Skip to main content

Advertisement

Log in

Drought and global hunger: biotechnological interventions in sustainability and management

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Drought may be efficiently managed using the following strategies: prevention, mitigation, readiness, recovery, and transformation. Biotechnological interventions may become highly important in reducing plants’ drought stress in order to address key plant challenges such as population growth and climate change.

Abstract

Drought is a multidimensional construct with several triggering mechanisms or contributing factors working at various spatiotemporal scales, making it one of the known natural catastrophes. Drought is among the causes of hunger and malnutrition, decreasing agricultural output, and poor nutrition. Many deaths caused in children are due to hunger situations, and one in four children face stunted growth. All this hunger and malnutrition may be responsible for the reduction in agricultural productivity caused due to the drought situations affecting food security. Global Hunger Index has been accelerating due to under-nutrition and under-5 deaths. Drought has been covering more than 20% of the world's agricultural areas, leading to significantly less food production than what is required for consumption. Drought reduces soil fertility and adversely affects soil biological activity reducing the inherent capacity of the soil to support vegetation. Recent droughts have had a much greater effect on people’s lives, even beyond causing poverty and hunger. Drought may have substantial financial consequences across the globe it may cause a severe impact on the world economy. It is a natural feature of the environment that will appear and disappear as it has in history. Due to increasing temperatures and growing vulnerabilities, it will undoubtedly occur more often and seriously in the coming years. To ensure sustainable socio-economic and social development, it is critical to reducing the effects of potential droughts worldwide using different biotechnological interventions. It’s part of a long-term growth plan, and forecasting is essential for early warnings and global hunger management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability statement

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  • Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) American society of plant physiologist’s role of Arabidopsis MYC and MYB homologs in drought and abscisic acid-regulated gene expression. Plant Cell 9:1859–1868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anjum SA, Ashraf U, Tanveer M, Khan I, Hussain S, Shahzad B, Zohaib A, Abbas F, Saleem MF, Ali I, Wang LC (2017) Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00069

    Article  PubMed  PubMed Central  Google Scholar 

  • Auyeung DSN, Suseela V, Dukes JS (2013) Warming and drought reduce temperature sensitivity of nitrogen transformations. Glob Change Biol 19:662–676. https://doi.org/10.1111/gcb.12063

    Article  Google Scholar 

  • Bano A, Ullah F, Nosheen A (2012) Role of abscisic acid and drought stress on the activities of antioxidant enzymes in wheat. Plant Soil Environ 58(4):181–185

    Article  CAS  Google Scholar 

  • Barnard RL, Osborne CA, Firestone MK (2013) Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. ISME J 7:2229–2241. https://doi.org/10.1038/ismej.2013.104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berendse F, de Kroon H, Braakhekke WG (2007) Acquisition, use, and loss of nutrients. In: Pugnaire F, Valladares F (eds) Functional Plant Ecology. CRC Press, Boca Raton, pp 315–345

    Google Scholar 

  • Boguszewska D, Grudkowska M, Zagdańska B (2010) Drought-responsive antioxidant enzymes in potato (Solanum tuberosum L.). Potato Res 53(4):373–382

    Article  CAS  Google Scholar 

  • Bolat I, Dikilitas M, Ercisli S, Ikinci A, Tonkaz T (2014) The effect of water stress on some morphological, physiological, and biochemical characteristics and bud success on apple and quince rootstocks. Sci World J 769732:8

    Google Scholar 

  • Bota J, Tomas M, Flexas J, Medrano H, Escalona JM (2016) Differences among grapevine cultivars in their stomatal behaviour and water use efficiency under progressive water stress. Agric Water Manag 164:91–99

    Article  Google Scholar 

  • Bouskill NJ, Wood TE, Baran R, Ye Z, Bowen BP, Lim H, Zhou J, Nostrand JDV, Nico P, Northen TR, Silver WL, Brodie EL (2016) Belowground response to drought in a tropical forest soil. I. Changes in microbial functional potential and metabolism. Front Microbiol 7:525. https://doi.org/10.3389/fmicb.2016.00525

    Article  PubMed  PubMed Central  Google Scholar 

  • Brodribb TJ, McAdam SAM (2013) Abscisic acid mediates a divergence in the drought response of two conifers. Plant Physiol 162:1370–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM, Francia E et al (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crop Res 105(1–2):1–14

