Skip to main content

Mitigating abiotic stress: microbiome engineering for improving agricultural production and environmental sustainability

Abstract

Main Conclusion

The responses of plants to different abiotic stresses and mechanisms involved in their mitigation are discussed. Production of osmoprotectants, antioxidants, enzymes and other metabolites by beneficial microorganisms and their bioengineering ameliorates environmental stresses to improve food production.

Abstract

Progressive intensification of global agriculture, injudicious use of agrochemicals and change in climate conditions have deteriorated soil health, diminished the microbial biodiversity and resulted in environment pollution along with increase in biotic and abiotic stresses. Extreme weather conditions and erratic rains have further imposed additional stress for the growth and development of plants. Dominant abiotic stresses comprise drought, temperature, increased salinity, acidity, metal toxicity and nutrient starvation in soil, which severely limit crop production. For promoting sustainable crop production in environmentally challenging environments, use of beneficial microbes has emerged as a safer and sustainable means for mitigation of abiotic stresses resulting in improved crop productivity. These stress-tolerant microorganisms play an effective role against abiotic stresses by enhancing the antioxidant potential, improving nutrient acquisition, regulating the production of plant hormones, ACC deaminase, siderophore and exopolysaccharides and accumulating osmoprotectants and, thus, stimulating plant biomass and crop yield. In addition, bioengineering of beneficial microorganisms provides an innovative approach to enhance stress tolerance in plants. The use of genetically engineered stress-tolerant microbes as inoculants of crop plants may facilitate their use for enhanced nutrient cycling along with amelioration of abiotic stresses to improve food production for the ever-increasing population. In this chapter, an overview is provided about the current understanding of plant–bacterial interactions that help in alleviating abiotic stress in different crop systems in the face of climate change. This review largely focuses on the importance and need of sustainable and environmentally friendly approaches using beneficial microbes for ameliorating the environmental stresses in our agricultural systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability statements

All datasets generated or analyzed during this study are included in this article. Data citations in the manuscript have been included in the reference list and follow the journal style. In addition, related datasets necessary to interpret and replicate and generated during and/or analyzed during the current study are available from the corresponding author.

Abbreviations

PGPR:

Plant growth-promoting rhizobacteria

EPS:

Exopolysaccharides

ACC:

1-Aminocyclopropane-1-carboxylate

ABA:

Abscisic acid

ROS:

Reactive oxygen species

HSFs:

Heat shock factors

IAA:

Indole-acetic acid

ALA:

Aminolevulinic acid

SA:

Salicylic acid

FA:

Ferulic acid

SOD:

Superoxide dismutase

CAT:

Catalase

APX:

Ascorbate peroxidase

GR:

Glutathione reductase

POD:

Peroxidase

AMF:

Arbuscular mycorrhizal fungi

OA:

Organic acid

MDA:

Malondialdehyde

PSB:

Phosphate-solubilizing bacteria

References

  • Abbas R, Rasul S, Aslam K, Baber M, Shahid M, Mubeen F, Naqqash T (2019) Halotolerant PGPR: A hope for cultivation of saline soils. J King Saud Univ Sci 31(4):1195–1201

    Article  Google Scholar 

  • Abdelkader AF, Esawy MA (2011) Case study of a biological control: Geobacillus caldoxylosilyticus (IRD) contributes to alleviate salt stress in maize (Zea mays L.) plants. Acta Physiol Plant 33(6):2289

    Article  Google Scholar 

  • Abdelmoneim TS, Tarek AAM, Almaghrabi OA, Abdelbagi I (2014) Investigating the effect of arbuscular mycorrhizal fungi on the tolerance of maize plant to heavy metals stress. Life Sci J 11(4):255–263

    CAS  Google Scholar 

  • Abou-Shanab RAI, Van Berkum P, Angle JS (2007) Heavy metal resistance and genotypic analysis of metal resistance genes in Gram-positive and Gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere 68:360–367

    CAS  PubMed  Article  Google Scholar 

  • Acinas NP Jr, Bautista LGV, Tagsip WVL, Cuadrado JT (2019) Enhancing growth characteristics and accumulation potential of beach morning glory (Ipomoea pes-caprae) using Bacillus subtilis. J Nature Stud 18(2):52–59

    Google Scholar 

  • Adamu T, Mun B-G, Lee S-U, Hussain A, Yun B-W (2018) Exogenously applied nitric oxide enhances salt tolerance in rice (Oryza sativa L.) at seedling stage. Agronomy 8:276. https://doi.org/10.3390/agronomy8120276

    CAS  Article  Google Scholar 

  • Aggarwal S, Kumar A, Jain M, Sudan J, Singh K, Kumari S, Mustafiz A (2020) C-terminally encoded peptides (CEPs) are potential mediators of abiotic stress response in plants. Physiol Mol Biol Plants 26(10):2019–2033

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Ahluwalia O, Singh PC, Bhatia R (2021) A review on drought stress in plants: Implications, mitigation and the role of plant growth promoting rhizobacteria. Resour Environ Sustainab 5:100032. https://doi.org/10.1016/j.resenv.2021.100032

    Article  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple growth promoting activities. Microbiol Res 163:173–181

    CAS  PubMed  Article  Google Scholar 

  • Ahmad R, Lim CJ, Kwon SY (2013) Glycine betaine: a versatile compound with great potential for gene pyramiding to improve crop plant performance against environmental stresses. Plant Biotechnol Rep 7(1):49–57

    Article  Google Scholar 

  • Ait Barka E, Nowak J (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72:7246–7252

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Ajala OA, Ajibade FO, Oluwadipe OR, Nwogwu NA., Adelodun B, Guadie A, Ajibade TF, Lasisi KH, Adewumi JR (2022) Microbial impact on climate-smart agricultural practices. In: Microbiome under changing climate. Kumar A, Singh J, Ferreira LFR (Eds), Woodhead Publishing. pp 203–236, https://doi.org/10.1016/B978-0-323-90571-8.00009-2

  • AlAli HA, Khalifa A, Almalki M (2022) Plant growth-promoting bacterium from non-agricultural soil improves okra plant growth. Agriculture 12:873. https://doi.org/10.3390/agriculture12060873

    CAS  Article  Google Scholar 

  • Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang M-Q (2021) Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health Implications. Toxics 9:42. https://doi.org/10.3390/toxics9030042

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Alexandre A, Oliveira S (2011) Most heat-tolerant rhizobia show high induction of major chaperone genes upon stress. FEMS Microbiol Ecol 75(1):28–36

    CAS  PubMed  Article  Google Scholar 

  • Ali SZ, Sandhya V, Grover M, Rao LV, Kishore VN, Venkateswarlu B (2009) Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol Fertil Soils 46:45–55

    CAS  Article  Google Scholar 

  • Ali B, Tao Q, Zhou Y, Gill RA, Ali S, Rafiq MT (2013) 5-Aminolevolinic acid mitigates the cadmium-induced changes in Brassica napus as revealed by the biochemical and ultra-structural evaluation of roots. Ecotoxicol Environ Safety 92:271–280

    CAS  PubMed  Article  Google Scholar 

  • Almansouri M, Kinet JM, Lutts S (2001) Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil 231:243–254

    CAS  Article  Google Scholar 

  • Alsherif EA, Al-Shaikh TM, AbdElgawad H (2022) Heavy metal effects on biodiversity and stress responses of plants inhabiting contaminated soil in Khulais. Saudi Arabia Biol 11:164. https://doi.org/10.3390/biology11020164

    CAS  Article  Google Scholar 

  • An J, Cheng C, Hu Z, Chen H, Cai W, Yu B (2018) The Panax ginseng PgTIP1 gene confers enhanced salt and drought tolerance to transgenic soybean plants by maintaining homeostasis of water, salt ions and ROS. Environ Exp Bot 155:45–55

    CAS  Article  Google Scholar 

  • Anderson JA, Buchanan DW, Stall RE, Hall CB (1982) Frost injury of tender plants increased by Pseudomonas syringae van Hall. Am Soc Hortic Sci 107:123–125

    CAS  Article  Google Scholar 

  • Arora NK, Tewari S, Singh S, Lal N, Maheshwari DK (2012) PGPR for protection of plant health under saline conditions. In: Bacteria in Agrobiology: Stress Management, Maheshwari DK (Ed). Springer-Verlag, pp 239–258

  • Arshad M, Feyissa BA, Amyot L, Aung B, Hannoufa A (2017) MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13. Plant Sci 258:122–136

    CAS  PubMed  Article  Google Scholar 

  • Arzanesh MH, Alikhani HA, Khavazi K, Rahimian HA, Miransari M (2011) Wheat (Triticum aestivum L.) growth enhancement by Azospirillum spp. under drought stress. World J Microbiol Biotecnol 27:197–205

    CAS  Article  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396. https://doi.org/10.1104/pp.106.082040

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Ashfaq M, Hassan HM, Ghazali AH, Ahmad M (2020) Halotolerant potassium solubilizing plant growth promoting rhizobacteria may improve potassium availability under saline conditions. Environ Monit Assess 192:697. https://doi.org/10.1007/s10661-020-08655-x

    CAS  Article  PubMed  Google Scholar 

  • Ashraf M, Hasnain S, Berge O, Mahmood T (2004) Inoculating wheat seedling with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soils 40:152–157

    Google Scholar 

  • Athar M, Johnson DA (1996) Influence of drought on competition between selected Rhizobium meliloti strains and naturalized soil rhizobia in alfalfa. Plant Soil 184:231–241

    CAS  Article  Google Scholar 

  • Ayadi M, Brini F, Masmoudi K (2019) Overexpression of a wheat aquaporin gene, tdpip2; 1, enhances salt and drought tolerance in transgenic durum Wheat cv. Maali Intern J Mol Sci 20(10):2389

    Article  CAS  Google Scholar 

  • Babalola OO, Molefe RR, Amoo AE (2021) Metagenome assembly and metagenome-assembled genome sequences from the rhizosphere of maize plants in Mafikeng, South Africa. Microbiol Resour Announc 10:e00954-e1020

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bacilio M, Roderiguez H, Moreno M, Hernandez JP, Bashan Y (2004) Mitigation of salt stress in wheat seedlings by a gfp-tagged Azospirillum lipoferum. Biol Fertil Soils 40:188–193

    CAS  Article  Google Scholar 

  • Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, Dombrowski N, Münch PC, Spaepen S, Remus-Emsermann M et al (2015) Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528:364–369

    CAS  PubMed  Article  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    CAS  PubMed  Article  Google Scholar 

  • Baloda A, Madanpotra S (2017) Transformation of mungbean plants for salt and drought tolerance by introducing a gene for an osmoprotectant glycine betaine. J Plant Stress Physiol 3:5–11

    Article  Google Scholar 

  • Banavath JN, Chakradhar T, Pandit V, Konduru S, Guduru KK, Akila CS, Podha S, Puli CO (2018) Stress inducible overexpression of AtHDG11 leads to improved drought and salt stress tolerance in peanut (Arachis hypogaea L.). Front Chem, pp 6:34.

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays L. following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45(4):405–413

    Article  Google Scholar 

  • Bano O, Hyas N, Bano A, Zafar NA, Akram AB, Hassan F (2013) Effect of Azospirillum inoculation on maize (Zea mays L.) under drought dtress. Pak J Botany 45:13–20

    CAS  Google Scholar 

  • Bargaz A, Lyamlouli K, Chtouki M, Zeroual Y, Dhiba D (2018) Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Front Microbiol 9:1606

    PubMed  PubMed Central  Article  Google Scholar 

  • Barka E, Nowak J, Clement C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72:7246–7252

    CAS  Article  Google Scholar 

  • Barnawal D, Bharti N, Pandey SS, Pandey A, Chanotiya CS, Kalra A (2017) Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiol Plant 161(4):502–514

    CAS  PubMed  Article  Google Scholar 

  • Barra Caracciolo A, Terenzi V (2021) Rhizosphere microbial communities and heavy metals. Microorganisms 9:1462. https://doi.org/10.3390/microorganisms9071462

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Bashan Y, Levanony H (1990) Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Can J Microbiol 36:591–608

    CAS  Article  Google Scholar 

  • Bashan Y, Bashan LE (2010) How the plant growth promoting bacterium Azospirillum promotes plant growth–a critical assessment. Adv Agron 108:77–136

    CAS  Article  Google Scholar 

  • Bazany KE, Wang J-T, Delgado-Baquerizo M, Singh BK, Trivedi P (2022) Water deficit affects inter-kingdom microbial connections in plant rhizosphere. Environ Microbiol. https://doi.org/10.1111/1462-2920.16031

    Article  PubMed  Google Scholar 

  • Belimov AA, Kunakova AM, Safronova VI, Stepanok VV, Yudkin LY, Alekseev YV, Kozhemyakov AP (2004) Employment of rhizobacteria for the inoculation of barley plants cultivated in soil contaminated with lead and cadmium. Microbiology 73:99–106

    CAS  Article  Google Scholar 

  • Belimov AA, Dodd I, Hontzeas N, Theobald J, Safronova V, Davies W (2009) Rhizosphere bacteria containing 1-aminocyclopropane1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signaling. New Phytol 181:413–423

    CAS  PubMed  Article  Google Scholar 

  • Bensalim S, Nowak J, Asiedu SK (1998) A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. Am J Potato Res 75:145–152

    Article  Google Scholar 

  • Bertrand A, Gatzke C, Bipfubusa M, Lévesque V, Chalifour FP, Claessens A, Rocher S, Tremblay GF, Beauchamp CJ (2020) Physiological and biochemical responses to salt stress of alfalfa populations selected for salinity tolerance and grown in symbiosis with salt-tolerant rhizobium. Agronomy 10(4):569. https://doi.org/10.3390/agronomy10040569

    CAS  Article  Google Scholar 

  • Bezzate S, Aymerich S, Chambert R, Czarnes S, Berge O, Heulin T (2000) Disruption of the Paenibacillus polymyxa levansucrase gene impairs its ability to aggregate soil in the wheat rhizosphere. Environ Microbiol 2(3):333–342

    CAS  PubMed  Article  Google Scholar 

  • Bhargava Y, Murthy JSR, Kumar TVR, Rao MN (2016) Phenotypic, stress tolerance and plant growth promoting characteristics of rhizobial isolates from selected wild legumes of semi arid region, Tirupati, India. Adv Microbiol 6:1–12

