. https://doi.org/10.3389/fpls.2015.01199
Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268(1):78–94. https://doi.org/10.1006/jmbi.1997.0951
Chen Y, Nie F, Xie S-Q, Zheng Y-F, Dai Q, Bray T, Wang Y-X, Xing J-F, Huang Z-J, Wang D-P, He L-J, Luo F, Wang J-X, Liu Y-Z, Xiao C-L (2021) Efficient assembly of nanopore reads via highly accurate and intact error correction. Nat Commun 12(1):60. https://doi.org/10.1038/s41467-020-20236-7
Chen N (2004) Using repeat masker to identify repetitive elements in genomic sequences. Curr Protocols Bioinform 5(1):4.10.11–14.10.14. https://doi.org/10.1002/0471250953.bi0410s05
Dai X, Hu Q, Cai Q, Feng K, Ye N, Tuskan GA, Milne R, Chen Y, Wan Z, Wang Z, Luo W, Wang K, Wan D, Wang M, Wang J, Liu J, Yin T (2014) The willow genome and divergent evolution from poplar after the common genome duplication. Cell Res 24(10):1274–1277. https://doi.org/10.1038/cr.2014.83
Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23(6):673–679. https://doi.org/10.1093/bioinformatics/btm009
dos Reis M, Yang Z (2019) Bayesian molecular clock dating using genome-scale datasets. In: Anisimova M (eds) Evolutionary genomics: statistical and computational methods. Springer, New York, pp 309–330. https://doi.org/10.1007/978-1-4939-9074-0_10
Duong T-H, Beniddir MA, Nguyen V-K, Aree T, Gallard J-F, Mac D-H, Nguyen H-H, Bui X-H, Boustie J, Nguyen K-P-P, Chavasiri W, Le Pogam P (2018) Sulfonic acid-containing flavonoids from the roots of Phyllanthus acidus. J Nat Prod 81(9):2026–2031. https://doi.org/10.1021/acs.jnatprod.8b00322
Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 5(1):113. https://doi.org/10.1186/1471-2105-5-113
Emms DM, Kelly S (2015) OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 16(1):157. https://doi.org/10.1186/s13059-015-0721-2
Falcone Ferreyra ML, Rius S, Casati P (2012) Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci 3:222. https://doi.org/10.3389/fpls.2012.00222
Ferreyra MLF, Serra P, Casati P (2021) Recent advances on the roles of flavonoids as plant protective molecules after UV and high light exposure. Physiol Plant 173(3):736–749. https://doi.org/10.1111/ppl.13543
Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2011) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40(D1):D1178–D1186. https://doi.org/10.1093/nar/gkr944
Górniak I, Bartoszewski R, Króliczewski J (2019) Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem Rev 18(1):241–272. https://doi.org/10.1007/s11101-018-9591-z
GROUP TAP (2009) An update of the Angiosperm phylogeny group classification for the orders and families of flowering plants: APG III. Bot J Linnean Soc 161(2):105–121. https://doi.org/10.1111/j.1095-8339.2009.00996.x
Gu Z, Gu L, Eils R, Schlesner M, Brors B (2014) circlize implements and enhances circular visualization in R. Bioinformatics 30(19):2811–2812. https://doi.org/10.1093/bioinformatics/btu393
Ha J, Shim S, Lee T, Kang YJ, Hwang WJ, Jeong H, Laosatit K, Lee J, Kim SK, Satyawan D, Lestari P, Yoon MY, Kim MY, Chitikineni A, Tanya P, Somta P, Srinives P, Varshney RK, Lee S-H (2019) Genome sequence of Jatropha curcas L., a non-edible biodiesel plant, provides a resource to improve seed-related traits. Plant Biotechnol J 17(2):517–530. https://doi.org/10.1111/pbi.12995
Han MV, Thomas GWC, Lugo-Martinez J, Hahn MW (2013) Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Mol Biol Evol 30(8):1987–1997. https://doi.org/10.1093/molbev/mst100
