Skip to main content
Log in

Application of CRISPR/Cas system in cereal improvement for biotic and abiotic stress tolerance

Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Application of the recently developed CRISPR/Cas tools might help enhance cereals’ growth and yield under biotic and abiotic stresses.

Abstract

Cereals are the most important food crops for human life and an essential source of nutrients for people in developed and developing countries. The growth and yield of all major cereals are affected by both biotic and abiotic stresses. To date, molecular breeding and functional genomic studies have contributed to the understanding and improving cereals’ growth and yield under biotic and abiotic stresses. Clustered, regularly inter-spaced, short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system has been predicted to play a major role in precision plant breeding and developing non-transgenic cereals that can tolerate adverse effects of climate change. Variants of next-generation CRISPR/Cas tools, such as prime editor, base editor, CRISPR activator and repressor, chromatin imager, Cas12a, and Cas12b, are currently used in various fields, including plant science. However, few studies have been reported on applying the CRISPR/Cas system to understand the mechanism of biotic and abiotic stress tolerance in cereals. Rice is the only plant used frequently for such studies. Genes responsible for biotic and abiotic stress tolerance have not yet been studied by CRISPR/Cas system in other major cereals (sorghum, barley, maize and small millets). Examining the role of genes that respond to biotic and abiotic stresses using the CRISPR/Cas system may help enhance cereals’ growth and yield under biotic and abiotic stresses. It will help to develop new and improved cultivars with biotic- and abiotic-tolerant traits for better yields to strengthen food security. This review provides information for cereal researchers on the current status of the CRISPR/Cas system for improving biotic and abiotic stress tolerance in cereals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Data availability

Data sharing does not apply to this article as no datasets were generated or analyzed during the current study.

Abbreviations

CRISPR/Cas:

Clustered, regularly inter-spaced, short palindromic repeats (CRISPR)/CRISPR-associated protein

CRISPRa:

CRISPR activation

CRISPRi:

CRISPR interference

dCas9:

Dead Cas9

TALENs:

Transcription activator-like effector nucleases

ZFNs:

Zinc-finger nucleases

References

  • Abbas G, Saqib M, Rafique Q, Rahman AU, Akhtar J, Haq MAU, Nasim M (2013) Effect of salinity on grain yield and grain quality of wheat (Triticum aestivum L.). Pak J Bot 50:185–189

    Google Scholar 

  • Abdelrahman M, Wei Z, Rohila JS, Zhao K (2021) Multiplex genome-editing technologies for revolutionizing plant biology and crop improvement. Front Plant Sci 12:721203

    Article  PubMed  PubMed Central  Google Scholar 

  • Aghnoum R, Bvindi C, Menet G, Dhoop B, Maciel JLN, Niks RE (2019) Host/nonhost status and genetics of resistance in barley against three pathotypes of Magnaporthe blast fungi. Euphy 215:1–19

    Article  Google Scholar 

  • Afzal M, Ahmad A, Ahmad AH (2012) Effect of nitrogen on growth and yield of sorghum forage (Sorghum bicolor (L.) Moench cv.) under three cuttings system. Cerc Agron Mol 45:57–64

    Google Scholar 

  • Alghabari F, Ihsan MZ (2018) Effects of drought stress on growth, grain filling duration, yield and quality attributes of barley (Hordeum vulgare L.). Bangladesh J Bot 47:421–428

    Article  Google Scholar 

  • Ali A, Basra SMA, Ahmad R, Wahid A (2009) Optimizing silicon application to improve salinity tolerance in wheat. Soil Environ 28:136–144

    CAS  Google Scholar 

  • Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP, Citovsky V, Stewart CN Jr (2016) Advancing crop transformation in the era of genome editing. Plant Cell 28:1510–1520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aref F, Rad HE (2012) Physiological characterization of rice under salinity stress during vegetative and reproductive stages. Ind J Sci Technol 5:2578–2586

    CAS  Google Scholar 

  • Asmamaw M, Zawdie B (2021) Mechanism and applications of CRISPR/Cas-9-mediated genome editing. Biologics Tar Ther 15:353

    Article  Google Scholar 

  • Awika JM (2011) Major cereal grains production and use around the world. In: Joseph MA, Scott B (Eds), Advances in cereal science: implications to food processing and health promotion. ACS Symposium Series, American Chemical Society: Washington, DC, pp 1–13

  • Azameti MK, Dauda WP (2021) Base editing in plants: applications, challenges, and future prospects. Front Plant Sci 12:1531

    Article  Google Scholar 

  • Bagci SA, Ekiz H, Yilmaz A, Cakmak I (2007) Effects of zinc deficiency and drought on grain yield of field-grown wheat cultivars in Central Anatolia. J Agron Crop Sci 193:198–206