    CAS  Article  Google Scholar 

  • Bharti N, Barnawal D, Awasthi A, Yadav A, Kalra A (2014) Plant growth promoting rhizobacteria alleviate salinity induced negative effects on growth, oil content and physiological status in Mentha arvensis. Acta Physiol Plant 36(1):45–60

    CAS  Article  Google Scholar 

  • Bhise KK, Dandge PB (2019) Mitigation of salinity stress in plants using plant growth promoting bacteria. Symbiosis 79:191–204

    Article  Google Scholar 

  • Bilal S, Shahzad R, Khan AL, Kang SM, Imran QM, Al-Harrasi A, Yun BW, Lee IJ (2018) Endophytic microbial consortia of phytohormones-producing fungus Paecilomyces formosus LHL10 and bacteria Sphingomonas sp. LK11 to Glycine max L. regulates physio-hormonal changes to attenuate aluminum and zinc stresses. Front Plant Sci 9:1273

    PubMed  PubMed Central  Article  Google Scholar 

  • Bisht SC, Joshi GK, Haque S, Mishra PK (2013) Cryotolerance strategies of pseudomonads isolated from the rhizosphere of Himalayan plants. Springer plus 13(2):667

    Article  CAS  Google Scholar 

  • Bouffaud ML, Renoud S, Dubost A, Moenne-Loccoz Y, Muller D (2018) 1-aminocyclo-propane-1- carboxylate deaminase producers associated to maize and other Poaceae species. Microbiome 6:114. https://doi.org/10.1186/s40168-018-0503-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Braud A, Jezequel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr and Pb contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74:280–286

    PubMed  Article  CAS  Google Scholar 

  • Brunoud G, Wells DM, Oliva M, Larrieu A, Mirabet V, Burrow AH, Beeckman T, Kepinski S, Traas J, Bennett MJ, Vernoux T (2012) A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482(7383):103

    CAS  PubMed  Article  Google Scholar 

  • Bulgakov VP, Gorpenchenko TY, Veremeichik GN, Shkryl YN, Tchernoded GK, Bulgakov DV, Aminin DL, Zhuravlev YN (2012) The A4-rolB gene suppresses reactive oxygen species in transformed plant cells through the sustained activation of antioxidant defense. Plant Physiol 158(3):1371–1381. https://doi.org/10.1104/pp.111.191494

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Bulle M, Yarra R, Abbagani S (2016) Enhanced salinity stress tolerance in transgenic chilli pepper (Capsicum annuum L.) plants overexpressing the wheat antiporter (TaNHX2) gene. Mol Breed 36:36

    Article  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    CAS  PubMed  Article  Google Scholar 

  • Calvo-Polanco M, Sánchez-Castro I, Cantos M, García JL, Azcón R, Ruiz-Lozano JM, Beuzón CR, Aroca R (2016) Effects of different arbuscular mycorrhizal fungal backgrounds and soils on olive plants growth and water relation properties under well-watered and drought conditions. Plant Cell Environ 39:2498–2514

    CAS  PubMed  Article  Google Scholar 

  • Canarini A, Schmidt H, Fuchslueger L, Martin V, Herbold C, Zezula D et al (2021) Ecological memory of recurrent drought modifies soil processes via changes in soil microbial community. Nat Commun 12:1–4

    Article  CAS  Google Scholar 

  • Cantabella D, Dolcet-Sanjuan R, Teixidó N (2022) Using plant growth-promoting microorganisms (PGPMs) to improve plant development under in vitro culture conditions. Planta 255:117. https://doi.org/10.1007/s00425-022-03897-0

    CAS  Article  PubMed  Google Scholar 

  • Cardinale M, Ratering S, Suarez C, Montoya AMZ, Geissler-Plaum R, Schnell S (2015) Paradox of plant growth promotion potential of rhizobacteria and their actual promotion effect on growth of barley (Hordeum vulgare L.) under salt stress. Microbiol Res 181:22–32

    CAS  PubMed  Article  Google Scholar 

  • Carmen B, Roberto D (2012) Soil bacteria support and protect plants against abiotic stresses. Abiot Stress Plants Mech Adap 7:144–170

    Google Scholar 

  • Chakraborty U, Chakraborty BN, Tongden C, Roy Chowdhury P, Basnet M (2004) Assessment of tea rhizosphere microorganisms as plant growth promoters. Tea 25:38–47

    Google Scholar 

  • Chakraborty U, Chakraborty B, Sarkar J (2018) Amelioration of abiotic stresses in plants through multi-faceted beneficial microorganisms. Microbes for Climate Resilient Agriculture. Wiley Hoboken 13:105–148

    Google Scholar 

  • Chandra P, Tripathi P, Chandra A (2018) Isolation and molecular characterization of plant growth-promoting Bacillus spp. and their impact on sugarcane (Saccharum spp. hybrids) growth and tolerance towards drought stress. Acta Physiol Plant 40(11):199

    Article  CAS  Google Scholar 

  • Chandra D, Srivastava R, Glick BR, Sharma AK (2020) Rhizobacteria producing ACC deaminase mitigate water-stress response in finger millet (Eleusine coracana (L.) Gaertn). 3 Biotech 10:65

    PubMed  PubMed Central  Article  Google Scholar 

  • Chang WS, van de Mortel M, Nielsen L, de Guzman GN, Li X, Halverson LJ (2007) Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. J Bacteriol 189:8290–8299

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Chaparro JM, Sheflin AM, Mentor DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48:489–499

    Article  Google Scholar 

  • Chatterjee P, Samaddar S, Anandham R, Kang Y, Kim K, Selvakumar G, Sa T (2017) Beneficial soil bacterium Pseudomonas frederiksbergensis OS261 augments salt tolerance and promotes red pepper plant growth. Front Plant Sci 8:705

    PubMed  PubMed Central  Article  Google Scholar 

  • Chaudhary D, Sindhu SS (2017) Amelioration of salt stress in chickpea (Cicer arietinum L.) by coinculation of ACC deaminase-containing rhizospheric bacteria with Mesorhizobium strains. Legume Res 40(1):80–86

    Google Scholar 

  • Chauhan CPS, Singh RB (2004) Mustard performs well even with saline irrigation. Indian Farm 42:17–20

    Google Scholar 

  • Chauhan PS, Lata C, Tiwari S, Chauhan AS, Mishra SK, Agrawal L, Chakrabarty D, Nautiyal CS (2019) Transcriptional alterations reveal Bacillus amyloliquefaciens-rice cooperation under salt stress. Sci Rep 9(1):1–13

    Article  CAS  Google Scholar 

  • Chen M, Wei H, Cao J, Liu R, Wang Y, Zheng C (2007) Expression of Bacillus subtilis proAB genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabidopsis. J Biochem Mol Biol 40:396–403

    CAS  PubMed  Google Scholar 

  • Chen L, Liu Y, Wu G, Veronican Njeri K, Shen Q, Zhang N, Zhang R (2016) Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9. Physiol Plant 158(1):34–44

    CAS  PubMed  Article  Google Scholar 

  • Chen B, Luo S, Wu Y, Ye J, Wang Q, Xu X, Pan F, Khan KY, Feng Y, Yang X (2017) The effects of the endophytic bacterium Pseudomonas fluorescens Sasm05 and IAA on the plant growth and cadmium uptake of Sedum alfredii Hance. Front Microbiol 8:2538

    PubMed  PubMed Central  Article  Google Scholar 

  • Chen TT, Liu FF, Xiao DW, Jiang XY, Li P, Zhao SM, Hou BK, Li YJ (2020) The Arabidopsis UDP-glycosyltransferase75B1, conjugates abscisic acid and affects plant response to abiotic stresses. Plant Mol Biol 102(4):389–401

    CAS  PubMed  Article  Google Scholar 

  • Cheng Z, Park E, Glick BR (2007) 1-Aminocyclopropane-1- carboxylate (ACC) deaminase from Pseudomonas putidaUW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53:912–918

    CAS  PubMed  Article  Google Scholar 

  • Chiappero J, del Rosario CL, Alderete LG, Palermo TB, Banchio E (2019) Plant growth promoting rhizobacteria improve the antioxidant status in Mentha piperita grown under drought stress leading to an enhancement of plant growth and total phenolic content. Indust Crops Prod 139:111553

    CAS  Article  Google Scholar 

  • Chiboub M, Jebara SH, Abid G, Jebara M (2019) Co-inoculation effects of Rhizobium sullae and Pseudomonas sp. on growth, antioxidant status, and expression pattern of genes associated with heavy metal tolerance and accumulation of cadmium in Sulla coronaria. J Plant Growth Regul 39:1–13

    Google Scholar 

  • Chini A, Ben-Romdhane W, Hassairi A, Aboul-Soud MA (2017) Identification of TIFY/JAZ family genes in Solanum lycopersicum and their regulation in response to abiotic stresses. PLoS ONE 12(6):e0177381

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Choppala G, Saifullah BN, Bibi S, Iqbal M, Rengel Z, Kunhikrishnan A, Ashwath N, Ok YS (2014) Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Crit Rev Plant Sci 33(5):374–391

    CAS  Article  Google Scholar 

  • Chourasia KN, More SJ, Kumar A, Kumar D, Singh B, Bhardwaj V, Kumar A, Das SK, Singh RK, Zinta G, Tiwari RK, Lal MK (2022) Salinity responses and tolerance mechanisms in underground vegetable crops: An integrative review. Planta 255:68. https://doi.org/10.1007/s00425-022-03845-y

    CAS  Article  PubMed  Google Scholar 

  • Clair SB, Lynch JP (2010) The opening of Pandora’s box: climate change impacts on soil fertility and crop nutrition in developing countries. Plant Soil 335:101–115

    Article  CAS  Google Scholar 

  • Clark RB, Baligar VC (2000) Acidic and alkaline soil constraints on plant mineral nutrition. In: Wilkinson RE (ed) Plant-Environment Interactions, 2nd edn. Marcel Dekker, New York, pp 133–177

    Google Scholar 

  • Classen AT, Sundqvist MK, Henning JA, Newman GS, Moore JAM, Cregger MA, Moorhead LC, Patterson CM (2015) Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead? Ecosphere 6:130

    Article  Google Scholar 

  • Cloutier M, Chatterjee D, Elango D, Cui J, Bruns MA, Chopra S (2021) Sorghum root flavonoid chemistry, cultivar, and frost stress effects on rhizosphere bacteria and fungi. Phytobiome J 5:39–50

    Article  Google Scholar 

  • Compant S, Samad A, Faist H, Sessitsch A (2019) A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. J Adv Res 19:29–37

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Corwin DL (2021) Climate change impacts on soil salinity in agricultural areas. Eur J Soil Sci 72:842–862

    Article  Google Scholar 

  • Cossins AR (1994) Homeoviscous adaptation of biological membranes and its functional significance. In: Cossins AR (ed) Temperature Adaptation of Biological Membranes. Portland Press, London, pp 63–76

    Google Scholar 

  • Cunningham SD, Munns DN (1984) The correlation between extracellular polysaccharide production and acid tolerance in Rhizobium. Soil Sci Soc Am J 48:1273–1276

    CAS  Article  Google Scholar 

  • Dary M, Chamber-Perez MA, Palomares AJ, Pajuelo E (2010) “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177:323–330

    CAS  PubMed  Article  Google Scholar 

  • Das J, Sarkar P (2018) Remediation of arsenic in mung bean (Vigna radiata) with growth enhancement by unique arsenic-resistant bacterium Acinetobacter lwoffii. Sci Total Environ 624:1106–1118

    CAS  PubMed  Article  Google Scholar 

  • Dastogeer KMG, Zahan MI, Rhaman MS, Sarker MSA, Chakraborty A (2022) Microbe-mediated thermotolerance in plants and pertinent mechanisms- A meta-analysis and review. Front Microbiol 13:833566. https://doi.org/10.3389/fmicb.2022.833566

    Article  PubMed  PubMed Central  Google Scholar 

  • de Vries FT, Griffiths RI, Knight CG, Nicolitch O, Williams A (2020) Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 368:270–274

    PubMed  Article  CAS  Google Scholar 

  • Dhull S, Gera R (2017) Assessing salt-tolerant rhizobial isolates of clusterbean (Cyamopsis tetragonoloba (L.) Taub.) retrieved from semi-arid regions of Haryana. Intern J Curr Microbiol Appl Sci 6(4):744–753

    CAS  Article  Google Scholar 

  • Dickinson PJ, KumarM MC, Yoo SJ, Lan H, Artavanis G, Charoensawan V, Schottler MA, Bock R, Jaeger KE, Wigge PA (2018) Chloroplast signaling gates thermotolerance in Arabidopsis. Cell Rep 22:1657–1665. https://doi.org/10.1016/j.celrep.2018.01.054

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Din BU, Sarfraz S, Xia Y, Kamran MA, Javed MT, Sultan T, Munis MF, Chaudhary HJ (2019) Mechanistic elucidation of germination potential and growth of wheat inoculated with exopolysaccharide and ACC-deaminase producing Bacillus strains under induced salinity stress. Ecotox Environ Safe 183:109466

    Article  CAS  Google Scholar 

  • Dixit VK, Misra S, Mishra SK, Tewari SK, Joshi N, Chauhan PS (2020) Characterization of plant growth-promoting alkalotolerant Alcaligenes and Bacillus strains for mitigating the alkaline stress in Zea mays. Antonie Van Leeuwenhoek 113:889–905

    CAS  PubMed  Article  Google Scholar 

  • Dombrowski JE, Hollenbeck VG, Martin RC (2017) Isolation and identification of bacterial endophytes from grasses along the Oregon Coast. Am J Plant Sci 8:574–601

    CAS  Article  Google Scholar 

  • Drew MC, Hole PC, Picchioni GA (1990) Inhibition by NaCl of net CO2 fixation and yield of cucumber. J Am Soc Hortic Sci 115:472–477

    CAS  Article  Google Scholar 

  • Duan C, Wang Y, Wang Q, Ju W, Zhang Z, Cui Y, Beiyuan J, Fan Q, Wei S, Li S, Fang L (2022) Microbial metabolic limitation of rhizosphere under heavy metal stress: Evidence from soil ecoenzymatic stoichiometry. Environ Pollut 300:118978. https://doi.org/10.1016/j.envpol.2022.118978

    CAS  Article  PubMed  Google Scholar 

  • Duca DR, Glick BR (2020) Indole-3-acetic acid biosynthesis and its regulation in plant-associated bacteria. Appl Microbiol Biotechnol 104:8607–8619. https://doi.org/10.1007/s00253-020-10869-5