Haque T, Muhsin, MDA, Akhter T, Haq ME, Begum R, Chowdhury SFUA (2016) Antimicrobial and analgesic activity of leaf extracts of Phyllanthus reticulatus Poir. (family—Euphorbiaceae). Jahangirnagar University J Biol Sci 5(1): 81–85. https://doi.org/10.3329/jujbs.v5i1.29746
Hoffmann P, Kathriarachchi H, Wurdack KJ (2006) A phylogenetic classification of Phyllanthaceae (Malpighiales; Euphorbiaceae sensu lato). Kew Bull 61(1):37–53
Holt C, Yandell M (2011) MAKER2: an annotation pipeline and genome—database management tool for second-generation genome projects. BMC Bioinform 12(1):491. https://doi.org/10.1186/1471-2105-12-491
Hu W, Ji C, Shi H, Liang Z, Ding Z, Ye J, Ou W, Zhou G, Tie W, Yan Y, Yang J, Yang X, Wei Y, Jin Z, Xie J, Peng M, Wang W, Guo A, Xu B, Guo J, Chen S, Ma L, Wang M, Yang Z, Li X, Li R, Guo S, Xiao X, Wan Z, An F, Zhang J, Leng Q, Li Y, Ming R, Li K (2021) Allele-defined genome reveals biallelic differentiation during cassava evolution. Mol Plant 14(6):851–854. https://doi.org/10.1016/j.molp.2021.04.009
Huang H-z, Qiu M, Lin J-z, Li M-q, Ma X-t, Ran F, Luo C-h, Wei X-c, Xu R-c, Tan P, Fan S-h, Yang M, Han L, Zhang D-k (2021) Potential effect of tropical fruits Phyllanthus emblica L. for the prevention and management of type 2 diabetic complications: a systematic review of recent advances. Eur J Nutr 60:3525–3542. https://doi.org/10.1007/s00394-020-02471-2
Ilangkovan M, Jantan I, Bukhari SNA (2016) Phyllanthin from Phyllanthus amarus inhibits cellular and humoral immune responses in Balb/C mice. Phytomedicine 23(12):1441–1450. https://doi.org/10.1016/j.phymed.2016.08.002
Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong S-Y, Lopez R, Hunter S (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30(9):1236–1240. https://doi.org/10.1093/bioinformatics/btu031
Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30. https://doi.org/10.1093/nar/28.1.27
Kathriarachchi H, Samuel R, Hoffmann P, Mlinarec J, Wurdack KJ, Ralimanana H, Stuessy TF, Chase MW (2006) Phylogenetics of tribe Phyllantheae (Phyllanthaceae; Euphorbiaceae sensu lato) based on nrITS and plastid matK DNA sequence data. Am J Bot 93(4):637–655. https://doi.org/10.3732/ajb.93.4.637
Kaur N, Kaur B, Sirhindi G (2017) Phytochemistry and pharmacology of Phyllanthus niruri L.: a review. Phytotherapy Res 31(7):980–1004. https://doi.org/10.1002/ptr.5825
Khatoon S, Rai V, Rawat AKS, Mehrotra S (2006) Comparative pharmacognostic studies of three Phyllanthus species. J Ethnopharmacol 104(1):79–86. https://doi.org/10.1016/j.jep.2005.08.048
Kiełbasa SM, Wan R, Sato K, Horton P, Frith MC (2011) Adaptive seeds tame genomic sequence comparison. Genome Res 21(3):487–493. https://doi.org/10.1101/gr.113985.110
Kiran KR, Swathy PS, Paul B, Shama Prasada K, Radhakrishna Rao M, Joshi MB, Rai PS, Satyamoorthy K, Muthusamy A (2021) Untargeted metabolomics and DNA barcoding for discrimination of Phyllanthus species. J Ethnopharmacol 273:113928. https://doi.org/10.1016/j.jep.2021.113928
Kumar G, Madka V, Pathuri G, Ganta V, Rao CV (2021) Molecular mechanisms of cancer prevention by gooseberry (Phyllanthus emblica). Nutr Cancer 74:2291–2302. https://doi.org/10.1080/01635581.2021.2008988
Kumar A, Kumar S, Bains S, Vaidya V, Singh B, Kaur R, Kaur J, Singh K (2016) De novo transcriptome analysis revealed genes involved in flavonoid and vitamin C biosynthesis in Phyllanthus emblica (L.). Front Plant Sci 7:1610. https://doi.org/10.3389/fpls.2016.01610