    Article  Google Scholar 

  • Chakraborty K, Singh AL, Kalariya KA, Goswami N, Zala PV (2015) Physiological responses of peanut (Arachis hypogaea L.) cultivars to water deficit stress: status of oxidative stress and antioxidant enzyme activities. Acta Bot Croat 74(1):123–142

    Article  CAS  Google Scholar 

  • Chan Z (2012) Expression profiling of ABA pathway transcripts indicates crosstalk between abiotic and biotic stress responses in Arabidopsis. Genomics 100(2):110–115

    Article  CAS  PubMed  Google Scholar 

  • Chevilly S, Dolz-Edo L, López-Nicolás JM, Morcillo L, Vilagrosa A, Yenush L, Mulet JM (2021) Physiological and molecular characterization of the differential response of broccoli (Brassica oleracea var. Italica) cultivars reveals limiting factors for broccoli tolerance to drought stress. J Agric Food Chem 69(35):10394–10404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • CIA (2017) The world factbook. https://www.cia.gov/library/publications/the-world-factbook/geos/kz.html. Accessed 25 May

  • Dai A (2011) Drought under global warming: a review. Wiley Interdiscip Rev Clim Change 2(1):45–65

    Article  Google Scholar 

  • Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Chang 3(1):52–58

    Article  Google Scholar 

  • De Campos MKF, de Carvalho K, de Souza FS, Marur CJ, Pereira LFP, BespalhokFilho JC, Vieira LGE (2011) Drought tolerance and antioxidant enzymatic activity in transgenic ‘Swingle’ citrumelo plants over-accumulating proline. Environ Exp Bot 72(2):242–250

    Article  Google Scholar 

  • De Ronde J, Cress W, Krüger G, Strasser R, Van Staden J (2004) Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. J Plant Physiol 161(11):1211–1224

    Article  PubMed  Google Scholar 

  • Deshpande S, Manoharan R, Mitra S (2021) Exogenous β-cyclocitral treatment primes tomato plants against drought by inducing tolerance traits, independent of abscisic acid. Plant Biol 23:170–180

    Article  CAS  PubMed  Google Scholar 

  • Díaz SC, Therrell MD, Stahle DW, Cleaveland MK (2002) Chihuahua (Mexico) winter-spring precipitation reconstructed from tree-rings, 1647–1992. Clim Res 22(3):237–244

    Article  Google Scholar 

  • Dobranszki J, Magyar-Tabori K, Takacs-Hudak K (2003) Growth and developmental responses of potato to osmotic stress under in vitro condition. Acta Biol Hung 54(3):365–372

    Article  PubMed  Google Scholar 

  • dos Santos TB, Ribas AF, de Souza SGH, Budzinski IGF, Domingues DS (2022) Physiological responses to drought, salinity, and heat stress in plants: a review. Stresses 2(1):113–135

    Article  Google Scholar 

  • Dubey RS, Pessarakli M (2001) Physiological mechanisms of nitrogen absorption and assimilation in plants under stressful conditions. In: Pessarakli M (ed) Handbook of plant and crop physiology. CRC Press, Boca Raton, pp 605–625

    Google Scholar 

  • Earl HJ, Davis RF (2003) Effect of drought stress on leaf and whole canopy radiation use efficiency and yield of maize. Agron J 95(3):688–696

    Article  Google Scholar 

  • El Sabagh A, Hossain A, Barutcular C, Gormus O, Ahmad Z, Hussain S et al (2019) Effects of drought stress on the quality of major oilseed crops: Implications and possible mitigation strategies—a review. Appl Ecol Environ Res 17(2):4019–4043

    Article  Google Scholar 

  • EM-DAT (2011) The international disaster database. http://www.emdat.be/old/Documents/Publications/publication_2004_emdat.pdf. Accessed 21 Oct 2017

  • Fait A, Fromm H, Walter D, Galili G, Fernie AR (2008) Highway or byway: the metabolic role of the GABA shunt in plants. Trends Plant Sci 13(1):14–19

    Article  CAS  PubMed  Google Scholar 

  • FAO (2017) How close we are to zero Huhnger. http://www.fao.org/state-of-food-securitynutrition/en/. Accessed 25 May