    CAS  Article  PubMed  Google Scholar 

  • Egamberdieva D, Wirth SJ, Alqarawi AA, Abd-Allah EF, Hashem A (2017) Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Front Microbiol 28:1887

    Article  Google Scholar 

  • Egamberdieva D, Wirth S, Bellingrath-Kimura SD, Mishra J, Arora NK (2019) Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Front Microbiol 10:2791

    PubMed  PubMed Central  Article  Google Scholar 

  • Eichmann R, Richards L, Scha¨fer P, (2021) Hormones as go-betweens in plant microbiome assembly. Plant J 105:518–541

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • El-Esawi MA, Alaraidh IA, Alsahli AA, Alamri SA, Ali HM, Alayafi AA (2018) Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression. Plant Physiol Biochem 132:375–384

    CAS  PubMed  Article  Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J. https://doi.org/10.1155/2015/756120

    Article  Google Scholar 

  • Enebe MC, Babalola OO (2018) The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: a survival strategy. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-018-9214-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Etasami H, Glick BR (2020) Halotolerant plant growth-promoting bacteria: Prospects for alleviating salinity stress in plants. Environ Expt Bot 178:104124. https://doi.org/10.1016/j.envexpbot.2020.104124

    CAS  Article  Google Scholar 

  • Etesami H, Jeong BR, Glick BR (2021) Contribution of arbuscular mycorrhizal fungi, phosphate–solubilizing bacteria and silicon to P uptake by plant. Front Plant Sci 12:699618. https://doi.org/10.3389/fpls.2021.699618

    Article  PubMed  PubMed Central  Google Scholar 

  • Farooq M, Gogoi N, Hussain M, Barthakur S, Paul S, Bharadwaj N et al (2017) Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiol Biochem 118:199–217. https://doi.org/10.1016/j.plaphy.2017.06.020

    CAS  Article  PubMed  Google Scholar 

  • Fasusi OA, Cruz C, Babalola OO (2021) Agricultural sustainability: Microbial biofertilizers in rhizosphere management. Agriculture 11:163. https://doi.org/10.3390/agriculture11020163

    CAS  Article  Google Scholar 

  • Fiodor A, Singh S, Pranaw K (2021) The contrivance of plant growth-promoting microbes to mitigate climate change impact in agriculture. Microorganisms 9:1841. https://doi.org/10.3390/microorganisms9091841

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Flower JL (1991) Interaction of salinity and temperature on the germination of Crambe. Agron J 83:169–172

    Article  Google Scholar 

  • Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct Plant Biol 37:604–612

    Article  Google Scholar 

  • Foster RC, Rovira AD, Cock TW (1983) Ultrastructure of the root–soil interface. The American Phytopathological Society, St Paul, Minnesota, p 157

    Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442

    PubMed  Article  Google Scholar 

  • Gamalero E, Glick BR (2015) Bacterial modulation of plant ethylene levels. Plant Physiol 169:13–22

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Gamalero E, Glick BR (2022) Recent advances in bacterial amelioration of plant drought and salt stress. Biology 11:437. https://doi.org/10.3390/biology11030437

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Gao YF, Liu JK, Yang FM, Zhang GY, Wang D, Zhang L, Ou YB, Yao YA (2019) The WRKY transcription factor: WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum. Physiol Plant 168(1):98–117

    PubMed  Article  CAS  Google Scholar 

  • Gao H, Huang H, Lu K, Wang C, Liu X, Song Z, Zhou H, Yang L, Li B, Yu C, Zhang H (2021) OsCYP714D1 improves plant growth and salt tolerance through regulating gibberellin and ion homeostasis in transgenic poplar. Plant Physiol Biochem 168:447–456

    CAS  PubMed  Article  Google Scholar 

  • Garbeva P, van Elsas JD, van Veen JA (2008) Rhizosphere microbial community and its response to plant species and soil history. Plant Soil 302(1):19–32

    CAS  Article  Google Scholar 

  • Gaur VK, Sharma P, Gaur P, Varjani S, Ngo HH, Guo W, Chaturvedi P, Singhania RR (2021) Sustainable mitigation of heavy metals from effluents: Toxicity and fate with recent technological advancements. Bioengineered 12(1):7297–7313. https://doi.org/10.1080/21655979.2021.1978616

    PubMed  PubMed Central  Article  Google Scholar 

  • Ge H, Zhang F (2019) Growth-promoting ability of Rhodopseudomonas palustris G5 and its effect on induced resistance in cucumber against salt stress. J Plant Growth Regul 38(1):180–188

    CAS  Article  Google Scholar 

  • Gerhardt K, Huang XD, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30

    CAS  Article  Google Scholar 

  • Gholamnia A, Mosleh Arani A, Sodaeizadeh H (2022) Expression profiling of rosmarinic acid biosynthetic genes and some physiological responses from Mentha piperita L. under salinity and heat stress. Physiol Mol Biol Plants 28:545–557. https://doi.org/10.1007/s12298-022-01159-7

    CAS  Article  PubMed  Google Scholar 

  • Gibson S, Arondel V, Iba K, Somerville C (1994) Cloning of a temperature-regulated gene encoding a chloroplast Omega-3 desaturase from Arabidopsis thaliana. Plant Physiol 106:1615–1621

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Giller K, Witter E, McGrath S (2009) Heavy metals and soil microbes. Soil Biol Biochem 41:2031–2037

    CAS  Article  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free living bacteria. Can J Microbiol 41:109–117

    CAS  Article  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    CAS  PubMed  Article  Google Scholar 

  • Glick BR, PenroseDM Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J Theor Biol 190:63–68

    CAS  PubMed  Article  Google Scholar 

  • Glick BR, Gamalaro E (2021) Recent developments in the study of plant microbiomes. Microorganisms 9:1533. https://doi.org/10.3390/microorganisms9071533

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. New perspectives and approaches in plant growth-promoting rhizobacteria research. Springer, New York, pp 329–339

    Chapter  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica. https://doi.org/10.6064/2012/963401

    Article  PubMed  PubMed Central  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    CAS  PubMed  Article  Google Scholar 

  • Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: Unraveling the signaling networks. Front Plant Sci 5:151

    PubMed  PubMed Central  Article  Google Scholar 

  • Gontia-Mishra I, Sapre S, Sharma A, Tiwari S (2016) Alleviation of mercury toxicity in wheat by the interaction of mercury-tolerant plant growth-promoting rhizobacteria. J Plant Growth Regul 35(4):1000–1012

    CAS  Article  Google Scholar 

  • González Henao S, Ghneim-Herrera T (2021) Heavy metals in soils and the remediation potential of bacteria associated with the plant microbiome. Front Environ Sci 9:604216. https://doi.org/10.3389/fenvs.2021.604216

    Article  Google Scholar 

  • Gou W, Tian L, Ruan Z, Zheng PE, Chen FU, Zhang L, Cui Z, Zheng P, Li Z, Gao M, Shi W (2015) Accumulation of choline and glycinebetaine and drought stress tolerance induced in maize (Zea mays) by three plant growth promoting rhizobacteria (PGPR) strains. Pak J Bot 47(2):581–586

    CAS  Google Scholar 

  • Gritli T, Boubakri H, Essahibi A, Hsouna J, Ilahi H, Didier R, Mnsari B (2022) Salt stress mitigation in Lathyrus cicera by combining different microbial inocula. Physiol Mol Biol Plants 28:1191–1206. https://doi.org/10.1007/s12298-022-01205-4

    CAS  Article  PubMed  Google Scholar 

  • Groß F, Durner J, Gaupels F (2013) Nitric oxide, antioxidants and prooxidants in plant defence responses. Front Plant Sci 4:419

    PubMed  PubMed Central  Article  Google Scholar 

  • Gu Y, Wei J, Wang X, Friman V-P, Huang J, Wang X, Mei X, Xu Y, Shen Q, Jousset A (2016) Pathogen invasion indirectly changes the composition of soil microbiome via shifts in root exudation profile. Biol Fertil Soils 52:997–1005

    CAS  Article  Google Scholar 

  • Guo Y, George E, Marschner H (1996) Contribution of an arbuscular mycorrhizal fungus to the uptake of cadmium and nickel in bean and maize plants. Plant Soil 184:195–205

    CAS  Article  Google Scholar 

  • Gupta P, Kumar V, Usmani Z, Rani R, Chandra A, Gupta VK (2019) A comparative evaluation towards the potential of Klebsiella sp. and Enterobacter sp. in plant growth promotion, oxidative stress tolerance and chromium uptake in Helianthus annuus (L.). J Hazard Mater 377:391–398

    CAS  PubMed  Article  Google Scholar 

  • Gutjahr C, Paszkowski U (2013) Multiple control levels of root system remodeling in arbuscular mycorrhizal symbiosis. Front Plant Sci 4:204

    PubMed  PubMed Central  Article  Google Scholar 

  • Haferburg G, Kothe E (2010) Metallomics: lessons for metalliferous soil remediation. Appl Microbiol Biotechnol 87:1271–1280

    CAS  PubMed  Article  Google Scholar 

  • Halo BA, Khan AL, Waqas M, Al-Harrasi A, Hussain J, Ali L, Adnan M, Lee IJ (2015) Endophytic bacteria (Sphingomonas sp. LK11) and gibberellin can improve Solanum lycopersicum growth and oxidative stress under salinity. J Plant Interact 10(1):117–125

    CAS  Article  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol 51(1):463–499

    CAS  Article  Google Scholar 

  • Hawkins HJ, Lewis OA (1993) Combination effect of NaCl salinity, nitrogen form and calcium concentration on the growth, ionic content and gaseous exchange properties of Triticum aestivum L. cv. Gamtoos. New Phytol 124(1):161–170

    CAS  Article  Google Scholar 

  • He LY, Zhang YF, Ma HY, Su LN, Chen ZJ, Wang QY (2010) Characterization of copper resistant bacteria and assessment of bacterial communities in rhizosphere soils of copper-tolerant plants. Appl Soil Ecol 44:49–55

    Article  Google Scholar 

  • He S-s, Yang H, Cao R-q, Tang Q, An Y-y, Wang L-j (2022) 5-Aminolevulinic acid-induced salt tolerance in strawberry (cv. ‘Benihoppe’): Possible role of nitric oxide on interception of salt ions in roots. Sci Hortic 304:111294. https://doi.org/10.1016/j.scienta.2022.111294

    CAS  Article  Google Scholar 

  • Heshmatpure N, Yousefi RM (2012) The effect of PGPR (plant growth-promoting rhizobacteria) on phytoremediation of cadmiums by canola (Brassica napus L.) cultivars of Hyola 401. Ann Biol Res 3:5624–5630

    CAS  Google Scholar 

  • Hough M, McClure A, Bolduc B, Dorrepaal E, Saleska S, Klepac-Ceraj V, Rich V (2020) Biotic and environmental drivers of plant microbiomes across a permafrost thaw gradient. Front Microbiol 11:796

    PubMed  PubMed Central  Article  Google Scholar 

  • Hu Z, Ban Q, Hao J, Zhu X, Cheng Y, Mao J, Lin M, Xia E, Li Y (2020) Genome-wide characterization of the C-repeat binding factor (CBF) gene family involved in the response to abiotic stresses in tea plant (Camellia sinensis). Front Plant Sci 11:921

    PubMed  PubMed Central  Article  Google Scholar 

  • Huang XD, El-Alawi Y, Gurska J, Glick BR, Greenberg BM (2005) A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchem J 81:139–147

    CAS  Article  Google Scholar 

  • Huang XF, Zhou D, Lapsansky ER, Reardon KF, Guo J, Andales MJ, Vivanco JM, Manter DK (2017) Mitsuaria sp. and Burkholderia sp. from Arabidopsis rhizosphere enhance drought tolerance in Arabidopsis thaliana and maize (Zea mays L.). Plant Soil 419(12):523–539

    CAS  Article  Google Scholar 

  • Huang R, McGrath SP, Hirsch PR, Clark IM, Wu SJ, L, Zhou J, Liang Y, (2019) Plant–microbe networks in soil are weakened by century-long use of inorganic fertilizers. Microbiol Biotechnol 12:1464–1475

    CAS  Article  Google Scholar 

  • Hungria M, Nogueira MA, Araujo RS (2015) Soybean seed co-inoculation with Bradyrhizobium spp. and Azospirillum brasilense: a new biotechnological tool to improve yield and sustainability. Am J Plant Sci 6:811–817

    CAS  Article  Google Scholar 

  • Islam A, Daim AE, Bejai S, Meijer J (2014) Improved heat stress tolerance of wheat seedlings by bacterial seed treatment. Plant Soil 379(1–2):337–350

    Google Scholar 

  • Jajoo A, Mathur S (2021) Role of arbuscular mycorrhizal fungi as an underground saviuor for protecting plants from abiotic stresses. Physiol Mol Biol Plants 27:2589–2603. https://doi.org/10.1007/s12298-021-01091-2

    CAS  Article  PubMed  Google Scholar 

  • Jaleel CA, Manivannan P, Sankar B, Kishorekumar A, Gopi R, Somasundaram R, Panneerselvam R (2007) Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water deficit stress. Colloids Surf B Biointerfaces 60(1):7–11

    CAS  PubMed  Article  Google Scholar 

  • Jangu OP, Sindhu SS (2011) Differential response of inoculation with indole acetic acid producing Pseudomonas sp. in green gram (Vigna radiata L.) and black gram (Vigna mungo L.). Microbiol J 1(5):159–173

    Article  Google Scholar 

  • Jansson JK, Hofmockel KS (2020) Soil microbiomes and climate change. Nat Rev Microbiol 18:35–46

    CAS  PubMed  Article  Google Scholar 

  • Jaroszuk-Scisel J, Tyskiewicz R, Nowak A, Ozimek E, Hanaka A, Pawlik A, Janusz G (2019) Phytohormones (auxin, gibberellin) and ACC deaminase in vitro synthesized by the mycoparasite Trichoderma DEMTKZ3AO strain and changes in the level of auxin and plant resistance markers in wheat seedlings inoculated with this strain conidia. Intern J Mol Sci 20(19):4923

    CAS  Article  Google Scholar 

  • Jarratt-Barnham E, Zarrabian D, Oldroyd GED (2022) Symbiotic regulation: How plants seek salvation in starvation. Curr Biol 32(1):R46–R48. https://doi.org/10.1016/j.cub.2021.11.059