    Article  CAS  Google Scholar 

  • Bandara YMAY, Weerasooriya DK, Tesso TT, Prasad PVV, Little CR (2017) Stalk rot fungi affect grain sorghum yield components in an inoculation stage-specific manner. Crop Prot 94:97–105

    Article  Google Scholar 

  • Bharat SS, Li S, Li J, Yan L, Xia L (2020) Base editing in plants: current status and challenges. Crop J 8:384–395

    Article  Google Scholar 

  • Butt H, Rao GS, Sedeek K, Aman R, Kamel R, Mahfouz M (2020) Engineering herbicide resistance via prime editing in rice. Plant Biotech J 18:2370

    Article  CAS  Google Scholar 

  • Carroll D (2011) Genome engineering with zinc-finger nucleases. Genetics 188:773–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceasar SA, Hodge A, Baker A, Baldwin SA (2014) Phosphate concentration and arbuscular mycorrhizal colonisation influence the growth, yield and expression of twelve PHT1 family phosphate transporters in foxtail millet (Setaria italica). PLoS ONE 9:e108459

    Article  PubMed  PubMed Central  Google Scholar 

  • Ceasar SA, Rajan V, Prykhozhij SV, Berman JN, Ignacimuthu S (2016) Insert, remove or replace: A highly advanced genome editing system using CRISPR/Cas9. Bioch Biophy Acta (BBA)-Mol Cell Res 1863:2333–2344

    Article  CAS  Google Scholar 

  • Ceasar SA, Maharajan T, Hillary E, Krishna TPA (2022) Insights to improve the plant nutrient transport by CRISPR/Cas system. Biotechnol Adv 59:107963

    Article  CAS  PubMed  Google Scholar 

  • Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA, Harrington LB, Doudna JA (2017) Enhanced proofreading governs CRISPR–Cas9 targeting accuracy. Nature 550:407–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz CD, Valent B (2017) Wheat blast disease: danger on the move. Trop Plant Pathol 42:210–222

    Article  Google Scholar 

  • David RHA, Ramakrishnan M, Maharajan T, BarathiKannan K, Babu GA, Daniel MA, Ignacimuthu S (2021) Mining QTL and genes for root traits and biochemical parameters under vegetative drought in South Indian genotypes of finger millet (Eleusine coracana (L.) Gaertn) by association mapping and in silico comparative genomics. Biocatal Agric Biotechnol 32:101935

    Article  Google Scholar 

  • Dong B, Zheng X, Liu H, Able JA, Yang H, Zhao H, Liu M (2017) Effects of drought stress on pollen sterility, grain yield, abscisic acid and protective enzymes in two winter wheat cultivars. Front Plant Sci 8:1008

    Article  PubMed  PubMed Central  Google Scholar 

  • Edwards MC, Fetch TG Jr, Schwarz PB, Steffenson BJ (2001) Effect of Barley yellow dwarf virus infection on yield and malting quality of barley. Plant Dis 85:202–207

    Article  PubMed  Google Scholar 

  • Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P, Zhu JK (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23:1229–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiyaz RA, Shivani D, Chaithanya K, Mounika K, Chiranjeevi M, Laha GS, Sundaram RM (2022) Genetic improvement of rice for bacterial blight resistance: present status and future prospects. Rice Sci 29:118–132

    Article  Google Scholar 

  • Gao L, Cox DB, Yan WX, Manteiga JC, Schneider MW, Yamano T, Zhang F (2017) Engineered Cpf1 variants with altered PAM specificities. Nat Biotech 35:789–792

    Article  CAS  Google Scholar 

  • Gashaw G, Alemu T, Tesfaye K (2014) Morphological, physiological and biochemical studies on Pyricularia grisea isolates causing blast disease on finger millet in Ethiopia. J Appl Biosci 74:6059–6071

    Article  Google Scholar 

  • Gerona MEB, Deocampo MP, Egdane JA, Ismail AM, Dionisio Sese ML (2019) Physiological responses of contrasting rice genotypes to salt stress at reproductive stage. Rice Sci 26:207–219

    Article  Google Scholar 

  • Gupta A, Christensen RG, Rayla AL, Lakshmanan A, Stormo GD, Wolfe SA (2012) An optimized two-finger archive for ZFN-mediated gene targeting. Nat Methods 9:588–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haroon M, Wang X, Afzal R, Zafar MM, Idrees F, Batool M, Imran M (2022) Novel plant breeding techniques shake hands with cereals to increase production. Plants 11:1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan A, Hafiz HR, Siddiqui N, Khatun M, Islam R, Mamun AA (2015) Evaluation of wheat genotypes for salt tolerance based on some physiological traits. J Crop Sci Biotech 18:333–340