  • FAO (2018) FAO cereal supply and demand brief. World Food Situation. http://www.fao.org/worldfoodsituation/csdb/en/. Accessed Dec 2019

  • Farooq M, Hussain M, Wakeel A, Siddique KH (2015) Salt stress in maize: effects, resistance mechanisms, and management. A review. Agron Sustain Dev 35(2):461–481

    Article  CAS  Google Scholar 

  • Fini A, Bellasio C, Pollastri S, Tattini M, Ferrini F (2013) Water relations, growth, and leaf gas exchange as affected by water stress in Jatropha curcas. J Arid Environ 89:21–29

    Article  Google Scholar 

  • Flexas J, Galmes J, Ribas-Carbo M, Medrano H (2005) The effects of water stress on plant respiration. plant respiration. Springer, Dordrecht, pp 85–94

    Chapter  Google Scholar 

  • Ford KL, Cassin A, Bacic A (2011) Quantitative proteomic analysis of wheat cultivars with differing drought stress tolerance. Front Plant Sci 2:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuchslueger L, Kastl E-M, Bauer F, Kienzl S, Hasibeder R, Ladreiter-Knauss T, Schmitt M, Bahn M, Schloter M, Richter A, Szukics U (2014) Effects of drought on nitrogen turnover and abundances of ammonia-oxidizers in mountain grassland. Biogeosci Discuss. https://doi.org/10.5194/bgd-11-9183-2014

  • Galmés J, Medrano H, Flexas J (2007) Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytol 175(1):81–93

    Article  PubMed  Google Scholar 

  • García FC, Bestion E, Warfield R, Yvon-Durocher G (2018) Changes in temperature alter the relationship between biodiversity and ecosystem functioning. Proc Natl Acad Sci 115:10989–10994. https://doi.org/10.1073/pnas.1805518115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg BK (2003) Nutrient uptake and management under drought: nutrient-moisture interaction. Curr Agric 27:1–8

    Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci 99(25):15898–15903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge T-D, Sun N-B, Bai L-P, Tong C-L, Sui F-G (2012) Effects of drought stress on phosphorus and potassium uptake dynamics in summer maize (Zea mays) throughout the growth cycle. Acta Physiol Plant 34:2179–2186. https://doi.org/10.1007/s11738-012-1018-7

    Article  CAS  Google Scholar 

  • Ghaffari H, Tadayon MR, Nadeem M, Cheema M, Razmjoo J (2019) Proline-mediated changes in antioxidant enzymatic activities and the physiology of sugar beet under drought stress. Acta Physiol Plant 41(2):1–13

    Article  CAS  Google Scholar 

  • Ghatak A, Chaturvedi P, Bachmann G, Valledor L, Ramšak Ž, Bazargani MM, Bajaj P, Jegadeesan S, Li W, Sun X (2021) Physiological and proteomic signatures reveal mechanisms of superior drought resilience in pearl millet compared to wheat. Front Plant Sci 11:1965

    Article  Google Scholar 

  • Giunta F, Motzo R, Deidda M (1993) Effect of drought on yield and yield components of durum wheat and triticale in a Mediterranean environment. Field Crop Res 33:399–409. https://doi.org/10.1016/0378-4290(93)90161-F

    Article  Google Scholar 

  • Gottlieb R, Joshi A (2010) Food justice, vol 304. The MIT Press, Cambridge. https://mitpress.mit.edu/books/food-justice. Accessed 21 Oct 2017

  • Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ (2003) Physiological and community responses of established grassland bacterial populations to water stress. Appl Environ Microbiol 69:6961–6968. https://doi.org/10.1128/AEM.69.12.6961-6968.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Mishra SK, Misra S, Pandey V, Agrawal L, Nautiyal CS, Chauhan PS (2020) Revealing the complexity of protein abundance in chickpea root under drought-stress using a comparative proteomics approach. Plant Physiol Biochem 151:88–102

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez APA, Engle NL, De Nys E, Molejón C, Martins ES (2014) Drought preparedness in Brazil. Weather Clim Extremes 3:95–106