    CAS  Article  PubMed  Google Scholar 

  • Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68(1):167–182

    PubMed  Article  Google Scholar 

  • Jaspers P, Kangasjarvi J (2010) Reactive oxygen species in abiotic stress signaling. Physiol Plant 138:405–413. https://doi.org/10.1111/j.1399-3054.2009.01321.x

    CAS  Article  PubMed  Google Scholar 

  • Jin R, Kim BH, Ji CY, Kim HS, Li HM, Kwak SS (2017) Overexpressing IbCBF3 increases low temperature and drought stress tolerance in transgenic sweet potato. Plant Physiol Biochem 118:45–54

    CAS  PubMed  Article  Google Scholar 

  • Joshi B, Chaudhary A, Singh H, Kumar PA (2020) Prospective evaluation of individual and consortia plant growth promoting rhizobacteria for drought stress amelioration in rice (Oryza sativa L.). Plant Soil 457(1):225–240. https://doi.org/10.1007/s11104-020-04730-x

    CAS  Article  Google Scholar 

  • Kandasamy S, Weerasuriya N, Subramanian G, Thorn R, Patterson G, Ali S, Lazarovits G (2021) Disentangling the association of corn root microbiome with plant productivity and the importance of physiochemical balance in shaping their relationship. Front Sustain Food Syst 5:617332

    Article  Google Scholar 

  • Kang Y, Khan S, Ma X (2009) Climate change impacts on crop yield, crop water productivity and food security–A review. Progress Nat Sci 19(12):1665–1674

    Article  Google Scholar 

  • Kang Z, Gao CJ, Wang Q, Liu HM, Qi QS (2010) A novel strategy for succinate and polyhydroxybutyrate co-production in Escherichia coli. Bioresour Technol 101:7675–7678

    CAS  PubMed  Article  Google Scholar 

  • Kang SM, Adhikari A, Lee KE, Park YG, Shahzad R, Lee IJ (2019) Gibberellin producing rhizobacteria Pseudomonas korensis mu2 enhance growth of lettuce (Lactuca sativa) and Chinese cabbage (Brassica rapa chinensis). J Microbiol Biotechnol Food Sci 9(2):166–170

    CAS  Article  Google Scholar 

  • Kanouni L, Larous L, Mezaache-Aichour S (2018) Inhibitory effect of rhizobia isolated from several leguminous against phytopathogenic fungi. Annu Res Rev Biol 22(6):1–16

    Article  Google Scholar 

  • Kashyap PL, Rai P, Srivastava AK, Kumar S (2017) Trichoderma for climate resilient agriculture. World J Microbiol Biotechnol 33:155

    PubMed  Article  Google Scholar 

  • Kasim WA, Gaafar RM, Abou-Ali RM, Omar MN, Hewait HM (2016) Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Annu Agric Sci 61(2):217–227

    Article  Google Scholar 

  • Kaul S, Choudhary M, Gupta S, Dhar MK (2021) Engineering host microbiome for crop improvement and sustainable agriculture. Front Microbiol 12:635917

    PubMed  PubMed Central  Article  Google Scholar 

  • Kaur H, Bhardwaj RD, Grewal SK (2017) Mitigation of salinity-induced oxidative damage in wheat (Triticum aestivum L.) seedlings by exogenous application of phenolic acids. Acta Physiol Plant 39:221–236

    Article  CAS  Google Scholar 

  • Ke J, Wang B, Yoshikuni Y (2021) Microbiome engineering: Synthetic biology of plant-associated microbiomes in sustainable agriculture. Trends Biotechnol 39:244–261

    CAS  PubMed  Article  Google Scholar 

  • Khan AL, Halo BA, Elyassi A, Ali S, Al-Hosni K, Hussain J (2016) Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Electron J Biotechnol 21:58–64

    Article  Google Scholar 

  • Khan MA, Ullah I, Waqas M, Hamayun M, Khan AL, Asaf S, Kang SM, Kim KM, Jan R, Lee IJ (2019a) Halo-tolerant rhizospheric Arthrobacter woluwensis AK1 mitigates salt stress and induces physio-hormonal changes and expression of GmST1 and GmLAX3 in soybean. Symbiosis 77(1):9–21

    CAS  Article  Google Scholar 

  • Khan N, Bano A, Babar MA (2019b) Metabolic and physiological changes induced by plant growth regulators and plant growth promoting rhizobacteria and their impact on drought tolerance in Cicer arietinum L. PLoS ONE 14(3):e0213040

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Khan N, Bano A, Ali S, Babar MdA (2020) Crosstalk amongst phytohormones from plants and PGPR under biotic and abiotic stresses. Plant Growth Regul 90:189–203

    CAS  Article  Google Scholar 

  • Khandelwal A, Sindhu SS (2012) Expression of 1-aminocyclopropane-1-carboxylate deaminase in rhizobia promotes nodulation and plant growth of clusterbean (Cyamopsis tetragonoloba L.). Microbiol J 7:158–170

    Google Scholar 

  • Kinkle BK, Angle JS, Keyser HH (1987) Long-term effects of metal-rich sewage sludge application on soil populations of Bradyrhizobium japonicum. Appl Environ Microbiol 53(2):315–319

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Kiranmai K, Lokanadha Rao G, Pandurangaiah M, Nareshkumar A, Amaranatha Reddy V, Lokesh U, Venkatesh B, Anthony Johnson AM, Sudhakar C (2018) A novel WRKY transcription factor, MuWRKY3 (Macrotyloma uniflorum lam. Verdc.) enhances drought stress tolerance in transgenic groundnut (Arachis hypogaea L.) plants. Front Plant Sci 9:346

    PubMed  PubMed Central  Article  Google Scholar 

  • Knežević M, Berić T, Buntić A, Jovković M, Avdović M, Stanković S, Delić D, Stajković-Srbinović O (2022) Native Mesorhizobium strains improve yield and nutrient composition of the common bird’s-foot trefoil grown in an acid soil. Rhizosphere 21(100487):2452–2198. https://doi.org/10.1016/j.rhisph.2022.100487

    Article  Google Scholar 

  • Kohler J, Hernaındez JA, Caravaca F, Roldaın A (2008) Plant-growth promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water stressed plants. Funct Plant Biol 35:141–151

    CAS  PubMed  Article  Google Scholar 

  • Kour D, Rana KL, Yadav AN, Sheikh I, Kumar V, Dhaliwal HS, Saxena AK (2020a) Amelioration of drought stress in Foxtail millet (Setaria italica L.) by P-solubilizing drought-tolerant microbes with multifarious plant growth promoting attributes. Environ Sustain 3:23–24

    Article  Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V, Vyas P, Dhaliwal HS, Saxena AK (2020b) Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotech 23:101487

    Article  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA 97:2940–2945

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Koza NA, Adedayo AA, Babalola OO, Kappo AP (2022) Microorganisms in plant growth and development: Roles in abiotic stress tolerance and secondary metabolites secretion. Microorganisms 10:1528. https://doi.org/10.3390/microorganisms10081528

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63(4):1593–1608

    CAS  PubMed  Article  Google Scholar 

  • Kumar G, Rashid MM, Bajpai R, Rana M, Kumar A, Mukherjee A, Sarma BK (2021) Plant growth promoting myco-stimulation for sustainable agriculture production under abiotic stress. In: New and Future Developments in Microbial Biotechnology and Bioengineering. pp 197–219

  • Kumar S, Diksha, Sindhu SS, Kumar R (2022) Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. Curr Res Microbial Sci 3:100094. https://doi.org/10.1016/j.crmicr.2021.100094

    CAS  Article  Google Scholar 

  • Kumari S, Vaishnav A, Jain S, Varma A, Choudhary DK (2015) Bacterial-mediated induction of systemic tolerance to salinity with expression of stress alleviating enzymes in soybean (Glycine max L. Merrill). J Plant Growth Regul 34(3):558–573

    CAS  Article  Google Scholar 

  • Kumawat KC, Razdan N, Saharan K (2022) Rhizospheric microbiome: Bio-based emerging strategies for sustainable agriculture development and future perspectives. Microbiol Res 254:126901. https://doi.org/10.1016/j.micres.2021.126901

    CAS  Article  PubMed  Google Scholar 

  • Kytöviita M, Ruotsalainen AL (2007) Mycorrhizal benefit in two low arctic herbs increases with increasing temperature. Am J Bot 94:1309–1315

    PubMed  Article  Google Scholar 

  • Lahsini AI, Sallami A, Ait-Ouakrim ElH, Khedri HEl, Obtel M, Douira A, Modafar CEl, Benkerroum N, Talbi C, Chakhchar A, Filali-Maltouf A (2022) Isolation and molecular identification of an indigenous abiotic stress-tolerant plant growth-promoting rhizobacteria from the rhizosphere of the olive tree in southern Morocco. Rhizosphere 23:100554. https://doi.org/10.1016/j.rhisph.2022.100554

  • Lau S-E, Aaron TWF, Teoh EY, Tan BC (2022) Microbiome engineering and plant biostimulants for sustainable crop improvement and mitigation of biotic and abiotic stresses. Discover Food 2:9. https://doi.org/10.1007/s44187-022-00009-5

    Article  Google Scholar 

  • Li Y, Chen Q, Nan H, Li X, Lu S, Zhao X, Liu B, Guo C, Kong F, Cao D (2017) Overexpression of GmFDL19 enhances tolerance to drought and salt stresses in soybean. PLoS ONE 12(6):e0179554

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Li CC, Zhu BJ, Xu L, Li XZ, Yao MJ (2020) Differentiations of prokaryotic communities in leaf and root endosphere of dominant plants and bulk soils in alpine meadows. Acta Ecol Sinica 40:4942–4953

    Article  Google Scholar 

  • Li H, Testerink C, Zhang Y (2021) How roots and shoots communicate through stressful times. Trends Plant Sci 26(9):940–952. https://doi.org/10.1016/j.tplants.2021.03.005

    CAS  Article  PubMed  Google Scholar 

  • Li W, Kuzyakov Y, Zheng Y, Liu M, Wu M, Dong Y, Li Z (2022a) Effect of long-term fertilization on enzyme activities and microbial community composition in the rice rhizosphere. Acta Agric Scandinavica, Section B - Soil Plant Sci. https://doi.org/10.1080/09064710.2021.2011394

    Article  Google Scholar 

  • Li Y, Li H, Han X, Han G, Xi J, Liu Y, Zhang Y, Xue Q, Guo Q, Lai H (2022b) Actinobacteria biofertilizer improves the yields of different plants and alters the assembly processes of rhizosphere microbial communities. Appl Soil Ecol 171:104345

    Article  Google Scholar 

  • Liao JP, Lin XG, Cao ZH, Shi YQ, Wong MH (2003) Interactions between arbuscular mycorrhizae and heavy metals under sand culture experiment. Chemosphere 50:847–853

    CAS  PubMed  Article  Google Scholar 

  • Liao X, Guo X, Wang Q, Wang Y, Zhao D, Yao L, Wang S, Liu G, Li T (2017) Overexpression of Ms DREB 6.2 results in cytokinin-deficient developmental phenotypes and enhances drought tolerance in transgenic apple plants. Plant J 89(3):510–526

    CAS  PubMed  Article  Google Scholar 

  • Lim JH, Kim SD (2013) Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant Pathol J 29(2):201

    PubMed  PubMed Central  Article  Google Scholar 

  • Lindow SE, Leveau JHJ (2002) Phyllospheric microbiology. Curr Opin Biotechnol 13:238–243

    CAS  PubMed  Article  Google Scholar 

  • Linic I, Šamec D, Grúz J, Vujcic Bok V, Strnad M, Salopek-Sondi B (2019) Involvement of phenolic acids in short-term adaptation to salinity stress is species specific among Brassicaceae. Plants 8:155

    CAS  PubMed Central  Article  Google Scholar 

  • Linic I, Mlinaric S, Brkljacic L, Pavlovic I, Smolko A, Salopek-Sondi B (2021) Ferulic acid and salicylic acid foliar treatments reduce short-term salt stress in Chinese cabbage by increasing phenolic compounds accumulation and photosynthetic performance. Plants 10:2346. https://doi.org/10.3390/plants10112346

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Liu F, Xing S, Ma H (2013) Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Appl Microbiol Biotechnol 97:9155–9164

    CAS  PubMed  Article  Google Scholar 

  • Liu MM, Li YL, Li GC, Dong TT, Liu SY, Pei LI, Wang QG (2020) Overexpression of StCYS1 gene enhances tolerance to salt stress in the transgenic potato (Solanum tuberosum L.) plant. J Integr Agric 19(9):2239–2246

    CAS  Article  Google Scholar 

  • Lopes MJS, Dias-Filho MB, Gurgel ESC (2021) Successful plant growth-promoting microbes: Inoculation methods and abiotic factors. Front Sustain Food Syst 5:606454. https://doi.org/10.3389/fsufs.2021.606454

    Article  Google Scholar 

  • Lynch DV, Thompson GA Jr (1982) Low temperature-induced alterations in the chloroplast and microsomal membrane of Dunaliella salina. Plant Physiol 69:1369–1375

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69:220–228

    CAS  PubMed  Article  Google Scholar 

  • Maheshwari DK, Kumar S, Maheshwari NK, Patel D, Saraf M (2012) Nutrient Availability and Managementin the Rhizosphere by Microorganisms. In: Maheshwari DK (ed) Bacteria in Agrobiology: Stress Management. Springer-Verlag, pp 301–325

    Chapter  Google Scholar 

  • Mahmood A, Amaya R, Turgay OC, Yaprak AE, Taniguchi T, Kataoka R (2019) High salt tolerant plant growth promoting rhizobacteria from the common ice-plant Mesembryanthemum crystallinum L. Rhizosphere 9:10–17

    Article  Google Scholar 

  • Malik DK, Sindhu SS (2008) Transposon-derived mutants of Pseudomonas strains altered in indole acetic acid production: Effect on nodulation and plant growth in green gram (Vigna radiata L.). Physiol Mol Biol Plants 14(4):315–320

    CAS  PubMed  Article  Google Scholar 

  • Malik DK, Sindhu SS (2011) Production of indole acetic acid by Pseudomonas sp.: effect of coinoculation with Mesorhizobium sp. cicer on nodulation and plant growth of chickpea (Cicer arietinum). Physiol Mol Biol Plants 17(1):25–32

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Manepalli SB, Tomar S, Gaikwad DJ, Maitra S (2022) Abiotic stress signaling in plants and transgenic technology as a triumph: A review. J Appl Biol Biotechnol 10(5):5–13. https://doi.org/10.7324/JABB.2022.100501