    Article  Google Scholar 

  • Hillary VE, Ceasar SA (2019) Application of CRISPR/Cas9 genome editing system in cereal crops. Open Biotechnol J 13:173–179

    Article  CAS  Google Scholar 

  • Hillary VE, Ceasar SA (2022) Prime editing in plants and mammalian cells: mechanism, achievements, limitations, and future prospects. BioEssays 44:2200032

    Article  CAS  Google Scholar 

  • Hong W, Jin JY (2007) Effects of zinc deficiency and drought on plant growth and metabolism of reactive oxygen species in maize (Zea mays L). Agri Sci China 6:988–995

    Article  Google Scholar 

  • Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, Liu DR (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua K, Tao X, Yuan F, Wang D, Zhu JK (2018) Precise A·T to G·C base editing in the rice genome. Mol Plant 11:627–630

    Article  CAS  PubMed  Google Scholar 

  • Hua K, Tao X, Han P, Wang R, Zhu JK (2019) Genome engineering in rice using Cas9 variants that recognize NG PAM sequences. Mol Plant 12:1003–1014

    Article  CAS  PubMed  Google Scholar 

  • Hua K, Jiang Y, Tao X, Zhu JK (2020a) Precision genome engineering in rice using prime editing system. Plant Biotechnol J 18:2167–2169

    Article  PubMed  PubMed Central  Google Scholar 

  • Hua K, Tao X, Liang W, Zhang Z, Gou R, Zhu JK (2020b) Simplified adenine base editors improve adenine base editing efficiency in rice. Plant Biotechnol J 18:770–778

    Article  CAS  PubMed  Google Scholar 

  • Hussain S, Zhang JH, Zhong C, Zhu LF, Cao XC, Yu SM, Jin QY (2017) Effects of salt stress on rice growth, development characteristics, and the regulating ways: a review. J Int Agric 16:2357–2374

    Article  CAS  Google Scholar 

  • Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429–5433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izadi MH, Rabbani J, Emam Y, Pessarakli M, Tahmasebi A (2014) Effects of salinity stress on physiological performance of various wheat and barley cultivars. J Plant Nutr 37:520–531

    Article  CAS  Google Scholar 

  • Jiang YY, Chai YP, Lu MH, Han XL, Lin Q, Zhang Y, Chen QJ (2020) Prime editing efficiently generates W542L and S621I double mutations in two ALS genes in maize. Genome Biol 21:1–10

    Article  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kihoro J, Bosco NJ, Murage H, Ateka E, Makihara D (2013) Investigating the impact of rice blast disease on the livelihood of the local farmers in greater Mwea region of Kenya. Springerplus 2:1–13

    Article  Google Scholar 

  • Krishna TPA, Ceasar SA, Maharajan T, Ramakrishnan M, Duraipandiyan V, Al-Dhabi NA, Ignacimuthu S (2017) Improving the zinc-use efficiency in plants: a review. SABRAO J Breed Genet 49:211–230

    Google Scholar 

  • Krishna TPA, Maharajan T, Roch GV, Ignacimuthu S, Ceasar SA (2020) Structure, function, regulation and phylogenetic relationship of ZIP family transporters of plants. Front Plant Sci 11:662

    Article  Google Scholar 

  • Krishna TPA, Maharajan T, Ceasar SA (2022a) Application of CRISPR/Cas9 genome editing system to reduce the pre-and post-harvest yield losses in cereals. Open Biotech J 16:1–9

    Article  Google Scholar 

  • Krishna TPA, Maharajan T, Ceasar SA (2022b) The role of membrane transporters in the biofortification of zinc and iron in plants. Biol Trace Elem Res. https://doi.org/10.1007/s12011-022-03159-w

    Article  PubMed  Google Scholar 

  • Kuang Y, Li S, Ren B, Yan F, Spetz C, Li X, Zhou X, Zhou H (2020) Base-editing-mediated artificial evolution of OsALS1 in planta to develop novel herbicide-tolerant rice germplasms. Mol Plant 13:565–572

    Article  CAS  PubMed  Google Scholar 

  • Kumar VS, Verma RK, Yadav SK, Yadav P, Watts A, Rao MV, Chinnusamy V (2020) CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010. Phy Mol Biol Plants 26:1099–1110

    Article  Google Scholar 

  • Lee JH, Muhsin M, Atienza GA, Kwak DY, Kim SM, De Leon TB, Choi IR (2010) Single nucleotide polymorphisms in a gene for translation initiation factor (eIF4G) of rice (Oryza sativa) associated with resistance to Rice tungro spherical virus. Mol Plant Microbe Interact 23:29–38