    Article  Google Scholar 

  • Hassan N, Ebeed H, Aljaarany A (2020) Exogenous application of spermine and putrescine mitigate adversities of drought stress in wheat by protecting membranes and chloroplast ultra-structure. Physiol Mol Biol Plants 26(2):233–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkes JG (1990) The potato: evolution, biodiversity and genetic resources. Belhaven Press, London

    Google Scholar 

  • Haworth M, Cosentino SL, Marino G et al (2017) Physiological responses of Arundo donax ecotypes to drought: a common garden study. Glob Chang Biol Bioenergy 9:132–143

    Article  CAS  Google Scholar 

  • Hennig A, Kleinschmit JR, Schoneberg S, Loeffler S, Janssen A, Polle A (2015) Water consumption and biomass production of protoplast fusion lines of poplar hybrids under drought stress. Front Plant Sci 6:330

    Article  PubMed  PubMed Central  Google Scholar 

  • Hochberg U, Degu A, Toubiana D, Gendler T, Nikoloski Z, Rachmilevitch S, Fait A (2013) Metabolite profiling and network analysis reveal coordinated changes in grapevine water stress response. BMC Plant Biol 13:184

    Article  PubMed  PubMed Central  Google Scholar 

  • Homyak PM, Allison SD, Huxman TE, Goulden ML, Treseder KK (2017) Effects of drought manipulation on soil nitrogen cycling: a meta-analysis. J Geophys Res Biogeosci 122:3260–3272. https://doi.org/10.1002/2017JG004146

    Article  CAS  Google Scholar 

  • Hu Y, Burucs Z, von Tucher S, Schmidhalter U (2007) Short-term effects of drought and salinity on mineral nutrient distribution along growing leaves of maize seedlings. Environ Exp Bot 60:268–275. https://doi.org/10.1016/j.envexpbot.2006.11.003

    Article  CAS  Google Scholar 

  • Huan L, Jin-Qiang W, Qing L (2020) Photosynthesis product allocation and yield in sweet potato with spraying exogenous hormones under drought stress. J Plant Physiol 253:153265

    Article  CAS  PubMed  Google Scholar 

  • Hueso S, García C, Hernández T (2012) Severe drought conditions modify the microbial community structure, size and activity in amended and unamended soils. Soil Biol Biochem 50:167–173. https://doi.org/10.1016/j.soilbio.2012.03.026

    Article  CAS  Google Scholar 

  • Hussain M, Malik MA, Farooq M, Ashraf MY, Cheema MA (2008) Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. J Agron Crop Sci 194(3):193–199

    Article  CAS  Google Scholar 

  • Hussain HA, Hussain S, Khaliq A, Ashraf U, Anjum SA, Men S, Wang L (2018) Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00393

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang C, He S, Zhai H, Li R, Zhao N, Liu Q (2018) A sweetpotatoauxin response factor gene (IbARF5) is involved in carotenoid biosynthesis and salt and drought tolerance in transgenic Arabidopsis. Front Plant Sci 9:1307

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaya MD, Okçu G, Atak M, Cıkılı Y, Kolsarıcı Ö (2006) Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Eur J Agron 24(4):291–295

    Article  CAS  Google Scholar 

  • Khan N, Ali S, Shahid MA, Mustafa A, Sayyed RZ, Curá JA (2021) Insights into the interactions among roots, rhizosphere, and rhizobacteria for improving plant growth and tolerance to abiotic stresses: a review. Cells 10(6):1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiliç H, Yağbasanlar T (2010) The effect of drought stress on grain yield, yield components and some quality traits of durum wheat (Triticum turgidum ssp. durum) cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. https://doi.org/10.15835/nbha3814274

    Article  Google Scholar 

  • Kogan F, Adamenko T, Guo W (2013) Global and regional drought dynamics in the climate warming era. Remote Sens Lett 4(4):364–372

    Article  Google Scholar 

  • Kogan F, Guo W, Yang W (2019) Drought and food security prediction from NOAA new generation of operational satellites. Geomat Nat Haz Risk 10(1):651–666

    Article  Google Scholar 

  • Kogan F, Guo W, Yang W (2020) Near 40-year drought trend during 1981–2019 earth warming and food security. Geomat Nat Haz Risk 11(1):469–490