    Article  Google Scholar 

  • Mano S, Nakamori C, Hayashi M, Kato A, Kondo M, Nishimura M (2002) Distribution and characterization of peroxisomes in Arabidopsis by visualization with GFP: dynamic morphology and actin-dependent movement. Plant Cell Physiol 43:331–341. https://doi.org/10.1093/pcp/pcf037

    CAS  Article  PubMed  Google Scholar 

  • Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S, Abou-Hadid AF, El-Behairy UA, Sorlini C, Cherif A, Zocchi G, Daffonchio D (2012) A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS ONE 7:e48479

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Marulanda A, Porcel R, Barea JM, Azcon R (2007) Drought tolerance and antioxidant activities in lavender plants colonized by native drought tolerant or drought sensitive Glomus species. Microbiol Ecol 54:543–552

    CAS  Article  Google Scholar 

  • Matsubara Y, Hirano I, Sassa D, Koshikawa K (2004) Alleviation of high temperature stress in strawberry (Fragaria ananassa) plants infected with arbuscular mycorrhizal fungi. Environ Control Biol 42:105–111

    Article  Google Scholar 

  • Matsui A, Ishida J, Morosawa T, Mochizuki Y, Kaminuma E, Endo TA, Okamoto M, Nambara E, Nakajima M, Kawashima M, Satou M (2008) Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array. Plant Cell Physiol 49(8):1135–1149

    CAS  PubMed  Article  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004a) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42(6):565–572

    CAS  PubMed  Article  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004b) Plant growth-promoting bacteria that confer resistance to water stress in tomato and pepper. Plant Sci 166:525–530

    CAS  Article  Google Scholar 

  • Mažylyte R, Kaziuniene J, Orola L, Valkovska V, Lastauskiene E, Gegeckas A (2022) Phosphate solubilizing microorganism Bacillus sp. MVY-004 and its significance for biomineral fertilizers’ development in agrobiotechnology. Biology 11:254. https://doi.org/10.3390/biology11020254

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Meena KK, Sorty AM, Bitla UM, Chaudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK, Singh HB, Krishanani KK, Minhas PS (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the comic strategies. Front Plant Sci 8:172

    PubMed  PubMed Central  Article  Google Scholar 

  • Mellidou I, Karamanoli K (2022) Unlocking PGPR-mediated abiotic stress tolerance: What lies beneath. Front Sustain Food Syst 6:832896. https://doi.org/10.3389/fsufs.2022.832896

    Article  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467. https://doi.org/10.1111/j.1365-3040.2009.02041.x

    CAS  Article  PubMed  Google Scholar 

  • Mishra PK, Bisht SC, Ruwari P, Selvakumar G, Bisht JK (2009a) Enhancement of chilling tolerance of inoculated wheat seedlings with cold tolerant plant growth promoting Pseudomonas from NW Himalayas. In: Abstract of First Asian PGPR Conference, Angrau, Hyderabad

  • Mishra PK, Mishra S, Bisht S, Shekhar C, Selvakumar G, Kundu S, Bisht JK, Gupta HS (2009b) Isolation, molecular characterization and growth-promotion activities of a cold tolerant bacterium Pseudomonas sp. NARs9 (MTCC9002) from the Indian Himalayas. BiolRes 42(3):305–313. https://doi.org/10.4067/S0716-97602009000300005

    CAS  Google Scholar 

  • Mishra PK, Bisht SC, Ruwari P, Selvakumar G, Joshi GK, Bisht JK et al (2011) Alleviation of cold stress in inoculated wheat (Triticumaestivum L.) seedlings with psychrotolerant Pseudomonas from NW Himalayas. Arch Microbiol 193:497–513. https://doi.org/10.1007/s00203-011-0693-x

    CAS  PubMed  Article  Google Scholar 

  • Mishra PK, Bisht SC, Bisht JK, Bhatt JC (2012) Cold-tolerant PGPRs as bioinoculants for stress management. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, pp 95–118

  • Molla AH, Shamsuddin ZH, Halimi MS, Morziah M, Puteh AB (2001) Potential for enhancement of root growth and nodulation of soybean co-inoculated with Azospirillum and Bradyrhizobium in laboratory systems. Soil Biol Biochem 33:457–463

    CAS  Article  Google Scholar 

  • Moore FC, Baldos U, Hertel T, Diaz D (2017) New science of climate change impacts on agriculture implies higher social cost of carbon. Nat Commun 8:1607

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Morales-Cedeno LR, del Carmen Orozco-Mosqueda M, Loeza-Lara PD, Parra-Cota FI, de los Santos-Villalobos S, Santoyo G (2021) Plant growth promoting bacterial endophytes as biocontrol agents of pre- and post-harvest diseases: fundamentals, methods of application and future perspectives. Microbiol Res. 10.1016/j. micres.2020.126612

  • Mueller UG, Sachs JL (2015) Engineering microbiomes to improve plant and animal health. Trends Microbiol 23:606–617. https://doi.org/10.1016/j.tim.2015.07.009

    CAS  Article  PubMed  Google Scholar 

  • Mukhtar S, Zareen M, Khaliq Z, Mehnar S, Malik KA (2020) Phylogenetic analysis of halophyte-associated bacteria and effect of halotolerant and halophilic phosphate-solubilizing biofertilizers on maize growth under salinity stress conditions. J Appl Microbiol 128:556–573

    CAS  PubMed  Article  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

    CAS  Article  PubMed  Google Scholar 

  • Nabi RBS, Tayade R, Hussain A, Kulkarni KP, Imran QM, Mun B-G, Yun B-W (2019) Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress. Environ Expert Botany 161:120–133. https://doi.org/10.1016/j.envexpbot.2019.02.003

    CAS  Article  Google Scholar 

  • Nacoon S, Jogloy S, Riddech N, Mongkolthanaruk W, Ekprasert J, Cooper J, Boonlue S (2021) Combination of arbuscular mycorrhizal fungi and phosphate solubilizing bacteria on growth and production of Helianthus tuberosus under field condition. Sci Rep 11:650. https://doi.org/10.1038/s41598-021-86042-3

    CAS  Article  Google Scholar 

  • Nadeem SM, Ahmad M, Tufail MA, Asghar HN, Nazli F, Zahir ZA (2021) Appraising the potential of EPS-producing rhizobacteria with ACC-deaminase activity to improve growth and physiology of maize under drought stress. Physiol Plant 172:463–476

    CAS  PubMed  Article  Google Scholar 

  • Namvar A, Khandan T (2015) Inoculation of rapeseed under different rates of inorganic nitrogen and sulfur fertilizer: impact on water relations, cell membrane stability, chlorophyll content and yield. Arch Agron Soil Sci 61(8):1137–1149

    CAS  Article  Google Scholar 

  • Narasimhan K, Basheer C, Bajic VB, Swarup S (2003) Enhancement of plant-microbe interactions using a rhizosphere metabolomicsdriven approach and its application in the removal of polychlorinated biphenyls. Plant Physiol 132:146–153

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Naseem H, Bano A (2014) Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. J Plant Interact 9(1):689–701

    Article  Google Scholar 

  • Nautiyal PC, Rajgopal K, Zala PV, Pujari DS, Basu M, Dhadhal BA, Nandre BM (2008) Evaluation of wild Arachis species for abiotic stress tolerance: I. Thermal stress and leaf water relations. Euphytica 159(1–2):43–57

    Article  Google Scholar 

  • Naylor D, Coleman-Derr D (2018) Drought stress and root-associated bacterial communities conditions. Front Plant Sci 9:2223

    Article  Google Scholar 

  • Nedkovska M, Atanassov AI (1998) Metallothionein genes and expression for heavy metal resistance. Biotechnol Biotec Eq 12(2):11–16

    Article  Google Scholar 

  • Nie M, Zhang XD, Wang JQ, Jiang LF, Yang J, Quan ZX, Cui XH, Fang CM, Li B (2009) Rhizosphere effects on soil bacterial abundance and diversity in the Yellow River Deltaic ecosystem as influenced by petroleum contamination and soil salinization. Soil Biol Biochem 41:2535–2542

    CAS  Article  Google Scholar 

  • Ning W, Zhai H, Yu J, Liang S, Yang X, Xing X, Huo J, Pang T, Yang Y, Bai X (2017) Overexpression of Glycine soja WRKY20 enhances drought tolerance and improves plant yields under drought stress in transgenic soybean. Mol Breed 37(2):19

    Article  CAS  Google Scholar 

  • Noori F, Etesami H, Noori S, Forouzan E, Joujani CS, Malboobi MA (2021) Whole genome sequence of Pantoea agglomerans ANP8, a salinity and drought stress-resistant bacterium isolated from alfalfa (Medicago sativa L.) nodules. Biotechnol Rep 29:e00600. https://doi.org/10.1016/j.btre.2021.e00600

    CAS  Article  Google Scholar 

  • Nordstedt NP, Chapin LJ, Taylor CG, Jones ML (2020) Identification of Pseudomonas spp. that increase ornamental crop quality during abiotic stress. Front Plant Sci 10:1754

    PubMed  PubMed Central  Article  Google Scholar 

  • Numan M, Bashir S, Khan Y, Mumtaz R, Shinwari ZK, Khan AL, Khan A, Al-Harassi A (2018) Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review. Microbiol Res 209:21–32

    CAS  PubMed  Article  Google Scholar 

  • Olenrewaju OS, Glick BR, Babalola OO (2017) Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol 33:197–211

    Article  CAS  Google Scholar 

  • Oliveira Lopes ÁL, Setubal IS, da Costa Neto VP, Zilli JE, Rodrigues AC, Bonifacio A (2022) Synergism of Bradyrhizobium and Azospirillum baldaniorum improves growth and symbiotic performance in lima bean under salinity by positive modulations in leaf nitrogen compounds. Appl Soil Ecol 180:104603. https://doi.org/10.1016/j.apsoil.2022.104603

    Article  Google Scholar 

  • Orozco-Mosqueda M, Duan J, DiBernardo M, Zetter E, Campos-Garcia J, Glick BR, Santoyo G (2019) The production of ACC deaminase and trehalose by the plant growth promoting bacterium Pseudomonas sp. UW4 synergistically protect tomato plants against salt stress. Front Microbiol 10:1392

    PubMed  PubMed Central  Article  Google Scholar 

  • Orozco-Mosqueda MC, Glick BR, Santoyo G (2020) ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt in crops. Microbiol Res 235:126439

    CAS  PubMed  Article  Google Scholar 

  • Orozco-Mosqueda MC, Fadiji AE, Babalola OO, Glick BR, Santoyo G (2022) Rhizobiome engineering: Unveiling complex rhizosphere interactions to enhance plant growth and health. Microbiol Res 263:127137. https://doi.org/10.1016/j.micres.2022.127137

    CAS  Article  PubMed  Google Scholar 

  • Pandey S, Gupta S (2019) ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) plants. Front Microbiol 10:1506

    PubMed  PubMed Central  Article  Google Scholar 

  • Panuccio MR, Sorgonà A, Rizzo M, Cacco G (2009) Cadmium adsorption on vermiculite, zeolite and pumice: Batch experimental studies. J Environ Manage 90(1):364–374

    CAS  PubMed  Article  Google Scholar 

  • Panwar M, Tewari R, Nayyar H (2016) Native halo-tolerant plant growth promoting rhizobacteria Enterococcus and Pantoea sp. improve seed yield of Mungbean (Vigna radiata L.) under soil salinity by reducing sodium uptake and stress injury. Physiol Mol Biol Plants 22(4):445–459

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Parmar P, Sindhu SS (2013) Potassium solubilization by rhizosphere bacteria: Influence of nutritional and environmental conditions. J Microbiol Res 3:25–31

    Google Scholar 

  • Parmar P, Sindhu SS (2019) The novel and efficient method for isolating potassium solubilizing bacteria from rhizosphere soil. Geomicrobiol J 36(2):130–136

    CAS  Article  Google Scholar 

  • Patel MK, Kumar M, Li W, Luo Y, Burritt DJ, Alkan N, Tran L-SP (2020) Enhancing salt tolerance of plants: From metabolic reprogramming to exogenous chemical treatments and molecular approaches. Cells 9:2492

    CAS  PubMed Central  Article  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    CAS  PubMed  Article  Google Scholar 

  • Pattern CL, Glick BR (2002) Role of Pseudomoms putida indole acetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  CAS  Google Scholar 

  • Paul EA, Clark FE (1989) Soil microbiology and biochemistry. Academic Press, San Diego, p 234

    Google Scholar 

  • Paul D, Lade H (2014) Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev 34(4):737–752

    Article  Google Scholar 

  • Paulucci NS, Gallarato LA, Reguera YB, Vicario JC, Cesari AB, de Lema MBG, Dardanelli MS (2015) Arachis hypogaea PGPR isolated from Argentine soil modifies its lipids components in response to temperature and salinity. Microbiol Res 173:1–9

    CAS  PubMed  Article  Google Scholar 

  • Penrose DM, Glick BR (2001) Levels of 1-aminocyclopropane-1- carboxylic acid (ACC) in exudates and extracts of canola seeds treated with plant growth promoting bacteria. Can J Microbiol 41:368–372

    Article  Google Scholar 

  • Petric I, Šamec D, Karalija E, Salopek-Sondi B (2022) Beneficial microbes and molecules for mitigation of soil salinity in Brassica species: A review. Soil Syst 6:18. https://doi.org/10.3390/soilsystems6010018

    CAS  Article  Google Scholar 

  • Petrov V, Hille J, Mueller-Roeber B, Gechev TS (2015) ROS-mediated abiotic stress induced programmed cell death in plants. Front Plant Sci. https://doi.org/10.3389/fpls.2015.00069

    Article  PubMed  PubMed Central  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799

    CAS  PubMed  Article  Google Scholar 

  • Phour M, Sindhu SS (2020) Amelioration of salinity stress and growth stimulation of mustard (Brassica juncea L.) by salt-tolerant Pseudomonas species. Appl Soil Ecol 149:103518

    Article  Google Scholar 

  • Phour M, Ghai A, Rose G, Dhull N, Sindhu SS (2018) Role of aminolevulinic acid in stress adaptation and crop productivity. Intern J Curr Microbiol Appl Sci 7(05):1516–1524

    Article  CAS  Google Scholar 

  • Phour M, Sehrawat A, Sindhu SS, Glick BR (2020) Interkingdom signaling in plant-rhizomicrobiome interactions for sustainable agriculture. Microbiol Res 241:126589