    Article  CAS  PubMed  Google Scholar 

  • Lee JK, Jeong E, Lee J, Jung M, Shin E, Kim YH, Kim JS (2018) Directed evolution of CRISPR-Cas9 to increase its specificity. Nat Commun 9:1–10

    Article  Google Scholar 

  • Lee J, Jung MH, Jeong E, Lee JK (2019) Using Sniper-Cas9 to minimize off-target effects of CRISPR-Cas9 without the loss of on-target activity via directed evolution. J vis Exp 144:e59202

    Google Scholar 

  • Li J, Sun Y, Du J, Zhao Y, Xia L (2017) Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system. Mol Plant 10:526–529

    Article  CAS  PubMed  Google Scholar 

  • Li C, Zong Y, Wang Y, Jin S, Zhang D, Song Q, Gao C (2018) Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol 19:1–9

    Article  CAS  Google Scholar 

  • Li C, Zhang R, Meng X, Chen S, Zong Y, Lu C, Qiu JL, Chen YH, Li J, Gao C (2020a) Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nat Biotechnol 38:875–888

    Article  CAS  PubMed  Google Scholar 

  • Li H, Li J, Chen J, Yan L, Xia L (2020b) Precise modifications of both exogenous and endogenous genes in rice by prime editing. Mol Plant 13:671–674

    Article  CAS  PubMed  Google Scholar 

  • Li J, Xu R, Qin R, Liu X, Kong F, Wei P (2021) Genome editing mediated by SpCas9 variants with broad non-canonical PAM compatibility in plants. Mol Plant 14:352–360

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Qiu Z, Ge H, Du C (2022) Long-term dynamic of cold stress during heading and flowering stage and its effects on rice growth in China. Atmosphere 13:103

    Article  Google Scholar 

  • Lin Q, Zong Y, Xue C, Wang S, Jin S, Zhu Z, Wang Y, Anzalone AV, Raguram A, Doman JL, Liu DR, Gao C (2020) Prime genome editing in rice and wheat. Nat Biotechnol 38:582–585

    Article  CAS  PubMed  Google Scholar 

  • Liao S, Qin X, Luo L, Han Y, Wang X, Usman B, Li R (2019) CRISPR/Cas9-induced mutagenesis of semi-rolled Leaf 1, 2 confers curled leaf phenotype and drought tolerance by influencing protein expression patterns and ROS scavenging in Rice (Oryza sativa L.). Agronomy 9:728

    Article  CAS  Google Scholar 

  • Liu C, Zhang L, Liu H, Cheng K (2017) Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J Control Rel 266:17–26

    Article  CAS  Google Scholar 

  • Lou D, Wang H, Liang G, Yu D (2017) OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice. Front Plant Sci 8:993

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Zhu JK (2017) Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Mol Plant 10:523–525

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Chen J, Wang M, Ren Y, Wang S, Lei C, Cheng Z (2018) Disruption of OsSEC3A increases the content of salicylic acid and induces plant defense responses in rice. J Exp Bot 69:1051–1064

    Article  CAS  PubMed  Google Scholar 

  • Macovei A, Sevilla NR, Cantos C, Jonson GB, Slamet-Loedin I, Cermak T, Chadha-Mohanty P (2018) Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotech J 16:1918–1927

    Article  CAS  Google Scholar 

  • Maharajan T, Ceasar SA, Krishna TPA, Ramakrishnan M, Duraipandiyan V, Naif Abdulla AD, Ignacimuthu S (2018) Utilization of molecular markers for improving the phosphorus efficiency in crop plants. Plant Breed 137:10–26

    Article  CAS  Google Scholar 

  • Maharajan T, Ceasar SA, Krishna TPA, Ignacimuthu S (2019) Phosphate supply influenced the growth, yield and expression of PHT1 family phosphate transporters in seven millets. Planta 250:1433–1448

    Article  CAS  PubMed  Google Scholar 

  • Maharajan T, Ceasar SA, Krishna TPA, Ignacimuthu S (2021a) Finger millet [Eleusine coracana (L.) Gaertn]: an orphan crop with a potential to alleviate the calcium deficiency in the semi-arid tropics of Asia and Africa. Front Sustain Food Syst 5:684447

    Article  Google Scholar 

  • Maharajan T, Roch GV, Ceasar SA (2021b) Recent advancements of molecular breeding and functional genomics for improving nitrogen-phosphorus-and potassium-use efficiencies in wheat. In: Hossain MA, Alam M, Seneweera S, Sujay R, Henry R (eds) Molecular breeding in wheat, maize and sorghum: Strategies for improving abiotic stress tolerance and yield. CAB International, Wallingford, pp 170–196