    Article  Google Scholar 

  • Kremer B (2012) Soil microbiology under drought stress. Acres USA 42:18–21

    Google Scholar 

  • Kumar S, Sachdeva S, Bhat KV, Vats S (2018) Plant responses to drought stress: physiological, biochemical and molecular basis. Biotic and abiotic stress tolerance in plants. Springer, Singapore, pp 1–25

    Google Scholar 

  • Laferrière JE (1992) Cultural and environmental response to drought among the Mountain Pima. Ecol Food Nutr 28(1–2):1–9

    Article  Google Scholar 

  • Larcher W (2005) Climatic constraints drive the evolution of low temperature resistance in woody plants. J Agric Meteorol 61(4):189–202

    Article  Google Scholar 

  • Larsen KS, Andresen LC, Beier C, Jonasson S, Albert KR, Ambus P, Arndal MF, Carter MS, Christensen S, Holmstrup M, Ibrom A, Kongstad J, Linden LVD, Maraldo K, Michelsen A, Lehman H (1998) Cynthia Rosenzweig and Daniel Hillel, Climate change and the global harvest: potential impacts of the greenhouse effect on agriculture. J Agric Environ Ethics 11(1):71

    Article  Google Scholar 

  • Lehman H (1998) Cynthia Rosenzweig and Daniel Hillel, Climate change and the global harvest: potential impacts of the greenhouse effect on agriculture. J Agric Environ Ethics 11(1):71

    Article  Google Scholar 

  • Li X, Sarah P (2003) Enzyme activities along a climatic transect in the Judean Desert. CATENA 53:349–363. https://doi.org/10.1016/S0341-8162(03)00087-0

    Article  CAS  Google Scholar 

  • Lim CW, Baek W, Han SW, Lee SC (2013) Arabidopsis PYL8 plays an important role for ABA signaling and drought stress responses. Plant Pathol J 29(4):471–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisar SY, Motafakkerazad R, Hossain MM (2012) Water stress in plants: causes, effects and responses. Water stress. In: Mofizur Rahman IM (ed.), Tech. 10, 39363

  • Liu M, Li M, Liu K, Sui N (2015a) Effects of drought stress on seed germination and seedling growth of different maize varieties. J Agric Sci 7(5):231

    Google Scholar 

  • Liu X, Zhu X, Pan Y, Zhao A, Li Y (2015b) Spatiotemporal changes of cold surges in Inner Mongolia between 1960 and 2012. J Geog Sci 25(3):259–273

    Article  Google Scholar 

  • Lozano YM, Aguilar-Trigueros CA, Onandia G, Maaß S, Zhao T, Rillig MC (2021) Effects of microplastics and drought on soil ecosystem functions and multifunctionality. J Appl Ecol. https://doi.org/10.1111/1365-2664.13839

    Article  Google Scholar 

  • Lynch JP, Brown KM (2001) Topsoil foraging—an architectural adaptation of plants to low phosphorus availability. Plant Soil 237:225–237. https://doi.org/10.1023/A:1013324727040

    Article  CAS  Google Scholar 

  • Mafakheri A, Siosemardeh A, Bahramnejad B, Struik PC, Sohrabi Y (2010) Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Aust J Crop Sci 4(8):580–585

    CAS  Google Scholar 

  • Maitra P, Zheng Y, Chen L, Wang Y-L, Ji N, Lü P-P, Gan H-Y, Li X-C, Sun X, Zhou X-H, Guo L (2019) Effect of drought and season on arbuscular mycorrhizal fungi in a subtropical secondary forest. Fungal Ecol 41:107–115. https://doi.org/10.1016/j.funeco.2019.04.005

    Article  Google Scholar 

  • Mantovani A, Iglesias RR (2010) The effect of water stress on seed germination of three terrestrial bromeliads from restinga. Braz J Bot 33(1):201–205

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Elsevier, New York. https://doi.org/10.1016/B978-0-12-473542-2.X5000-7

    Book  Google Scholar 

  • Mehari TG, Xu Y, Umer MJ, Shiraku ML, Hou Y, Wang Y et al (2021) Multi-omics-based identification and functional characterization of Gh_A06G1257 proves its potential role in drought stress tolerance in Gossypium hirsutum. Front Plant Sci. https://doi.org/10.3389/fpls.2021.746771

    Article  PubMed  PubMed Central  Google Scholar 

  • Mera GA (2018) Drought and its impacts in Ethiopia. Weather Clim Extremes 22:24–35

