Skip to main content
Log in

A systems biology study unveils the association between a melatonin biosynthesis gene, O-methyl transferase 1 (OMT1) and wheat (Triticum aestivum L.) combined drought and salinity stress tolerance

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Enhanced levels of endogenous melatonin in the root of wheat, mainly through the OMT1 gene, augment the antioxidant system, reestablish redox homeostasis and are associated with combined stress tolerance.

Abstract

A systems biology approach, including a collection of computational analyses and experimental assays, led us to uncover some aspects of a poorly understood phenomenon, namely wheat (Triticum aestivum L.) combined drought and salinity stress tolerance. Accordingly, a cross-study comparison of stress experiments was performed via a meta-analysis of Expressed Sequence Tags (ESTs) data from wheat roots to uncover the overlapping gene network of drought and salinity stresses. Identified differentially expressed genes were functionally annotated by gene ontology enrichment analysis and gene network analysis. Among those genes, O-methyl transferase 1 (OMT1) was highlighted as a more important (hub) gene in the dual-stress response gene network. Afterwards, the potential roles of OMT1 in mediating physiochemical indicators of stress tolerance were investigated in two wheat genotypes differing in abiotic stress tolerance. Regression analysis and correspondence analysis (CA) confirmed that the expression profiles of the OMT1 gene and variations in melatonin content, antioxidant enzyme activities, proline accumulation, H2O2 and malondialdehyde (MDA) contents are significantly associated with combined stress tolerance. These results reveal that the OMT1 gene may contribute to wheat combined drought and salinity stress tolerance through augmenting the antioxidant system and re-establishing redox homeostasis, probably via the regulation of melatonin biosynthesis as a master regulator molecule. Our findings provide new insights into the roles of melatonin in wheat combined drought and salinity stress tolerance and suggest a novel plausible regulatory node through the OMT1 gene to improve multiple-stress tolerant crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the supplementary material of this article.

Abbreviations

CAT:

Catalase

EST:

Expressed sequence tag

MDA:

Malondialdehyde

OMT1:

O-Methyl transferase 1

POD:

Peroxidase

SOD:

Superoxide dismutase

References

  • Aliakbari M, Cohen SP, Lindlöf A, Shamloo-Dashtpagerdi R (2021) Rubisco activase A (RcaA) is a central node in overlapping gene network of drought and salinity in Barley (Hordeum vulgare L.) and may contribute to combined stress tolerance. Plant Physiol Biochem 161:248–258

    Article  CAS  PubMed  Google Scholar 

  • Amirbakhtiar N, Ismaili A, Ghaffari MR, Nazarian Firouzabadi F, Shobbar Z-S (2019) Transcriptome response of roots to salt stress in a salinity-tolerant bread wheat cultivar. Plose One 14 (3):e0213305

  • Antoniou C, Chatzimichail G, Xenofontos R, Pavlou JJ, Panagiotou E, Christou A, Fotopoulos V (2017) Melatonin systemically ameliorates drought stress‐induced damage in Medicago sativa plants by modulating nitro‐oxidative homeostasis and proline metabolism. J Pineal Res 62 (4):e12401

  • Arnao MB, Hernández-Ruiz J (2021) Melatonin as a regulatory hub of plant hormone levels and action in stress situations. Plant Biol 23:7–19

    Article  CAS  PubMed  Google Scholar 

  • Arora S, Cheema J, Poland J, Uauy C, Chhuneja P (2019) Genome-wide association mapping of grain micronutrients concentration in Aegilops tauschii. Front Plant Sci 10:54

    Article  PubMed  PubMed Central  Google Scholar 

  • Assenov Y, Ramírez F, Schelhorn S-E, Lengauer T, Albrecht M (2008) Computing topological parameters of biological networks. Bioinformatics 24(2):282–284

    Article  CAS  PubMed  Google Scholar 

  • Back K, Tan DX, Reiter RJ (2016) Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. J Pineal Res 61(4):426–437

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Society Series B (Methodological):289–300