    Google Scholar 

  • Maharajan T, Krishna TP, Kiriyanthan RMK, Ignacimuthu S, Ceasar SA (2021c) Improving abiotic stress tolerance in sorghum: focus on the nutrient transporters and marker-assisted breeding. Planta 254:1–16

    Article  Google Scholar 

  • Maharajan T, Ceasar SA, Krishna TPA (2022) Finger Millet (Eleusine coracana (L.) Gaertn): nutritional Importance and Nutrient Transporters. Crit Rev Plant Sci 41:1–31

    Article  CAS  Google Scholar 

  • Makarova KS, Koonin EV (2015) Annotation and classification of CRISPR-Cas systems. In: Lundgren M, Charpentier E, Fineran P (eds) CRISPR, Methods in Molecular Biology. Humana Press, New York, pp 47–75

    Google Scholar 

  • Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJ, Koonin EV (2020) Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 18:67–83

    Article  CAS  PubMed  Google Scholar 

  • Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Sci 339:823–826

    Article  CAS  Google Scholar 

  • Malzahn AA, Tang X, Lee K, Ren Q, Sretenovic S, Zhang Y, Qi Y (2019) Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis. BMC Biol 17:1–14

    Article  Google Scholar 

  • Matres JM, Hilscher J, Datta A, Armario Najera V, Baysal C, He W, Slamet-Loedin IH (2021) Genome editing in cereal crops: an overview. Trans Res 30:461–498

    Article  CAS  Google Scholar 

  • Molla KA, Yang Y (2019) CRISPR/Cas-mediated base editing: technical considerations and practical applications. Trends Biotechnol 37:1121–1142

    Article  CAS  PubMed  Google Scholar 

  • Molla KA, Shih J, Yang Y (2020) Single-nucleotide editing for zebra3 and wsl5 henotypes in rice using CRISPR/Cas9-mediated adenine base editors. aBIOTECH 1:106–118

    Article  PubMed  PubMed Central  Google Scholar 

  • Moradpour M, Abdulah SNA (2020) CRISPR/dC as9 platforms in plants: strategies and applications beyond genome editing. Plant Biotech J 18:32–44

    Article  Google Scholar 

  • Muthukumararaja TM, Sriramachandrasekharan MV (2012) Effect of zinc on yield, zinc nutrition and zinc use efficiency of lowland rice. J Agri Tech 8:551–561

    CAS  Google Scholar 

  • Nawaz G, Han Y, Usman B, Liu F, Qin B, Li R (2019) Knockout of OsPRP1, a gene encoding proline-rich protein, confers enhanced cold sensitivity in rice (Oryza sativa L.) at the seedling stage. 3 Biotech 9:1–18

    Article  Google Scholar 

  • Nilsson L, Muller R, Nielsen TH (2010) Dissecting the plant transcriptome and the regulatory responses to phosphate deprivation. Physiol Plant 139:129–143

    Article  CAS  PubMed  Google Scholar 

  • Noh TH, Lee DK, Park JC, Shim HK, Choi MY, Kang MH, Kim JD (2007) Effects of bacterial leaf blight occurrence on rice yield and grain quality in different rice growth stage. Res Plant Dis 13:20–23

    Article  Google Scholar 

  • Ogata T, Ishizaki T, Fujita M, Fujita Y (2020) CRISPR/Cas9-targeted mutagenesis of OsERA1 confers enhanced responses to abscisic acid and drought stress and increased primary root growth under nonstressed conditions in rice. PLoS ONE 15:e0243376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliva R, Ji C, Atienza-Grande G, Huguet-Tapia JC, Perez-Quintero A, Li T, Yang B (2019) Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat Biotech 37:1344–1350

    Article  CAS  Google Scholar 

  • Perry KL, Kolb FL, Sammons B, Lawson C, Cisar G, Ohm H (2000) Yield effects of barley yellow dwarf virus in soft red winter wheat. Phytopathol 90:1043–1048

    Article  CAS  Google Scholar 

  • Plenet D, Etchebest S, Mollier A, Pellerin S (2000) Growth analysis of maize field crops under phosphorus deficiency. Plant Soil 223:119–132

    Article  Google Scholar 

  • Pruthi R, Puram VRR, Ontoy J, Subudhi PK (2022) Genetics of yield component traits under salt stress at flowering stage and selection of salt tolerant pre-breeding lines for rice improvement. Genetica 150(5):273–288

    Article  CAS  PubMed  Google Scholar 

  • Pulecio J, Verma N, Mejia Ramírez E, Huangfu D, Raya A (2017) CRISPR/Cas9-based engineering of the epigenome. Cell Stem Cell 21:431–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu Z, Kang S, He L, Zhao J, Zhang S, Hu J, Zhu L (2018) The newly identified heat-stress sensitive albino 1 gene affects chloroplast development in rice. Plant Sci 267:168–179