    CAS  PubMed  Article  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MAK (2007) Stress-induced morphogenic responses, growing out of trouble. Trends Plant Sci 12:98–105

    CAS  PubMed  Article  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Jansen MAK (2009) Different stresses, similar morphogenic responses: integrating a plethora of pathways. Plant Cell Environ 32:158–169

    PubMed  Article  Google Scholar 

  • Prabhavathi V, Yadav JS, Kumar PA, Rajam MV (2002) Abiotic stress tolerance in transgenic eggplant (Solanum melongena L.) by introduction of bacterial mannitol phosphodehydrogenase gene. Mol Breed 9(2):137–147

    CAS  Article  Google Scholar 

  • Prasad MNV, Freitas H, Fraenzle S, Wuenschmann S, Markert B (2010) Knowledge explosion in phytotechnologies for environmental solutions. Environ Pollut 158:18–23

    CAS  PubMed  Article  Google Scholar 

  • Prithiviraj B, Zhou X, Souleimanov A, Kahn W, Smith DL (2003) A host-specific bacteria-to-plant signal molecule (Nod factor) enhances germination and early growth of diverse crop plants. Planta 216:437–445

    CAS  PubMed  Article  Google Scholar 

  • Pulsawat W, Leksawasdi N, Rogers PL, Foster LJ (2003) Anion effect on biosorption of Mn (II) by extracellular polymeric substance (ESP) from Rhizobium etli. Biotechnol Lett 25:1267–1270

    CAS  PubMed  Article  Google Scholar 

  • Qui Z, Egidi E, Liu H, Kaur S, Singh BK (2019) New frontiers in agricultural productivity: optimized microbial inoculants and in situ microbiome engineering. Bitechnol Adv. https://doi.org/10.1016/j.biotechadv.2019.03.010

    Article  Google Scholar 

  • Quiza L, St-Arnaud M, Yergeau E (2015) Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering. Front Plant Sci 6:11

    Article  Google Scholar 

  • Rahdari P, Hoseini SM (2012) Effect of different levels of drought stress (PEG 6000 concentrations) on seed germination and inorganic elements content in Purslane (Portulaca oleraceae L.) leaves. J Stress Physiol Biochem 8:51–61

    Google Scholar 

  • Raheem A, Shaposhnikov A, Belimov AA, Dodd IC, Ali B (2018) Auxin production by rhizobacteria was associated with improved yield of wheat (Triticum aestivum L.) under drought stress. Arch Agron Soil Sci 64(4):574–587

    CAS  Article  Google Scholar 

  • Rahman A, Nahar N, Nawani NN, Jass J, Hossain K, Saud ZA, Saha AK, Ghosh S, Olsson B, Mandal A (2015) Bioremediation of hexavalent chromium (VI) by a soil-borne bacterium, Enterobacter cloacae B2-DHA. J Environ Sci Health A 50:1136–1147

    CAS  Article  Google Scholar 

  • Ranawat B, Bachani P, Singh A, Mishra S (2021) Enterobacter hormaechei as plant growth-promoting bacteria for improvement in Lycopersicum esculentum. Curr Microbiol 24:1–10

    Google Scholar 

  • Rao S, Das JR, Balyan S, Verma R, Mathur S (2022) Cultivar-biased regulation of HSFA7 and HSFB4a govern high-temperature tolerance in tomato. Planta 255:31. https://doi.org/10.1007/s00425-021-03813-y

    CAS  Article  PubMed  Google Scholar 

  • Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermo-tolerance conferred to plant host and fungal endophyte during mutualistic symbiosis. Science 298:1581

    CAS  PubMed  Article  Google Scholar 

  • Reinhold-Hurek B, Bünger W, Burbano CS, Sabale M, Hurek T (2015) Roots shaping their microbiome: global hotspots for microbial activity. Annu Rev Phytopathol 53:403–424

    CAS  PubMed  Article  Google Scholar 

  • Remans R, Ramaekers L, Shelkens S, Hernandez G, Garcia A, Reyes GL, Mendez N, Toscano V, Mullin M, Galvez L, Vanderleyden J (2008) Effect of Rhizobium- Azospirillum co-inoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. genotypes cultivated across different environments in Cuba. Plant Soil 312:25–37

    CAS  Article  Google Scholar 

  • Ren C-G, Kong C-C, Liu Z-Y, Zhong Z-H, Yang J-C, Wang X-L, Qin S (2022) A perspective on developing a plant ‘holobiont’ for future saline agriculture. Front Microbiol 13:763014. https://doi.org/10.3389/fmicb.2022.763014

    Article  PubMed  PubMed Central  Google Scholar 

  • Rengasam P (2002) Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview. Aust J Exp Agric 42:351–361

    Article  Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    PubMed  Article  Google Scholar 

  • Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114

    CAS  PubMed  Article  Google Scholar 

  • Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim Y, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416

    PubMed  Article  Google Scholar 

  • Rosa PAL, Galindo FS, Oliveira CEdS, Jalal A, Mortinho ES, Fernandes GC, Marega EMR, Buzetti S, Teixeira Filho MCM (2022) Inoculation with plant growth-promoting bacteria to reduce phosphate fertilization requirement and enhance technological quality and yield of sugarcane. Microorganisms 10:192. https://doi.org/10.3390/microorganisms10010192

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Rosier CL, Polson SW, D’Amico V III, Kan J, Trammell TLE (2021) Urbanization pressures alter tree rhizosphere microbiomes. Sci Rep 11:9447

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Rossi F, De Philippis R (2015) Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats. Life 5(2):1218–1238

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Ruíz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress, new perspectives for molecular studies. Mycorrhiza 13:309–317

    PubMed  Article  Google Scholar 

  • Ruiz-Lozano JM, Aroca R, Zamarreno AM, Molina S, Andreo-Jimenez B, Porcel R (2015) Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant Cell Environ 39(2):441–452

    PubMed  Article  CAS  Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    CAS  PubMed  Article  Google Scholar 

  • Ryan PR, Dessaux Y, Thomashow LS, Weller DM (2009) Rhizosphere engineering and management for sustainable agriculture. Plant Soil 321:363–383

    CAS  Article  Google Scholar 

  • Saboor A, Ali MA, Husain S, Tahir MS, Irfan M, Bilal M, Baig KS, Datta R, Ahmed N, Danish S, Glick BR (2021) Regulation of phosphorus and zinc uptake in relation to arbuscular mycorrhizal fungi for better maize growth. Agronomy 11:2322. https://doi.org/10.3390/agronomy11112322

    CAS  Article  Google Scholar 

  • Sadhukhan A, Prasad SS, Mitra J, Siddiqui N, Sahoo L, Kobayashi Y, Koyama H (2022) How do plants remember drought? Planta 256:7. https://doi.org/10.1007/s00425-022-03924-0

    CAS  Article  PubMed  Google Scholar 

  • Saeed M, Ilyas N, Mazhar R, Bibi F, Batool N (2016) Drought mitigation potential of Azospirillum inoculation in canola (Brassica napus). J Appl Botany Food Qual 278:270–278

    Google Scholar 

  • Sahu GK, Sindhu SS (2011) Disease control and plant growth promotion of green gram by siderophore producing Pseudomonas sp. Res J Microbiol 6(10):735–749

    Article  Google Scholar 

  • Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449

    CAS  PubMed  Article  Google Scholar 

  • Salah IB, Albacete A, Messedi D, Gandour M, Andújar CM, Zribi K, Martinez V, Abdelly C, Pérez-Alfocea F (2013) Hormonal responses of nodulated Medicago ciliaris lines differing in salt tolerance. Environ Exp Bot 86:35–43

    Article  CAS  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    CAS  PubMed  Article  Google Scholar 

  • Saleem M, Asghar HN, Zahir ZA, Shahid M (2019) Evaluation of lead tolerant plant growth promoting rhizobacteria for plant growth and phytoremediation in lead contamination. Rev Intern Contam Ambie 35(4):999–1009

    Article  Google Scholar 

  • Sandhya VS, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46:17–26

    CAS  Article  Google Scholar 

  • Sandhya VS, Ali SZ, Grover M, Reddy G, Venkateswaralu B (2010) Effect of plant growth promoting Pseudomonas spp. on compatible solutes antioxidant status and plant growth of maize under drought stress. Plant Growth Regul 62(1):21–30

    CAS  Article  Google Scholar 

  • Sanghera GS, Wani SH, Hussain W, Singh NB (2011) Engineering cold stress tolerance in crop plants. Curr Genomics 12(1):30

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Sanjotha P, Mahantesh P, Patil CS (2011) Isolation and screening of efficiency of phosphate solubilizing microbes. Int J Microbiol Res 3:56–58

    Article  Google Scholar 

  • Santos SS, Rask KA, Vestergard M, Johansen JL, Prime A, Frosley TG, Martin Gonzalez AM, He H, Ekelund F (2021) Specialized microbiomes facilitate natural rhizosphere microbiome interactions counteracting high salinity stress in plants. Environ Expt Botany 186:104430. https://doi.org/10.1016/j.envexpbot.2021.104430

    CAS  Article  Google Scholar 

  • Santoyo G, Gamalero E, Glick BR (2021) Mycorrhizal-bacterial amelioration of plant abiotic and biotic stress. Front Sustain Food Syst 5:672881

    Article  Google Scholar 

  • Sapre S, Gontia-Mishra I, Tiwari S (2018) Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa). Microbiol Res 206:25–32

    CAS  PubMed  Article  Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102(5):1283–1292

    CAS  PubMed  Article  Google Scholar 

  • Sarkar A, Ghosh PK, Pramanik K, Mitra S, Soren T, Pandey S, Mondal MH, Maiti TK (2008) A halotolerant Enterobacter sp displaying ACC deaminase activity promotes rice seedling growth under salt stress. Res Microbiol 169(1):20–32

    Article  CAS  Google Scholar 

  • Sarkar J, Chakraborty B, Chakraborty U (2018) Plant growth promoting rhizobacteria protect wheat plants against temperature stress through antioxidant signalling and reducing chloroplast and membrane injury. J Plant Growth Regul 37(4):1396–1412. https://doi.org/10.1007/s00344-018-9789-8

    CAS  Article  Google Scholar 

  • Sasse J, Martinoia E, Northen T (2018) Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci 23(1):25–41

    CAS  PubMed  Article  Google Scholar 

  • Sehrawat A, Sindhu SS (2019) Potential of biocontrol agents in plant disease control for improving food safety. Def Life Sci J 4:220–225

    Article  Google Scholar 

  • Sehrawat A, Sindhu SS, Glick BR (2022) Hydrogen cyanide production by soil bacteria: Biological control of pests and promotion of plant growth in sustainable agriculture. Pedosphere 32:15–38

    Article  Google Scholar 

  • Selvakumar G, Kundu S, Joshi P, Nazim S, Gupta AD, Mishra PK, Gupta HS (2008a) Characterization of a cold tolerant plant growth bacterium Pantoea dispersa 1A isolated from a subalpine soil in the North Western Indian Himalayas. World J Microbiol Biotechnol 24:955–960

    CAS  Article  Google Scholar 

  • Selvakumar G, Mohan M, Kundu S, Gupta AD, Joshi P, Nazim S, Gupta HS (2008b) Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC8708) isolated from flowers of summer squash (Cucurbita pepo). Lett Appl Microbiol 46:171–175

    CAS  PubMed  Article  Google Scholar 

  • Selvakumar G, Joshi P, Nazim S, Mishra PK, Bisht JK, Gupta HS (2009) Phosphate solubilization and growth promotion by Pseudomonas fragi CS11RH1 (MTCC 8984) a psychrotolerant bacterium isolated from a high altitude Himalayan rhizosphere. Biologia 64(2):239–245

    CAS  Article  Google Scholar 

  • Selvakumar G, Panneerselvam P, Ganeshamurthy AN (2012) Bacterial mediated alleviation of abiotic stress in crops. In: Maheshwari DK (ed) Bacteria in Agrobiology: Stress Management, SpringerVerlag, pp 205–224

  • Shabaan M, Asghar HN, Zahir ZA, Sardar MF, Parveen R, Faiza AQ (2022a) Halotolerant rhizobacterial consortium confers salt tolerance to maize under naturally salt-affected soil. Soil Sci Soc Am J. https://doi.org/10.1002/saj2.20438

    Article  Google Scholar 

  • Shabaan M, Asghar HN, Zahir ZA, Zhang X, Sardar MF, Li H (2022b) Salt-tolerant PGPR confer salt tolerance to maize through enhanced soil biological health, enzymatic activities, nutrient uptake and antioxidant defense. Front Microbiol 13:901865

    PubMed  PubMed Central  Article  Google Scholar 

  • Shah DA, Sen S, Shalini A, Ghosh D, Grover M, Mohapatra S (2017) An auxin secreting Pseudomonas putida rhizobacterial strain that negatively impacts water-stress tolerance in Arabidopsis thaliana. Rhizosphere 3:16–19

    Article  Google Scholar 

  • Shah A, Nazari M, Antar M, Msimbira LA, Naamala J, Lyu D, Rabileh M, Zajonc J, Smith DL (2021a) PGPR in agriculture: A sustainable approach to increasing climate change resilience. Front Sustain Food Syst 5:667546. https://doi.org/10.3389/fsufs.2021.667546

    Article  Google Scholar 

  • Shah AN, Tanveer M, Abbas A, Fahad S, Baloch MS, Ahmad MI, Saud S, Song Y (2021b) Targeting salt stress coping mechanisms for stress tolerance in Brassica: A research perspective. Plant Physiol Biochem 158:53–64

    CAS  PubMed  Article  Google Scholar 

  • Shahid M, Khalid S, Abbas G, Shahid N, Nadeem M, Sabir M, Aslam M, Dumat C (2015) Heavy metal stress and crop productivity. InCrop production and global environmental issues. Springer Cham, pp 1–25

  • Shao Y, Zhang X, van Nocker S, Gong X, Ma F (2019) Overexpression of a protein kinase gene MpSnRK2. 10 from Malus prunifolia confers tolerance to drought stress in transgenic Arabidopsis thaliana and apple. Gene 692:26–34

    CAS  PubMed  Article  Google Scholar 

  • Sharma R, Sindhu S, Sindhu SS (2018) Suppression of Alternaria blight disease and plant growth promotion of mustard (Brassica juncea L.) by antagonistic rhizosphere bacteria. Appl Soil Ecol 129:145–150

