Skip to main content
Log in

9-cis-β-Apo-10ʹ-carotenal is the precursor of strigolactones in planta

  • Short Communication
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

13C-isotope feeding experiments demonstrate that the apocarotenoid 9-cis-β-apo-10ʹ-carotenal is the precursor of several strigolactones in rice, providing a direct, in planta evidence for its role in strigolactone biosynthesis.

Abstract

Strigolactones (SLs) are plant hormone that regulates plant architecture and mediates rhizospheric communications. Previous in vitro studies using heterogously produced enzymes unraveled the conversion of all-trans-β-carotene via the intermediate 9-cis-β-apo-10ʹ-carotenal into the SL precursor carlactone. However, a direct evidence for the formation of SLs from 9-cis-β-apo-10ʹ-carotenal is still missing. To provide this evidence, we supplied rice seedlings with 13C-labeled 9-cis-β-apo-10ʹ-carotenal and analyzed their SLs by LC–MS. Our results show that 9-cis-β-apo-10ʹ-carotenal is the SL precursor in planta and reveal, for the first time, the application of labeled long-chain apocarotenoids as a promising approach to investigate apocarotenoid metabolism and the genesis of carotenoid-derived growth regulators and signaling molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials.

References

  • Akiyama K, Matsuzaki K-i, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435(7043):824–827

    Article  CAS  PubMed  Google Scholar 

  • Al-Babili S, Bouwmeester HJ (2015) Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Plant Biol 66:161–186

    Article  CAS  PubMed  Google Scholar 

  • Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S (2012) The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science 335(6074):1348–1351

    Article  CAS  PubMed  Google Scholar 

  • Braguy J, Ramazanova M, Giancola S, Jamil M, Kountche BA, Zarban R, Felemban A, Wang JY, Lin P-Y, Haider I (2021) SeedQuant: a deep learning-based tool for assessing stimulant and inhibitor activity on root parasitic seeds. Plant Physiol 186(3):1632–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruno M, Hofmann M, Vermathen M, Alder A, Beyer P, Al-Babili S (2014) On the substrate-and stereospecificity of the plant carotenoid cleavage dioxygenase 7. FEBS Lett 588(9):1802–1807

    Article  CAS  PubMed  Google Scholar 

  • Bruno M, Vermathen M, Alder A, Wüst F, Schaub P, van der Steen R, Beyer P, Ghisla S, Al-Babili S (2017) Insights into the formation of carlactone from in-depth analysis of the CCD 8-catalyzed reactions. FEBS Lett 591(5):792–800

    Article  CAS  PubMed  Google Scholar 

  • Butt H, Jamil M, Wang JY, Al-Babili S, Mahfouz M (2018) Engineering plant architecture via CRISPR/Cas9-mediated alteration of strigolactone biosynthesis. BMC Plant Biol 18(1):1–9

    Article  Google Scholar 

  • Chesterfield RJ, Vickers CE, Beveridge CA (2020) Translation of strigolactones from plant hormone to agriculture: achievements, future perspectives, and challenges. Trends Plant Sci 25(11):1087–1106

    Article  CAS  PubMed  Google Scholar 

  • Cook C, Whichard LP, Turner B, Wall ME, Egley GH (1966) Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154(3753):1189–1190

    Article  CAS  PubMed  Google Scholar 

  • Fiorilli V, Wang JY, Bonfante P, Lanfranco L, Al-Babili S (2019) Apocarotenoids: old and new mediators of the arbuscular mycorrhizal symbiosis. Front Plant Sci 10:1186

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot J-P, Letisse F, Matusova R, Danoun S, Portais J-C (2008) Strigolactone inhibition of shoot branching. Nature 455(7210):189–194

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Braguy J, Wang JY, Yoda A, Fiorilli V, Takahashi I, Jamil M, Felemban A, Miyazaki S, Mazzarella T, Shinozawa A, Balakrishna A, Berqdar L, Rajan C, Ali S, Haider I, Sasaki Y, Yajima S, Akiyama K, Lanfranco L, Zurbriggen M, Nomura T, Asami T, Al-Babili S (2022) Canonical Strigolactones are not the tillering-inhibitory hormone but rhizospheric signals in rice. bioRxiv. https://doi.org/10.1101/2022.04.05.487102

    Article  Google Scholar 

  • Jamil M, Charnikhova T, Houshyani B, van Ast A, Bouwmeester HJ (2012) Genetic variation in strigolactone production and tillering in rice and its effect on Striga hermonthica infection. Planta 235(3):473–484

    Article  CAS  PubMed  Google Scholar 

  • Jia K-P, Dickinson AJ, Mi J, Cui G, Xiao TT, Kharbatia NM, Guo X, Sugiono E, Aranda M, Blilou I (2019) Anchorene is a carotenoid-derived regulatory metabolite required for anchor root formation in Arabidopsis. Sci Adv 5(11):eaaw6787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanfranco L, Fiorilli V, Venice F, Bonfante P (2018) Strigolactones cross the kingdoms: plants, fungi, and bacteria in the arbuscular mycorrhizal symbiosis. J Exp Bot 69(9):2175–2188

    Article  CAS  PubMed  Google Scholar 

  • Seto Y, Sado A, Asami K, Hanada A, Umehara M, Akiyama K, Yamaguchi S (2014) Carlactone is an endogenous biosynthetic precursor for strigolactones. Proc Natl Acad Sci 111(4):1640–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455(7210):195–200

    Article  CAS  PubMed  Google Scholar 

  • Wang JY, Haider I, Jamil M, Fiorilli V, Saito Y, Mi J, Baz L, Kountche BA, Jia K-P, Guo X (2019) The apocarotenoid metabolite zaxinone regulates growth and strigolactone biosynthesis in rice. Nat Commun 10(1):1–9

    Google Scholar 

  • Wang JY, Lin P-Y, Al-Babili S (2021) On the biosynthesis and evolution of apocarotenoid plant growth regulators. Seminars in cell and developmental biology. Elsevier, pp 3–11

    Google Scholar 

  • Wang JY, Chen G-TE, Jamil M, Braguy J, Sioud S, Liew KX, Balakrishna A, Al-Babili S (2022) Protocol for characterizing strigolactones released by plant roots. STAR Protocols 3(2):101352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waters MT, Gutjahr C, Bennett T, Nelson DC (2017) Strigolactone signaling and evolution. Annu Rev Plant Biol 68:291–322. https://doi.org/10.1146/annurev-arplant-042916-040925

    Article  CAS  PubMed  Google Scholar 

  • Yoneyama K, Xie X, Yoneyama K, Kisugi T, Nomura T, Nakatani Y, Akiyama K, McErlean CS (2018) Which are the major players, canonical or non-canonical strigolactones? J Exp Bot 69(9):2231–2239

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Van Dijk AD, Scaffidi A, Flematti GR, Hofmann M, Charnikhova T, Verstappen F, Hepworth J, Van Der Krol S, Leyser O (2014) Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat Chem Biol 10(12):1028–1033

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank the support from the members of KAUST Analytical Core Lab and the Bioactives lab. This work was supported by baseline funding given to S. A-B from King Abdullah University of Science and Technology (KAUST). We thank Dr. Abdel Gabbar Babiker for providing Striga hermonthica seeds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salim Al-Babili.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Anastasios Melis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 441 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, GT.E., Wang, J.Y., Jamil, M. et al. 9-cis-β-Apo-10ʹ-carotenal is the precursor of strigolactones in planta. Planta 256, 88 (2022). https://doi.org/10.1007/s00425-022-03999-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-022-03999-9

Keywords

Navigation