    Article  CAS  PubMed  Google Scholar 

  • Queiroz MS, Oliveira CE, Steiner F, Zuffo AM, Zoz T, Vendruscolo EP, Menis FT (2019) Drought stresses on seed germination and early growth of maize and sorghum. J Agri Sci 11:310–318

    Google Scholar 

  • Rahman MS, Haque MA, Islam MT (2015) Salinity affects flag leaf chlorophyll and yield attributes of rice genotypes. J Biosci Agri Res 4:80–85

    Article  Google Scholar 

  • Rakkammal K, Maharajan T, Ceasar SA, Ramesh M (2022) Biostimulants and their role in improving plant growth under drought and salinity. Cereal Res Commun. https://doi.org/10.1007/s42976-022-00299-6

    Article  Google Scholar 

  • Ren B, Liu L, Li S, Kuang Y, Wang J, Zhang D, Zhou X, Lin H, Zhou H (2019) Cas9-NG greatly expands the targeting scope of the genome-editing toolkit by recognizing NG and other atypical PAMs in rice. Mol Plant 12:1015–1026

    Article  CAS  PubMed  Google Scholar 

  • Ren Q, Sretenovic S, Liu S, Tang X, Huang L, He Y, Liu L, Guo Y, Zhong Z, Liu G, Cheng Y, Zheng X, Pan C, Yin D, Zhang Y, Li W, Qi L, Li C, Qi Y, Zhang Y (2021) PAM-less plant genome editing using a CRISPR-SpRY toolbox. Nat Plants 7:25–33

    Article  CAS  PubMed  Google Scholar 

  • Roch GV, Maharajan T, Ceasar SA, Ignacimuthu S (2019) The role of PHT1 family transporters in the acquisition and redistribution of phosphorus in plants. Crit Rev Plant Sci 38:171–198

    Article  Google Scholar 

  • Roch GV, Maharajan T, Krishna TP, Ignacimuthu S, Ceasar SA (2020) Expression of PHT1 family transporter genes contributes for low phosphate stress tolerance in foxtail millet (Setaria italica) genotypes. Planta 252:1–9

    Article  Google Scholar 

  • Rozewicz M, Wyzińska M, Grabiński J (2021) The most important fungal diseases of cereals—problems and possible solutions. Agronomy 11:714

    Article  CAS  Google Scholar 

  • Saddiq MS, Iqbal S, Hafeez MB, Ibrahim AM, Raza A, Fatima EM, Ciarmiello LF (2021) Effect of salinity stress on physiological changes in winter and spring wheat. Agronomy 11:1193

    Article  CAS  Google Scholar 

  • Samarah NH (2005) Effects of drought stress on growth and yield of barley. Agron Sustain Dev 25:145–149

    Article  Google Scholar 

  • Sathee L, Barman D, Nagar S, Tripathi S, Jha SK, Chinnusamy V (2022) Genome editing targets for improving nutrient use efficiency and nutrient stress adaptation. Front Genet. https://doi.org/10.3389/fgene.2022.900897

    Article  PubMed  PubMed Central  Google Scholar 

  • Sallam A, Alqudah AM, Dawood MF, Baenziger PS, Borner A (2019) Drought stress tolerance in wheat and barley: advances in physiology, breeding and genetics research. Int J Mol Sci 20:3137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarwar MH, Sarwar MF, Sarwar M, Qadri NA, Moghal S (2013) The importance of cereals (Poaceae: Gramineae) nutrition in human health: a review. J Cereals Oilseeds 4:32–35

    Article  Google Scholar 

  • Sharma R, Girish AG, Upadhyaya HD, Humayun P, Babu TK, Rao VP, Thakur R (2014) Identification of blast resistance in a core collection of foxtail millet germplasm. Plant Dis 98:519–524

    Article  PubMed  Google Scholar 

  • Shafi M, Bakht JEHAN, Jalal FAZAL, Khan MA, Khattak SG (2011) Effect of nitrogen application on yield and yield components of barley (Hordeum vulgare L.). Pak J Bot 43:1471–1475

    Google Scholar 

  • Shimatani Z, Kashojiya S, Takayama M, Terada R, Arazoe T, Ishii H, Teramura H, Yamamoto T, Komatsu H, Miura K, Ezura H, Nishida K, Ariizumi T, Kondo A (2017) Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol 35:441–443

    Article  CAS  PubMed  Google Scholar 

  • Shen C, Que Z, Xia Y, Tang N, Li D, He R, Cao M (2017) Knock out of the annexin gene OsAnn3 via CRISPR/Cas9-mediated genome editing decreased cold tolerance in rice. J Plant Biol 60:539–547