    Article  Google Scholar 

  • Najafi E, Devineni N, Khanbilvardi RM, Kogan F (2018) Understanding the changes in global crop yields through changes in climate and technology. Earth’s Future 6(3):410–427

    Article  CAS  Google Scholar 

  • Nakhforoosh A, Bodewein T, Fiorani F, Bodner G (2016) Identification of water use strategies at early growth stages in durum wheat from shoot phenotyping and physiological measurements. Front Plant Sci 7:1155

    Article  PubMed  PubMed Central  Google Scholar 

  • NDMC (2010) Drought awareness. National Disaster Management Center, South Africa. http://www.ndmc.gov.za/portals/0/docs/publications/Drought_Awareness.pdf

  • Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, Werner T, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Kakimoto T (2011) Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23(6):2169–2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • NOAA (2016) Global climate report. www.ncdc.noaa.gov/cag/time-series/global. Accessed Sept 2017

  • NOAA (2017a) Global climate report—November. December. https://www.ncdc.noaa.gov/sotc/global/2017a11

  • NOAA (2017b) U.S. billion-dollar weather & climate disasters 1980–2016. https://www.ncdc.noaa.gov/billions/. Accessed 05 June

  • O’Connell C, Ruan L, Silver W (2018) Drought drives rapid shifts in tropical rainforest soil biogeochemistry and greenhouse gas emissions. Nat Commun 9:1348. https://doi.org/10.1038/s41467-018-03352-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panda RK, Pandit E, Swain A, Mohanty DP, Baig MJ, Kar M, Pradhan SK (2016) Response of physiological and biochemical parameters in deeper rooting rice genotypes under irrigated and water stress conditions. Oryza 53(4):422–427

    Google Scholar 

  • Pinheiro C, Chaves MM (2011) Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot 62(3):869–882

    Article  CAS  PubMed  Google Scholar 

  • Razi K, Muneer S (2021) Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops. Crit Rev Biotechnol 41(5):669–691

    Article  CAS  PubMed  Google Scholar 

  • Rojas O (2020) Agricultural extreme drought assessment at global level using the FAO-Agricultural Stress Index System (ASIS). Weather Clim Extremes 27:100184

    Article  Google Scholar 

  • Sakamoto A, Murata N (2000) Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. J Exp Bot 51(342):81–88

    Article  CAS  PubMed  Google Scholar 

  • Samarah NH, Mullen RE, Cianzio SR, Scott P (2006) Dehydrin-like proteins in soybean seeds in response to drought stress during seed filling. Crop Sci 46(5):2141–2150

    Article  CAS  Google Scholar 

  • Santos-Medellín C, Edwards J, Liechty Z, Nguyen B, Sundaresan V (2017) Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes. Mbio. https://doi.org/10.1128/mBio.00764-17

    Article  PubMed  PubMed Central  Google Scholar 

  • Sapeta H, Costa JM, Lourenco T, Maroco J, Linde PVD, Oliveira MM (2013) Drought stress response in Jatropha curcas: growth and physiology. Environ Exp Bot 85:76–84

    Article  CAS  Google Scholar 

  • Sardans J, Peñuelas J (2005) Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L. forest. Soil Biol Biochem 37:455–461. https://doi.org/10.1016/j.soilbio.2004.08.004

    Article  CAS  Google Scholar 

  • Sasson A (2012) Food security for Africa: an urgent global challenge. Agric Food Secur 1(1):1–16

    Article  Google Scholar 

  • Schimel JP (2018) Life in dry soils: effects of drought on soil microbial communities and processes. Annu Rev Ecol Evol Syst 49:409–432. https://doi.org/10.1146/annurev-ecolsys-110617-062614

    Article  Google Scholar 

  • Seager R, Lis N, Feldman J, Ting M, Williams AP, Nakamura J et al (2018) Whither the 100th meridian? The once and future physical and human geography of America’s arid–humid divide. Part I: the story so far. Earth Interact 22(5):1–22

    Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13(1):61–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma KR, Sharma V (2015) Supplemental irrigation from harvested rainwater to enhance yield and economic returns from wheat in sub-montane region of Jammu, India. J Soil Water Conserv 14:219–226