    Article  Google Scholar 

  • Sharma R, Sindhu SS (2020) Plant growth promoting rhizobacteria (PGPR): A sustainable approach for managing soil fertility and crop productivity. In: Microbes for humankind and applications In: Microbes for humankind and application (Malik DK, Rathi M, Kumar R, Bhatia D eds). Daya Publishing House, New Delhi, pp 97–130

  • Shen X, Hu H, Peng H, Wang W, Zhang X (2013) Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas. BMC Genom 14:1471–2164

    Google Scholar 

  • Sheng XF, Xia JJ, Jiang CY, He LY, Qian M (2008) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Poll 156:1164–1170

    CAS  Article  Google Scholar 

  • Shi WM, Muramoto Y, Ueda A, Takabe T (2001) Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotolerance by overexpressing in Arabidopsis thaliana. Gene 273:23–27

    CAS  PubMed  Article  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131. https://doi.org/10.1016/j.sjbs.2014.12.001

    CAS  Article  PubMed  Google Scholar 

  • Shriram V, Kumar V, Devarumath RM, Khare TS, Wani SH (2016) MicroRNAs as potential targets for abiotic stress tolerance in plants. Front Plant Sci 7:817. https://doi.org/10.3389/fpls.2016.00817

    Article  PubMed  PubMed Central  Google Scholar 

  • Siddikee MA, Glick BR, Chauhan PS, Jong Yim W, Sa T (2011) Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol Biochem 49(4):427–434

    CAS  PubMed  Article  Google Scholar 

  • Silambarasan S, Logeswari P, Cornejo P, Kannan VR (2019a) Evaluation of the production of exopolysaccharide by plant growth promoting yeast Rhodotorula sp. strain CAH2 under abiotic stress conditions. Intern J Biol Macromolec 121:55–62

    CAS  Article  Google Scholar 

  • Silambarasan S, Logeswari P, Cornejo P, Kannan VR (2019b) Role of plant growth–promoting rhizobacterial consortium in improving the Vigna radiata growth and alleviation of aluminum and drought stresses. Environ Sci Pollut Res 26(27):27647–27659

    CAS  Article  Google Scholar 

  • Sindhu SS, Dadarwal KR (1994) Biosynthesis of exopolysaccharides and its role during nodule development in Rhizobium- legume symbiosis. In: Vashampayan A, Prasad AB (eds) Biology and Application of Nitrogen-Fixing Organisms - Problems and Prospectus. Scientific Publishers, Jodhpur, pp 189–240

    Google Scholar 

  • Sindhu SS, Parmar P, Phour M, Kumari K (2014a) Rhizosphere microorganisms for improvement in soil fertility and plant growth. In: Kumar A, Singh R (eds) Microbes in the service of mankind: Tiny bugs with huge impact (Nagpal R. JBC Press, New Delhi, pp 32–94

    Google Scholar 

  • Sindhu SS, Phour M, Choudhary SR, Chaudhary D (2014b) Phosphorus cycling: prospects of using rhizosphere microorganisms for improving phosphorus nutrition of plants. Geomicrobiology and Biogeochemistry (Berlin. Springer), Heidelberg, pp 199–237

    Chapter  Google Scholar 

  • Sindhu SS, Sharma R (2019) Amelioration of biotic stress by application of rhizobacteria for agriculture sustainability. Sayyed RZ, Tabassum B (eds). In Plant Growth Promoting Rhizobacteria for Sustainable Stress Management, Microorganisms for Sustainability. Springer Nature Singapore Pte Ltd. Chapter 5, pp 111–168

  • Sindhu SS, Sharma S, Sindhu S, Phour M (2019) Plant nutrient management through inoculation of zinc solubilizing bacteria for sustainable agriculture. In: Prasad R, Wu QS, Varma A (eds) Biofertilizers for sustainable Agriculture and Environment (Giri B. Springer Nature, Singapore Pte Ltd, pp 173–201

    Chapter  Google Scholar 

  • Sindhu SS, Suneja S, Goel AK, Parmar N, Dadarwal KR (2002) Plant growth promoting effects of Pseudomonas sp. on coinoculation with Mesorhizobium sp. Cicer strain under sterile and wilt sick soil conditions. Appl Soil Ecol 19:57–64

    Article  Google Scholar 

  • Sindhu SS, Malik DK, Dadarwal KR (2003) Enhancing the potential of biological nitrogen fixation by genetic manipulations of diazotrophic bacteria for sustainable agriculture. In: Singh RP, Jaiwal PK (eds) Plant genetic engineering. . Applications and limitations, vol. 1. Sci Tech Publ LCC Houston, USA, pp 199–228

  • Sindhu S, Dahiya A, Gera R, Sindhu SS (2020) Mitigation of abiotic stress in legume-nodulating rhizobia for sustainable crop production. Agric Res 9(4):444–459

    CAS  Article  Google Scholar 

  • Singh OV, Labana S, Pandey G, Budhiraja R, Jain RK (2003) Phytoremediation: an overview of metallicion decontamination from soil. Appl Microbiol Biotechnol 61:405–412

    CAS  PubMed  Article  Google Scholar 

  • Singh RP, Manchanda G, Singh RN, Srivastava AK, Dubey RC (2016) Selection of alkalotolerant and symbiotically efficient chickpea nodulating rhizobia from North-West Indo Gangetic plains. J Basic Microbiol 56:14–25

    CAS  PubMed  Article  Google Scholar 

  • Singh R, Sharma S, Kharb P, Saifi S, Tuteja N (2020) OsRuvB transgene induces salt tolerance in pigeon pea. J Plant Interact 15(1):17–26

    CAS  Article  Google Scholar 

  • Sita K, Kumar V (2020) Role of gamma amino butyric acid (GABA) against abiotic stress tolerance in legumes: A review. Plant Physiol Rep 25:654–663

    CAS  Article  Google Scholar 

  • Song T, Xu H, Sun N, Jiang L, Tian P, Yong Y, Yang W, Cai H, Cui G (2017) Metabolomic analysis of alfalfa (Medicago sativa L.) root-symbiotic rhizobia responses under alkali stress. Front Plant Sci 8:1208. https://doi.org/10.3389/fpls.2017.01208

    Article  PubMed  PubMed Central  Google Scholar 

  • Sourour A, Afef O, Mounir R, Mongi BY (2017) A review: morphological, physiological, biochemical and molecular plant responses to water deficit stress. Int J Eng Res 6(1):1–4

    Google Scholar 

  • Sparks RE (1995) Need for ecosystem management of large rivers and flood plains. Bioscience 45:168–182

    Article  Google Scholar 

  • Sripinyowanich S, Klomsakul P, Boonburapong B, Bangyeekhun T, Asami T, Gu HY, Buaboocha T, Chadchawan S (2013) Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): the role of OsP5CS1 and OsP5CR gene expression during salt stress. Environ Exp Bot 86:94–105

    CAS  Article  Google Scholar 

  • Srivastava S, Yadav A, Seema K, Mishra S, Choudhary V, Nautiyal CS (2008) Effect of high temperature on Pseudomonas putida NBRI0987 biofilm formation and expression of stress sigma factor RpoS. Curr Microbiol 56:453–457

    CAS  PubMed  Article  Google Scholar 

  • Staudinger C, Mehmeti-Tershani V, Gil-Quintana E, Gonzalez EM, Hofhansl F, Bachmann G, Wienkoop S (2016) Evidence for a rhizobia-induced drought stress response strategy in Medicago truncatula. J Proteom 136:202–213. https://doi.org/10.1016/j.jprot.2016.01.006

    CAS  Article  Google Scholar 

  • Stone SL (2019) Role of the ubiquitin proteasome system in plant response to abiotic stress. Intern Rev Cell Mol Biol 343:65–110

    CAS  Article  Google Scholar 

  • Strzelczyk E, Kampert M, Pachlewski R (1994) The influence of pH and temperature on ethylene production by mycorrhizal fungi of pine. Mycorrhiza 4:193–196

    CAS  Article  Google Scholar 

  • Sunkar R, Zhu J-K (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019. https://doi.org/10.1105/tpc.104.022830

  • Sukweenadhi J, Kim YJ, Choi ES, Koh SC, Lee SW, Kim YJ, Yang DC (2015) Paenibacillus yonginensis DCY84 T induces changes in Arabidopsis thaliana gene expression against aluminum, drought, and salt stress. Microbiol Res 172:7–15

    CAS  PubMed  Article  Google Scholar 

  • Sultana S, Alam S, Karim MM (2021) Screening of siderophore-producing salt-tolerant rhizobacteria suitable for supporting plant growth in saline soils with iron limitation. J Agric Food Res 4:100150

    CAS  Article  Google Scholar 

  • Sun L, Cao X, Tam C, Deng Y, Cai R, Peng X, Bai J (2020) Analysis of the effect of cadmium stress on root exudates of Sedum plumbizincicola based on metabolomics. Ecotoxicol Environ Saf 205:111152

    CAS  PubMed  Article  Google Scholar 

  • Sunitha M, Srinath T, Reddy VD, Rao KV (2017) Expression of cold and drought regulatory protein (CcCDR) of pigeonpea imparts enhanced tolerance to major abiotic stresses in transgenic rice plants. Planta 245(6):1137–1148

    CAS  PubMed  Article  Google Scholar 

  • Suzuki N, Rizhsky L, Liang H, Shuman J, Shulaev V, Mittler R (2005) Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional co-activator multiprotein bridging factor 1c. Plant Physiol 139:1313–1322

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Takahashi Y, Zhang J, Hsu PK, Ceciliato PH, Zhang L, Dubeaux G, Munemasa S, Ge C, Zhao Y, Hauser F, Schroeder JI (2020) MAP3 Kinase-dependent SnRK2-kinase activation is required for abscisic acid signal transduction and rapid osmotic stress response. Nature Commun 11(1):1–2

    Article  CAS  Google Scholar 

  • Tanaka T, Kuramochi H (2001) 5-aminolevulinic acid improves salt tolerance. Plant Growth Develop 36:190–197

    CAS  Google Scholar 

  • Tandon A, Fatima T, Shukla AD, Tripathi P, Srivastava S, Singh PC (2020) Phosphate solubilization by Trichoderma koningiopsis (NBRI-PR5) under abiotic stress conditions. JKSUS 32(1):791–798

    Google Scholar 

  • Tang Y, Bao X, Zhi Y, Wu Q, Yin X, Zeng L, Li J, Zhang J, He W, Liu W, Wang Q (2019) Overexpression of a MYB family gene, OsMYB6, increases drought and salinity stress tolerance in transgenic rice. Front Plant Sci 10:168

    PubMed  PubMed Central  Article  Google Scholar 

  • Timmusk S, Wagner EG (1999) The plant growth promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant Microbe Interact 12:951–959

    CAS  PubMed  Article  Google Scholar 

  • Timmusk S, Paalme V, Pavlicek T, Bergquist J, Vangala A, Danilas T, Nevo E (2011) Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates. PLoS ONE 6:e17968

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Tiwari S, Gupta SC, Chauhan PS, Lata C (2021) An OsNAM gene plays important role in root rhizobacteria interaction in transgenic Arabidopsis through abiotic stress and phytohormone crosstalk. Plant Cell Rep 40(1):143–155

    CAS  PubMed  Article  Google Scholar 

  • Trivedi P, Pandey A, Sa T (2007) Chromate reducing and plant growth promoting activities of psychrotrophic Rhodococcus erythropolis MTCC 7905. J Basic Microbiol 47:513–517

    CAS  PubMed  Article  Google Scholar 

  • Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK (2020) Plant-microbiome interactions: From community assembly to plant health. Nat Rev Microbiol 18:607–621

    CAS  PubMed  Article  Google Scholar 

  • Tsegaye Z, Assefa F, Beyene D (2017) Properties and application of plant growth promoting rhizobacteria. Intern J Curr Trend Pharmacobiol Med Sci 2(1):30–43

    Google Scholar 

  • Tsyganov VE, Tsyganova AV, Gorshkov AP, Seliverstova EV, Kim VE, Chizhevskaya EP, Belimov AA, Serova TA, Ivanova KA, Kulaeva OA et al (2020) Efficacy of a plant-microbe system: Pisum sativum (L.) cadmium-tolerant mutant and Rhizobium leguminosarum strains, expressing pea metallothionein genes PsMT1 and PsMT2, for cadmium phytoremediation. Front Microbiol 11:15

    PubMed  PubMed Central  Article  Google Scholar 

  • Turan M, Ahmet E, Fikrettin S (2012) Plant growth promoting rhizobacteria as alleviators for soil degradation. In: Maheshwari DK (ed) Bacteria in Agrobiology: Stress Management. SpringerVerlag, pp 41–63

  • Turnau K, Mesjasz-Przybylowicz J (2003) Arbuscular mycorrhiza of Berkheya coddii and other Ni hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza 13:185–190

    PubMed  Article  Google Scholar 

  • Tzipilevich E, Russ D, Dangl JL, Benfey PN (2021) Plant immune system activation is necessary for efficient root colonization by auxin-secreting beneficial bacteria. Cell Host Microbe 29(10):1507–1520. https://doi.org/10.1016/j.chom.2021.09.005

    CAS  Article  PubMed  Google Scholar 

  • Ullah A, Nisar M, Ali H, Hazrat A, Hayat K, Keerio AA, Ihsan M, Laiq M, Ullah S, Fahad S, Khan A, Khan AH, Akbar A, Yang X (2019a) Drought tolerance improvement in plants: an endophytic bacterial approach. Appl Microbiol Biotechnol 103:7385–7397. https://doi.org/10.1007/s00253-019-10045-4

    CAS  Article  PubMed  Google Scholar 

  • Ullah I, Al-Johny BO, Al-Ghamdi KMS, Al-Zahrani HAA, Anwar Y, Firoz A, Al-Kenani N, Almatry MAA (2019b) Endophytic bacteria isolated from Solanum nigrum L., alleviate cadmium (Cd) stress response by their antioxidant potentials, including SOD synthesis by sodA gene. Ecotoxicol Environ Saf 174:197–207

    CAS  PubMed  Article  Google Scholar 

  • Umezawa T, Yoshida R, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K (2004) SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proc Natl Acad Sci USA 101:17306–17311

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci 97(21):11632–11637

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Venkateswarlu B, Shanker AK (2009) Climate change and agriculture: adaptation and mitigation strategies. Indian J Agron 54:226–230