Lagesen K, Hallin P, Rødland EA, Stærfeldt H-H, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35(9):3100–3108. https://doi.org/10.1093/nar/gkm160
Li H (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34(18):3094–3100. https://doi.org/10.1093/bioinformatics/bty191
Liang Y, Chen S, Wei K, Yang Z, Duan S, Du Y, Qu P, Miao J, Chen W, Dong Y (2020) Chromosome level genome assembly of Andrographis paniculata. Front Genet 11:701. https://doi.org/10.3389/fgene.2020.00701
Liu J, Shi C, Shi C-C, Li W, Zhang Q-J, Zhang Y, Li K, Lu H-F et al (2020) The chromosome-based rubber tree genome provides new insights into spurge genome evolution and rubber biosynthesis. Mol Plant 13(2):336–350. https://doi.org/10.1016/j.molp.2019.10.017
Liu W, Feng Y, Yu S, Fan Z, Li X, Li J, Yin H (2021) The flavonoid biosynthesis network in plants. Int J Mol Sci 22(23):12824
Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25(5):955–964. https://doi.org/10.1093/nar/25.5.955
Lynch M, Conery John S (2000) The evolutionary fate and consequences of duplicate genes. Science 290(5494):1151–1155. https://doi.org/10.1126/science.290.5494.1151
Mao X, Wu L-F, Guo H-L, Chen W-J, Cui Y-P, Qi Q, Li S, Liang W-Y, Yang G-H, Shao Y-Y, Zhu D, She G-M, You Y, Zhang L-Z (2016) The genus Phyllanthus: an ethnopharmacological, phytochemical, and pharmacological review. Evid Based Complement Alternat Med: Art ID. https://doi.org/10.1155/2016/7584952
Meng F, Tang Q, Chu T, Li X, Lin Y, Song X, Chen W (2022) TCMPG: an integrative database for traditional Chinese medicine plant genome. Horticult Res 9:uhac060. https://doi.org/10.1093/hr/uhac060
Miller KI, Webster GL (1966) Chromosome numbers in the Euphorbiaceae. Brittonia 18(4):372–379. https://doi.org/10.2307/2805153
Nain P, Saini V, Sharma S, Nain J (2012) Antidiabetic and antioxidant potential of Emblica officinalis Gaertn. leaves extract in streptozotocin-induced type-2 diabetes mellitus (T2DM) rats. J Ethnopharmacol 142(1):65–71. https://doi.org/10.1016/j.jep.2012.04.014
Navarro M, Moreira I, Arnaez E, Quesada S, Azofeifa G, Vargas F, Alvarado D, Chen P (2017) Flavonoids and ellagitannins characterization, antioxidant and cytotoxic activities of Phyllanthus acuminatus Vahl. Plants 6(4):62. https://doi.org/10.3390/plants6040062
Nawrocki EP, Eddy SR (2013) Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29(22):2933–2935. https://doi.org/10.1093/bioinformatics/btt509
Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33(3):290–295. https://doi.org/10.1038/nbt.3122
Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD (2018) HMMER web server: 2018 update. Nucleic Acids Res 46(W1):W200–W204. https://doi.org/10.1093/nar/gky448
Rizwan M, Durrani AZ, Ahmad T, Ahmad SS, Chaudhry M (2021) Comparative therapeutic efficacy of procaine penicillin, Phyllanthus emblica fruit extract and Cocos nucifera oil against subclinical mastitis. Livestock Sci 251:104655. https://doi.org/10.1016/j.livsci.2021.104655
Saahene RO, Agbo E, Barnes P, Yahaya ES, Amoani B, Nuvor SV, Okyere P (2021) A Review: Mechanism of Phyllanthus urinaria in cancers—NF-κB, P13K/AKT, and MAPKs signaling activation. Evid Based Complement Alternat Med 2021:4514342. https://doi.org/10.1155/2021/4514342
Shanmugarajan D, Girish C, Harivenkatesh N, Chanaveerappa B, Prasanna Lakshmi NC (2021) Antihypertensive and pleiotropic effects of Phyllanthus emblica extract as an add-on therapy in patients with essential hypertension—a randomized double-blind placebo-controlled trial. Phytotherapy Res 35(6):3275–3285. https://doi.org/10.1002/ptr.7043