    Google Scholar 

  • Sharma V, Mir SH, Arora S (2009) Assessment of fertility status of erosion prone soils of Jammu Siwaliks. J Soil Water Conserv 8:37–41

    Google Scholar 

  • Sharma V, Hussain S, Sharma KR, Arya VM (2014) Labile carbon pools and soil organic carbon stocks in the foothill Himalayas under different land use systems. Geoderma 232–234:81–87. https://doi.org/10.1016/j.geoderma.2014.04.039

    Article  CAS  Google Scholar 

  • Sheveleva E, Chmara W, Bohnert HJ, Jensen RG (1997) Increased salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabacum L. Plant Physiol 115(3):1211–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheveleva EV, Marquez S, Chmara W, Zegeer A, Jensen RG, Bohnert HJ (1998) Sorbitol-6-phosphate dehydrogenase expression in transgenic tobacco: high amounts of sorbitol lead to necrotic lesions. Plant Physiol 117(3):831–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE (2017) ARGOS 8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15(2):207–216

    Article  CAS  PubMed  Google Scholar 

  • Siebielec S, Siebielec G, Klimkowicz-Pawlas A, Gałązka A, Grządziel J, Stuczyński T (2020) Impact of water stress on microbial community and activity in sandy and loamy soils. Agronomy 10:1429. https://doi.org/10.3390/agronomy10091429

    Article  CAS  Google Scholar 

  • Solankey S, Singh R, Baranwal D, Singh D (2015) Genetic expression of tomato for heat and drought stress tolerance: an overview. Int J Veg Sci 21(5):496–515

    Article  Google Scholar 

  • Stark JM, Firestone MK (1995) Mechanisms for soil moisture effects on activity of nitrifying bacteria. Appl Environ Microbiol 61:218–221. https://doi.org/10.1128/AEM.61.1.218-221.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Li Y-F, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17(4):196–203

    Article  CAS  PubMed  Google Scholar 

  • Székely G, Ábrahám E, Cséplo Á, Rigó G, Zsigmond L, Csiszár J (2008) Duplicated P5CS genes of Arabidopsis lay distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J 53:11–28

    Article  PubMed  Google Scholar 

  • Taiz L, Zeiger E (2006) Fisiologia vegetal, Vol 10. Universitat Jaume I

  • Takahashi F, Kuromori T, Urano K, Yamaguchi-Shinozaki K, Shinozaki K (2020) Drought stress responses and resistance in plants: FRom cellular responses to long-distance intercellular communication. Front Plant Sci 11:556972

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas R, El-Dessougi H, Tubeileh A (2006) Soil system management under arid and semi-arid conditions. In: Uphoff N (ed) Biological approaches to sustainable soil systems. CRC Press, Boca Raton, pp 41–55. https://doi.org/10.1201/9781420017113.ch4

    Chapter  Google Scholar 

  • Tuberosa R, Salvi S (2006) Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci 11(8):405–412

    Article  CAS  PubMed  Google Scholar 

  • Ullah A, Manghwar H, Shaban M, Khan AH, Akbar A, Ali U, Ali E, Fahad S (2018) Phytohormones enhanced drought tolerance in plants: a coping strategy. Environ Sci Pollut Res 25(33):33103–33118

    Article  CAS  Google Scholar 

  • Van Loon AF (2015) Hydrological Drought Explained, vol 2. WIREs Water published by Wiley Periodicals Inc, New York

    Google Scholar 

  • Vanlerberghe GC, Martyn GD, Dahal K (2016) Alternative oxidase: a respiratory electron transport chain pathway essential for maintaining photosynthetic performance during drought stress. Physiol Plant 157(3):322–337

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Zhang X, Li F, Luo Y, Wang W (2010) Overaccumulation of glycine betaine enhances tolerance to drought and heat stress in wheat leaves in the protection of photosynthesis. Photosynthetica 48(1):117–126

    Article  CAS  Google Scholar 

  • Wang X, Cai X, Xu C, Wang Q, Dai S (2016) Drought-responsive mechanisms in plant leaves revealed by proteomics. Int J Mol Sci 17(10):1706