    Article  CAS  Google Scholar 

  • Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Habben JE (2017) ARGOS 8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15:207–216

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    Article  CAS  PubMed  Google Scholar 

  • Singh CM, Binod K, Suhel M, Kunj C (2012) Effect of drought stress in rice: a review on morphological and physiological characteristics. Trend Biosci 5:261–265

    Google Scholar 

  • Sumit S, Sinha D, Kumari A (2020) An overview of bacterial leaf blight disease of rice and different strategies for its management. Int J Curr Microbiol App Sci 9:2250–2265

    Article  Google Scholar 

  • Tambong JT (2022) Bacterial pathogens of wheat: symptoms, distribution, identification, and taxonomy. In: Mahmood RA (ed) Wheat. Intech Open, London, pp 1–22

    Google Scholar 

  • Tang L, Mao B, Li Y, Lv Q, Zhang L, Chen C, Zhao B (2017) Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci Rep 7:1–12

    Article  Google Scholar 

  • Ticconi CA, Lucero RD, Sakhonwasee S, Adamson AW, Creff A, Nussaume L, Abel S (2009) ER-resident proteins PDR2 and LPR1 mediate the developmental response of root meristems to phosphate availability. Proc Nat Acad Sci 106:14174–14179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Usman B, Nawaz G, Zhao N, Liao S, Liu Y, Li R (2020) Precise editing of the ospyl9 gene by rna-guided cas9 nuclease confers enhanced drought tolerance and grain yield in rice (Oryza sativa L.) by regulating circadian rhythm and abiotic stress responsive proteins. Int J Mol Sci 21:7854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walton RT, Christie KA, Whittaker MN, Kleinstiver BP (2020) Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 368:290–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Du G, Wang X, Meng Y, Li Y, Wu P, Yi K (2010) The function of LPR1 is controlled by an element in the promoter and is independent of SUMO E3 Ligase SIZ1 in response to low Pi stress in Arabidopsis thaliana. Plant Cell Physiol 51:380–394

    Article  PubMed  Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotech 32:947–951

    Article  CAS  Google Scholar 

  • Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, Zhao K (2016) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS ONE 11:e0154027

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang FZ, Chen MX, Yu LJ, Xie LJ, Yuan LB, Qi H, Chen QF (2017) OsARM1, an R2R3 MYB transcription factor, is involved in regulation of the response to arsenic stress in rice. Front Plant Sci 8:1868

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang B, Liu C, Zhang D, He C, Zhang J, Li Z (2019a) Effects of maize organ-specific drought stress response on yields from transcriptome analysis. BMC Plant Biol 19:1–19

    Google Scholar 

  • Wang WC, Lin TC, Kieber J, Tsai YC (2019b) Response regulators 9 and 10 negatively regulate salinity tolerance in rice. Plant Cell Physiol 60:2549–2563

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Zhong Z, Wang X, Han X, Yu D, Wang C, Zhang Y (2020a) Knockout of the OsNAC006 transcription factor causes drought and heat sensitivity in rice. Int J Mol Sci 21:2288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Zong Y, Lin Q, Zhang H, Chai Z, Zhang D, Chen K, Qiu JL, Gao C (2020b) Precise, predictable multi-nucleotide deletions in rice and wheat using APOBEC-Cas9. Nat Biotechnol 38:1460–2146

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Liu G, Zhang D, Zhang S, Qiu J (2022) Plant prime editing technique: a new genome editing tool for plants. Chinese J Biotech 38:26–33

    Google Scholar 

  • Xu X, Qi LS (2019) A CRISPR–dCas toolbox for genetic engineering and synthetic biology. J Mol Biol 431:34–47

    Article  CAS  PubMed  Google Scholar 

  • Xu R, Li J, Liu X, Shan T, Qin R, Wei P (2020a) Development of plant prime-editing systems for precise genome editing. Plant Commun 1:100043

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu W, Zhang C, Yang Y, Zhao S, Kang G, He X, Song J, Yang J (2020b) Versatile nucleotides substitution in plant using an improved prime editing system. Mol Plant 13:675–678

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Kuang Y, Ren B, Yan D, Yan F, Spetz C, Sun W, Wang G, Zhou X, Zhou H (2021) SpRY greatly expands the genome editing scope in rice with highly flexible PAM recognition. Genome Biol 22:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Xu J, Ge S, Lai L (2021) CRISPR/Cas: advances, limitations, and applications for precision cancer research. Front Med 8:649896

    Article  Google Scholar 

  • Yin X, Anand A, Quick P, Bandyopadhyay A (2019) Editing a stomatal developmental gene in rice with CRISPR/Cpf1. In: Qi Y (ed) Plant genome editing with CRISPR systems. Humana Press, New York, pp 257–268