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31(19):3210–3212. https://doi.org/10.1093/bioinformatics/btv351
Slater GS, Birney E (2005) Automated generation of heuristics for biological sequence comparison. BMC Bioinform 6:31. https://doi.org/10.1186/1471-2105-6-31
Sriwatcharakul S (2020) Evaluation of bioactivities of Phyllanthus emblica seed. Energy Rep 6:442–447. https://doi.org/10.1016/j.egyr.2019.08.088
Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313. https://doi.org/10.1093/bioinformatics/btu033
Stanke M, Schöffmann O, Morgenstern B, Waack S (2006) Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinform 7(1):62. https://doi.org/10.1186/1471-2105-7-62
Sun W, Leng L, Yin Q, Xu M, Huang M, Xu Z, Zhang Y, Yao H, Wang C, Xiong C, Chen S, Jiang C, Xie N, Zheng X, Wang Y, Song C, Peters RJ, Chen S (2019) The genome of the medicinal plant Andrographis paniculata provides insight into the biosynthesis of the bioactive diterpenoid neoandrographolide. Plant J 97(5):841–857. https://doi.org/10.1111/tpj.14162
Tan C, Wang Z, Irfan M, Liu C (2021) Analysis of flavonoids biosynthesis-related genes expression reveals the mechanism of difference of flavonoid content in different tissues of Actinidia arguta. Braz J Bot 44(3):513–523. https://doi.org/10.1007/s40415-021-00737-5
Tang C, Yang M, Fang Y, Luo Y, Gao S, Xiao X, An Z, Zhou B, Zhang B, Tan X, Yeang H-Y, Qin Y, Yang J, Lin Q, Mei H, Montoro P, Long X, Qi J, Hua Y, He Z, Sun M, Li W, Zeng X, Cheng H, Liu Y, Yang J, Tian W, Zhuang N, Zeng R, Li D, He P, Li Z, Zou Z, Li S, Li C, Wang J, Wei D, Lai C-Q, Luo W, Yu J, Hu S, Huang H (2016) The rubber tree genome reveals new insights into rubber production and species adaptation. Nat Plants 2(6):16073. https://doi.org/10.1038/nplants.2016.73
Tarailo-Graovac M, Chen N (2009) Using repeat masker to identify repetitive elements in genomic sequences. Curr Protocols Bioinform 25(1):4.10.11–14.10.14. https://doi.org/10.1002/0471250953.bi0410s25
Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, et al. (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313(5793):1596–1604. https://doi.org/10.1126/science.1128691
Van de Peer Y, Ashman T-L, Soltis PS, Soltis DE (2020) Polyploidy: an evolutionary and ecological force in stressful times. Plant Cell 33(1):11–26. https://doi.org/10.1093/plcell/koaa015
Vaser R, Sović I, Nagarajan N, Šikić M (2017) Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res 27(5):737–746. https://doi.org/10.1101/gr.214270.116
Verma R, Kundu LM, Pandey LM (2021) Enhanced melanoidin removal by amine-modified Phyllanthus emblica leaf powder. Bioresource Technol 339:125572. https://doi.org/10.1016/j.biortech.2021.125572
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl AM (2014) Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9(11):e112963. https://doi.org/10.1371/journal.pone.0112963
Webster GL (1994) Synopsis of the genera and suprageneric taxa of Euphorbiaceae. Ann Mo Bot Gard 81(1):33–144. https://doi.org/10.2307/2399909
Wurdack KJ, Davis CC (2009) Malpighiales phylogenetics: gaining ground on one of the most recalcitrant clades in the angiosperm tree of life. Amer J Bot 96(8):1551–1570. https://doi.org/10.3732/ajb.0800207