    Article  PubMed Central  Google Scholar 

  • Wang J, Wang Y, Song X, Wang Y, Lei X, Wang J, Wang Y, Song X, Wang Y, Lei X (2017) Elevated atmospheric CO2 and drought affect soil microbial community and functional diversity associated with Glycine max. Rev Bras Ciênc Solo. https://doi.org/10.1590/18069657rbcs20160460

    Article  Google Scholar 

  • Warrick RA (1984) The possible impacts on wheat production of a recurrence of the 1930s drought in the US Great Plains. Clim Change 6(1):5–26

    Article  Google Scholar 

  • Wery J, Silim SN, Knights EJ, Malhotra RS, Cousin R (1994) Screening techniques and sources of tolerance to extremes of moisture and air temperature in cool season food legumes. Expanding the production and use of cool season food legumes. Springer, Dordrecht, pp 439–456

    Chapter  Google Scholar 

  • Wilczyński G, Kulma A, Szopa J (1998) The expression of 14-3-3 isoforms in potato is developmentally regulated. J Plant Physiol 153(1–2):118–126

    Article  Google Scholar 

  • Xie H, Bai G, Lu P, Li H, Fei M, Xiao BG et al (2022) Exogenous citric acid enhances drought tolerance in tobacco (Nicotiana tabacum). Plant Biol 24(2):333–343

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Coleman-Derr D (2019) Causes and consequences of a conserved bacterial root microbiome response to drought stress. Curr Opin Microbiol 49:1–6. https://doi.org/10.1016/j.mib.2019.07.003

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Long Y, Feng X, Zhu X, Sai N, Chirkova L et al (2021) GABA signalling modulates stomatal opening to enhance plant water use efficiency and drought resilience. Nat Commun 12(1):1–13

    PubMed  PubMed Central  Google Scholar 

  • Yamada M, Morishita H, Urano K, Shiozaki N, Yamaguchi-Shinozaki K, Shinozaki K, Yoshiba Y (2005) Effects of free proline accumulation in petunias under drought stress. J Exp Bot 56(417):1975–1981

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Lu M, Wang Y, Wang Y, Liu Z, Chen S (2021) Response mechanism of plants to drought stress. Horticulturae 2021(7):50

    Article  Google Scholar 

  • Yao X, Xiong W, Ye T, Wu Y (2012) Overexpression of the aspartic protease ASPG1 gene confers drought avoidance in Arabidopsis. J Exp Bot 63:2579–2593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu L, Chen X, Wang Z, Wang S, Wang Y, Zhu Q, Li S, Xiang C (2013) Arabidopsis enhanced drought tolerance1/HOMEODOMAIN GLABROUS11 confers drought tolerance in transgenic rice without yield penalty. Plant Physiol 162(3):1378–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Tan W, Yang X-H, Zhang H-X (2008) Plastid-expressed choline monooxygenase gene improves salt and drought tolerance through accumulation of glycine betaine in tobacco. Plant Cell Rep 27(6):1113–1124

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Jin Z-Q, Zhao J, Zhang G, Wu F (2015) Physiological and biochemical responses to drought stress in cultivated and Tibetan wild barley. Plant Growth Regul 75:567–574. https://doi.org/10.1007/s10725-014-0022-x

    Article  CAS  Google Scholar 

  • Zhang H, Shi L, Lu H, Shao Y, Liu S, Fu S (2020) Drought promotes soil phosphorus transformation and reduces phosphorus bioavailability in a temperate forest. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.139295

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng M, Tao Y, Hussain S, Jiang Q, Peng S, Huang J, Cui K, Nie L (2016) Seed priming in dry direct-seeded rice: consequences for emergence, seedling growth and associated metabolic events under drought stress. Plant Growth Regul 78:167–178. https://doi.org/10.1007/s10725-015-0083-5

    Article  CAS  Google Scholar 

  • Zhu M, He Y, Zhu M, Ahmad A, Xu S, He Z et al (2022) ipa1 improves rice drought tolerance at seedling stage mainly through activating abscisic acid pathway. Plant Cell Rep 41(1):221–232

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvaiz Ahmad.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Communicated by Gerhard Leubner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansoor, S., Khan, T., Farooq, I. et al. Drought and global hunger: biotechnological interventions in sustainability and management. Planta 256, 97 (2022). https://doi.org/10.1007/s00425-022-04006-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-022-04006-x

Keywords

Navigation