    Google Scholar 

  • Veremeichik GN, Shkryl YN, Rusapetova TV, Silantieva SA, Grigorchuk VP, Velansky PV, Brodovskaya EV, Konnova YA, Khopta AA, Bulgakov DV, Bulgakov VP (2022) Overexpression of the A4-rolB gene from the pRiA4 of Rhizobium rhizogenes modulates hormones homeostasis and leads to an increase of flavonoid accumulation and drought tolerance in Arabidopsis thaliana transgenic plants. Planta 256:8. https://doi.org/10.1007/s00425-022-03927-x

    CAS  Article  PubMed  Google Scholar 

  • Veresoglou SD, Menexes G (2010) Impact of inoculation with Azospirillum spp. on growth properties and seed yield of wheat: A meta-analysis of studies in the ISI Web of Science from 1981–2008. Plant Soil 337:469–480

    CAS  Article  Google Scholar 

  • Verma J, Yadav J, Tiwari KN (2010) Impact of plant growth promoting rhizobacteria on crop production. Intern J Agric Res 11:954–983

    Article  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    CAS  PubMed  Article  Google Scholar 

  • Vocciante M, Grifoni M, Fusini D, Petruzzelli G, Franchi E (2022) The role of plant growth-promoting rhizobacteria (PGPR) in mitigating plant’s environmental stresses. Appl Sci 12:1231. https://doi.org/10.3390/app12031231

    CAS  Article  Google Scholar 

  • Vurukonda SS, Vardharajula S, Srivastava M, Sk ZA (2016) Enhancement of drought stress tolerance by plant growth promoting rhizobacteria. Microbiol Res 184:13–24

    PubMed  Article  Google Scholar 

  • Wang CY (1987) Changes of polyamines and ethylene in cucumber seedlings in response to chilling stress. Physiol Plant 69:253–257

    CAS  Article  Google Scholar 

  • Wang Y, Wisniewsky M, Meilan R, Cui M, Webb R, Fuchigamy L (2005) Over-expression of cytosolic ascorbate peroxidase in tomato confers tolerance to chilling and salt stress. J Am Soc Hortic Sci 130:167–173

    CAS  Article  Google Scholar 

  • Wang Y, Wisniewski M, Meilan R, Cu M, Fuchigami L (2006) Transgenic tomato (Lycopersicon esculentum) overexpressing cAPX exhibits enhanced tolerance to UV-B and heat stress. J Appl Hortic 8:87–90

    Article  Google Scholar 

  • Wang CJ, Yang W, Wang C, Gu C, Niu DD, Liu HX, Wang YP, Guo JH (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS ONE 7(12):e52565

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Wang Q, Dodd IC, Belimov AA, Jiang F (2016) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase growth and photosynthesis of pea plants under salt stress by limiting Na+ accumulation. Fundam Plant Biol 43:161–172

    CAS  Article  Google Scholar 

  • Wang C, Lu G, Hao Y, Guo H, Guo Y, Zhao J, Cheng H (2017) ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton. Planta 246(3):453–469

    CAS  PubMed  Article  Google Scholar 

  • Wang LS, Chen QS, Xin DW, Qi ZM, Zhang C, Li SN, Jin Y, Li M, Mei HY, Su AY (2018) Overexpression of GmBIN2, a soybean glycogen synthase kinase 3 gene, enhances tolerance to salt and drought in transgenic Arabidopsis and soybean hairy roots. J Integr Agric 17:1959–1971

    CAS  Article  Google Scholar 

  • Wang D, Dong W, Murray J, Wang E (2022a) Innovation and appropriation in mycorrhizal and rhizobial symbioses. Plant Cell. https://doi.org/10.1093/plcell/koac039

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang G, Weng L, Huang Y, Ling Y, Zhen Z, Lin Z, Hu H, Li C, Guo J, Zhou JL, Chen S, Jia Y, Ren L (2022b) Microbiome-metabolome analysis directed isolation of rhizobacteria capable of enhancing salt tolerance of Sea Rice 86. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2022.156817

    Article  PubMed  PubMed Central  Google Scholar 

  • Waseem M, Rong X, Li Z (2019) Dissecting the role of a basic helix-loop-helix transcription factor, SlbHLH22, under salt and drought stresses in transgenic Solanum lycopersicum L. Front Plant Sci 10:734

    PubMed  PubMed Central  Article  Google Scholar 

  • Wei W, Liang DW, Bian XH, Shen M, Xiao JH, Zhang WK, Ma B, Lin Q, Lv J, Chen X, Chen SY (2019) GmWRKY54 improves drought tolerance through activating genes in abscisic acid and Ca2+ signaling pathways in transgenic soybean. Plant J 100(2):384–398

    CAS  PubMed  Article  Google Scholar 

  • Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408

    CAS  Article  Google Scholar 

  • Widada J, Damarjaya DI, Kabirun S (2007) The interactive effects of arbuscular mycorrhizal fungi and rhizobacteria on the growth and nutrients uptake of sorghum in acid soil. In: Velazquez E, Rodriguez-Barrueco C (eds) First international meeting on microbial phosphate solubilization. Springer, Berlin, pp 173–177

    Chapter  Google Scholar 

  • Wilkinson S (1999) pH as a stress signal. Plant Growth Regul 29:87–99

    CAS  Article  Google Scholar 

  • Wolde G, Adamu C (2018) Impact of salinity on seed germination and biomass yields of field pea (Pisum sativum L.). Asian J Sci Tech 9:7565–7569

    CAS  Google Scholar 

  • Wu QS (2011) Mycorrhizal efficacy of trifoliate orange seedlings on alleviating temperature stress. Plant Soil Environ 57:459–464

    CAS  Article  Google Scholar 

  • Wu Z, Yue H, Lu J, Li C (2012) Characterization of rhizobacterial strain Rs-2 with ACC deaminase activity and its performance in promoting cotton growth under salinity stress. World J Microbiol Biotechnol 28:2383–2393

    CAS  PubMed  Article  Google Scholar 

  • Wu L, Kobayashi Y, Wasaki J, Koyama H (2018) Organic acid excretion from roots: a plant mechanism for enhancing phosphorus acquisition, enhancing aluminium tolerance and recruiting beneficial rhizobacteria. Soil Sci Plant Nutr 64(6):697–704

    CAS  Article  Google Scholar 

  • Xie B, Chen Y, Cheng C, Ma R, Zhao D, Li Z, Li Y, An X, Yang X (2022a) Long-term soil management practices influence the rhizosphere microbial community structure and bacterial function of hilly apple orchard soil. Appl Soil Ecol 180:104627. https://doi.org/10.1016/j.apsoil.2022.104627

    Article  Google Scholar 

  • Xie H, Zhao W, Li W, Zhang Y, Hajný J, Han H (2022b) Small signaling peptides mediate plant adaptions to abiotic environmental stress. Planta 255:72. https://doi.org/10.1007/s00425-022-03859-6

    CAS  Article  PubMed  Google Scholar 

  • Xu Y, Li Y, Long C, Han L (2022) Alleviation of salt stress and promotion of growth in peanut by Tsukamurella tyrosinosolvens and Burkholderia pyrrocinia. Biologia 1:1–11

    Google Scholar 

  • Yandigeri MS, Meena KK, Singh D, Malviya N, Singh DP, Solanki MK, Yadav AK, Arora DK (2012) Drought-tolerant endophytic actinobacteria promote growth of wheat (Triticum aestivum) under water stress conditions. Plant Growth Regul 68(3):411–420

    CAS  Article  Google Scholar 

  • Yang J, Kloepper J, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trend Plant Sci 14:1–4

    CAS  Article  Google Scholar 

  • Yao LX, Wu ZS, Zheng YY, Kaleem I, Li C (2010) Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur J Soil Biol 46:49–54

    CAS  Article  Google Scholar 

  • Yasin NA, Akram W, Khan WU, Ahmad SR, Ahmad A, Ali A (2018) Halotolerant plant-growth promoting rhizobacteria modulate gene expression and osmolyte production to improve salinity tolerance and growth in Capsicum annum L. Environ Sci Pollut Res 25(23):23236–23250

    CAS  Article  Google Scholar 

  • Yin C, Casa Vargas JM, Schlatter DC, Hagerty CH, Hulbert SH, Paulitz TC (2021) Rhizosphere community selection reveals bacteria with reduced root disease. Microbiome 9:86. https://doi.org/10.1186/s40168-020-00997-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • You YH, Yoon H, Kang SM, Shin JH, Choo YS, Lee IJ, Lee JM, Kim JG (2012) Fungal diversity and plant growth promotion of endophytic fungi from six halophytes in Suncheon Bay. J Microbiol Biotechnol 22(11):1549–1556

    PubMed  Article  Google Scholar 

  • Youssef T, Awad MA (2008) Mechanisms of enhancing photosynthetic gas exchange in date palm seedlings (Phoenix dactylifera L.) under salinity stress by a 5-aminolevulinic acid–based fertilizer. J Plant Growth Regul 27:1–9

    CAS  Article  Google Scholar 

  • Yu S, Huang A, Li J, Gao L, Feng Y, Pemberton E, Chen C (2018) OsNAC45 plays complex roles by mediating POD activity and the expression of development-related genes under various abiotic stresses in rice root. Plant Growth Regul 84(3):519–531

    CAS  Article  Google Scholar 

  • Zahran HH (1999) Rhizobium-Legume symbiosis and nitrogen fixation under severe condition and in an arid climate. Microbiol Mol Biol Rev 63:968–989

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ 101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997

    CAS  PubMed  Article  Google Scholar 

  • Zaidi A, Ahmad E, Khan MS, Saif S, Rizvi A (2015) Role of plant growth promoting rhizobacteria in sustainable production of vegetables: current perspective. Sci Hortic 193:231–239

    Article  Google Scholar 

  • Zhang B (2015) MicroRNA: a new target for improving plant tolerance to abiotic stress. J Exp Bot 66(7):1749–1761

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Zhang Y, Deng G, Fan W, Yuan L, Wang H, Zhang P (2019) NHX1 and eIF4A1-stacked transgenic sweet potato shows enhanced tolerance to drought stress. Plant Cell Rep 38(11):1427–1438

    CAS  PubMed  Article  Google Scholar 

  • Zhang J, Cook J, Nearing JT, Zhang J, Raudonis R, Glick BR, Langille MGI, Cheng Z (2021) Harnessing the plant microbiome to promote the growth of agricultural crops. Microbiol Res 245:126690. https://doi.org/10.1016/j.micres.2020.126690

    CAS  Article  PubMed  Google Scholar 

  • Zhang X, Lin X, Chen S, Chen S (2022) Overexpression of BpERF1.1 in Betula platyphylla enhanced tolerance to multiple abiotic stresses. Physiol Mol Biol Plants 28:1159–1172. https://doi.org/10.1007/s12298-022-01206-3

    CAS  Article  PubMed  Google Scholar 

  • Zhi J, Liu X, Yin P, Yang R, Liu J, Xu J (2020) Overexpression of the metallothionein gene PaMT3-1 from Phytolacca Americana enhances plant tolerance to cadmium. Plant Cell Tissue Organ Cult 143:211–218

    CAS  Article  Google Scholar 

  • Zhou N, Zhao S, Tian CY (2017) Effect of halotolerant rhizobacteria isolated from halophytes on the growth of sugar beet (Beta vulgaris L.) under salt stress. FEMS Microbiol Lett 364:1–8

    Article  CAS  Google Scholar 

  • Zia R, Nawaz MS, Siddique MJ, Hakim S, Imran A (2021) Plant survival under drought stress: implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiol Res 242:126626. https://doi.org/10.1016/j.micres.2020.126626

  • Zhu J (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6(5):441–445. https://doi.org/10.1016/S1369-5266(03)00085-2

    CAS  Article  PubMed  Google Scholar 

  • Zhu XC, Song FB, Xu HW (2010a) Arbuscular mycorrhizae improves low temperature stress in maize via alterations in host water status and photosynthesis. Plant Soil 331:129–137

    CAS  Article  Google Scholar 

  • Zhu XC, Song FB, Xu HW (2010b) Influence of arbuscular mycorrhiza on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress. Mycorrhiza 20:325–332

    CAS  PubMed  Article  Google Scholar 

  • Zhu Z, Zhang H, Leng J, Niu H, Chen X, Liu D, Chen Y, Gao N, Ying H (2020) Isolation and characterization of plant growth-promoting rhizobacteria and their effects on the growth of Medicago sativa L. under salinity conditions. Antonie Van Leeuwenhoek 113:1263–1278

    CAS  PubMed  Article  Google Scholar 

  • Zhu H, Jiang Y, Guo Y, Huang J, Zhou M, Tang Y, Sui J, Wang J, Qiao L (2021) A novel salt inducible WRKY transcription factor gene, AhWRKY75, confers salt tolerance in transgenic peanut. Plant Physiol Biochem 160:175–183

    CAS  PubMed  Article  Google Scholar 

  • Zlatev Z, Lidon FC (2012) An overview on drought induced changes in plant growth, water relations and photosynthesis. Emir J Food Agric 24:57–72. https://doi.org/10.9755/ejfa.v25i12.16734

    Article  Google Scholar 

  • Zohreh H, Gruber M, Coutu C, Glick BR, Hegedus DD (2021) Gene expression patterns in shoots of Camelina sativa with enhanced salinity tolerance provided by plant growth promoting bacteria producing 1-aminocyclopropane-1-carboxylate deaminase or expression of the corresponding acdS gene. Sci Rep 11(1):4260. https://doi.org/10.1038/s41598-021-83629-8

    CAS  Article  Google Scholar 

  • Zorner P, Farmer S, Alibek K (2018) Quantifying crop rhizosphere microbiome ecology: the next frontier in enhancing the commercial utility of agricultural microbes. Ind Biotechnol (new Rochelle NY) 14(3):116–119

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the faculty members of the Microbiology Department, CCS Haryana Agricultural University, Hisar, for their critical reading of the manuscript and suggestions for improving the quality of the manuscript.

Funding

Being a review article, no funding was involved in compilation of the information in this review chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyavir S. Sindhu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics approval and consent to participate

The work submitted does not include any experiment related to animals.

Additional information

Communicated by Gerhard Leubner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Phour, M., Sindhu, S.S. Mitigating abiotic stress: microbiome engineering for improving agricultural production and environmental sustainability. Planta 256, 85 (2022). https://doi.org/10.1007/s00425-022-03997-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-022-03997-x

Keywords

  • Abiotic stress
  • Stress tolerant
  • Beneficial microbes
  • Bioengineering
  • Salinity
  • Drought
  • Temperature
  • Heavy metals
  • Plant growth