Xu W, Wu D, Yang T, Sun C, Wang Z, Han B, Wu S, Yu A, Chapman MA, Muraguri S, Tan Q, Wang W, Bao Z, Liu A, Li D-Z (2021) Genomic insights into the origin, domestication and genetic basis of agronomic traits of castor bean. Genome Biol 22(1):113. https://doi.org/10.1186/s13059-021-02333-y
Xue X, Zhao A, Wang Y, Ren H, Du J, Li D, Li Y (2021) Composition and content of phenolic acids and flavonoids among the different varieties, development stages, and tissues of Chinese jujube (Ziziphus jujuba Mill.). PLoS ONE 16(10):e0254058. https://doi.org/10.1371/journal.pone.0254058
Yang Z (2007) PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591. https://doi.org/10.1093/molbev/msm088
Zhang X, Zhang S, Zhao Q, Ming R, Tang H (2019) Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data. Nat Plants 5(8):833–845. https://doi.org/10.1038/s41477-019-0487-8
Zhang Y, Guo W, Chen L, Shen X, Yang H, Fang Y, Ouyang W, Mai S, Chen H, Chen S, Hao Q, Yuan S, Zhang C, Huang Y, Shan Z, Yang Z, Qiu D, Zhou X, Cao D, Li X, Jiao Y (2022) CRISPR/Cas9-mediated targeted mutagenesis of GmUGT enhanced soybean resistance against leaf-chewing insects through flavonoids biosynthesis. Front Plant Sci. https://doi.org/10.3389/fpls.2022.802716
Acknowledgements
This work is supported by the Natural Science Foundation of Crops Research Institute, Guangdong Academy of Agricultural Sciences (0145); the National Natural Science Foundation of China (31960064); the Special Fund for Introducing Scientific and Technological Talents of Guangdong Academy of Agricultural Sciences (R2021YJ-YB2008) and Scientific innovation strategy construction of the high-level Academy of Agriculture Science (R2019PY-JX003). We were grateful to Professor Chao-rong Tang of Hai Nan University, Professor Wei Hu of Chinese Academy of Tropical Agricultural Sciences, Professor Mao-Sheng Chen and Professor Zeng-Fu Xu of CAS Key Laboratory of Tropical Plant Resources and Sustainable Use for providing annotation file of Manihot esculenta and Jatropha curcas. We were also grateful to Professor Guang-da Tang of South China Agricultural University for identifying Phyllanthus cochinchinensis.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Additional information
Communicated by Dorothea Bartels.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Fig. S1
Results of 19-mer frequency analysis to estimate the genome size. The genome size was estimated using the frequency peak at 53 as coverage-depth. The peak at 28 is attributed to high heterozygosity. The genome size was calculated by dividing the total K-mer count by coverage-depth (16,095,655,854 / 53.95 = 298,343,945) (PDF 345 KB)
Fig. S2
Distribution of Ks values within or between P. cochinchinensis and other seven malpighiales species. (PDF 214 KB)
Fig. S3
Inter-genomic comparison of P. cochinchinensis vs R. communis (left); P. cochinchinensis vs P. trichocarpa (right). (PDF 5436 KB)
Fig. S4
Genomic syntenic depth ratio analysis. (PDF 438 KB)
Fig. S5
Measurement of flavonoid compounds in stems and leaves. Significant difference (P-value< 0.001) was marked by ***. (PDF 306 KB)
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhang, W., Xu, S., Gu, Y. et al. The first high-quality chromosome-level genome assembly of Phyllanthaceae (Phyllanthus cochinchinensis) provides insights into flavonoid biosynthesis. Planta 256, 109 (2022). https://doi.org/10.1007/s00425-022-04026-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00425-022-04026-7