    Chapter  Google Scholar 

  • Yuan Y, Wu H, Wang N, Li J, Zhao W, Du J, Ling HQ (2008) FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis. Cell Res 18:385–397

    Article  CAS  PubMed  Google Scholar 

  • Yue E, Cao H, Liu B (2020) OsmiR535, a potential genetic editing target for drought and salinity stress tolerance in Oryza sativa. Plants 9:1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zafar K, Sedeek KE, Rao GS, Khan MZ, Amin I, Kamel R, Mahfouz MM (2020) Genome editing technologies for rice improvement: progress, prospects, and safety concerns. Front Genome Editing 2:5

    Article  Google Scholar 

  • Zeng Y, Wen J, Zhao W, Wang Q, Huang W (2020a) Rational improvement of rice yield and cold tolerance by editing the three genes OsPIN5b, GS3, and OsMYB30 with the CRISPR–Cas9 system. Front Plant Sci 10:1663

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng D, Li X, Huang J, Li Y, Cai S, Yu W, Li Y, Huang Y, Xie X, Gong Q, Tan J, Zheng Z, Guo M, Liu YG, Zhu Q (2020b) Engineered Cas9 variant tools expand argeting scope of genome and base editing in rice. Plant Biotechnol J 18:1348–1350

    Article  PubMed  Google Scholar 

  • Zhang M, Liu B (2017) Identification of a rice metal tolerance protein OsMTP11 as a manganese transporter. PLoS ONE 12:e0174987

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Bai Y, Wu G, Zou S, Chen Y, Gao C, Tang D (2017) Simultaneous modification of three homoeologs of Ta EDR 1 by genome editing enhances powdery mildew resistance in wheat. Plant J 91:714–724

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Lei L, Lai J, Zhao H, Song W (2018a) Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings. BMC Plant Biol 18:1–16

    Google Scholar 

  • Zhang Y, Chen K, Zhao FJ, Sun C, Jin C, Shi Y, Lian X (2018b) OsATX1 interacts with heavy metal P1B-type ATPases and affects copper transport and distribution. Plant Physiol 178:329–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang A, Liu Y, Wang F, Li T, Chen Z, Kong D, Luo L (2019a) Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Mol Breed 39:1–10

    Article  Google Scholar 

  • Zhang R, Liu J, Chai Z, Chen S, Bai Y, Zong Y, Chen K, Li J, Jiang L, Gao C (2019b) Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nat Plants 5:480–485

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Srivastava AK, Sadanandom A (2019c) Targeted mutagenesis of the SUMO protease, Overly Tolerant to Salt1 in rice through CRISPR/Cas9-mediated genome editing reveals a major role of this SUMO protease in salt tolerance. BioRxiv. https://doi.org/10.1101/555706v1

    Article  Google Scholar 

  • Zhang R, Chen S, Meng X, Chai Z, Wang D, Yuan Y, Chen K, Jiang L, Li J, Gao C (2020) Generating broad-spectrum tolerance to ALS-inhibiting herbicides in rice by base editing. Sci China Life Sci 64:1624–1633

    Article  PubMed  Google Scholar 

  • Zhong Z, Sretenovic S, Ren Q, Yang L, Bao Y, Qi C, Yuan M, He Y, Liu S, Liu X, Wang J, Huang L, Wang Y, Baby D, Wang D, Zhang T, Qi Y, Zhang Y (2019) Improving plant genome editing with high-fidelity xCas9 and non-canonical PAM-targeting Cas9-NG. Mol Plant 12:1027–1036

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Peng Z, Long J, Sosso D, Liu BO, Eom JS, Yang B (2015) Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J 82:632–643

    Article  CAS  PubMed  Google Scholar 

  • Zong Y, Wang Y, Li C, Zhang R, Chen K, Ran Y, Qiu JL, Wang D, Gao C (2017) Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol 35:438–440

    Article  CAS  PubMed  Google Scholar 

  • Zong Y, Song Q, Li C, Jin S, Zhang D, Wang Y, Qiu JL, Gao C (2018) Effificient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat Biotechnol 36:950–953

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Rajagiri College of Social Sciences for all the support and help for the research.

Funding

This work was financially supported by Rajagiri College of Social Sciences (Autonomous), Under Seed Money for Faculty Minor Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislaus Antony Ceasar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by Gerhard Leubner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maharajan, T., Krishna, T.P.A., Rakkammal, K. et al. Application of CRISPR/Cas system in cereal improvement for biotic and abiotic stress tolerance. Planta 256, 106 (2022). https://doi.org/10.1007/s00425-022-04023-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-022-04023-w

Keywords

Navigation