  • Bhagi P, Zhawar VK, Gupta AK (2013) Antioxidant response and Lea genes expression under salt stress and combined salt plus water stress in two wheat cultivars contrasting in drought tolerance. Indian J Exp Biol 51(09):746–757

    CAS  PubMed  Google Scholar 

  • Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D-U (2006) Complex networks: Structure and dynamics. Phys Rep 424(4):175–308

    Article  Google Scholar 

  • Bouck A, Vision T (2007) The molecular ecologist’s guide to expressed sequence tags. Mol Ecol 16(5):907–924

    Article  CAS  PubMed  Google Scholar 

  • Byeon Y, Lee HY, Lee K, Back K (2014) Caffeic acid O-methyltransferase is involved in the synthesis of melatonin by methylating N-acetylserotonin in Arabidopsis. J Pineal Res 57(2):219–227

    Article  CAS  PubMed  Google Scholar 

  • Campain A, Yang YH (2010) Comparison study of microarray meta-analysis methods. BMC Bioinformatics 11(1):408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Černý M, Habánová H, Berka M, Luklová M, Brzobohatý B (2018) Hydrogen peroxide: its role in plant biology and crosstalk with signalling networks. Int J Mol Sci 19(9):2812

    Article  PubMed Central  CAS  Google Scholar 

  • Chao S, Lazo G, You F, Crossman C, Hummel D, Lui N, Laudencia-Chingcuanco D, Anderson J, Close T, Dubcovsky (2006) Use of a large-scale Triticeae expressed sequence tag resource to reveal gene expression profiles in hexaploid wheat (Triticum aestivum L.). Genome 49 (5):531–544

  • Cohen SP, Leach JE (2019) Abiotic and biotic stresses induce a core transcriptome response in rice. Sci Rep 9(1):1–11

    Article  Google Scholar 

  • Dangi AK, Sharma B, Khangwal I, Shukla P (2018) Combinatorial interactions of biotic and abiotic stresses in plants and their molecular mechanisms: systems biology approach. Mol Biotechnol 60(8):636–650

    Article  CAS  PubMed  Google Scholar 

  • de Abreu Neto JB, Frei M (2016) Microarray meta-analysis focused on the response of genes involved in redox homeostasis to diverse abiotic stresses in rice. Front Plant Sci 6:1260

    Article  PubMed  PubMed Central  Google Scholar 

  • Dugasa MT, Cao F, Ibrahim W, Wu F (2019) Differences in physiological and biochemical characteristics in response to single and combined drought and salinity stresses between wheat genotypes differing in salt tolerance. Physiol Plant 165(2):134–143

    Article  CAS  PubMed  Google Scholar 

  • Girvan M, Newman ME (2002) Community structure in social and biological networks. Proc Natl Acad of Sci USA 99(12):7821–7826

    Article  CAS  Google Scholar 

  • Goyal E, Amit SK, Singh RS, Mahato AK, Chand S, Kanika K (2016) Transcriptome profiling of the salt-stress response in Triticum aestivum cv. Kharchia Local Sci Rep 6:27752

    Article  CAS  PubMed  Google Scholar 

  • Haider I, Raza MAS, Iqbal R, Aslam MU, Habib-ur-Rahman M, Raja S, Khan MT, Aslam MM, Waqas M, Ahmad S (2020) Potential effects of biochar application on mitigating the drought stress implications on wheat (Triticum aestivum L.) under various growth stages. J Saudi Chem Soc 24 (12):974–981

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125 (1):189–198

  • Huang DW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13

    Article  CAS  Google Scholar 

  • Ivanov AA (2015) Response of wheat seedlings to combined effect of drought and salinity. In: Tripathi BN, Müller M (eds) Stress responses in plants. Springer, pp 159–198

    Chapter  Google Scholar 

  • Jung JH, Hong MJ, Kim DY, Kim JY, Heo HY, Kim TH, Jang CS, Seo YW (2008) Structural and expressional divergence of genes encoding O-methyltransferase in wheat. Genome 51(10):856–869

    Article  CAS  PubMed  Google Scholar 

  • Kaur H, Mukherjee S, Baluska F, Bhatla SC (2015) Regulatory roles of serotonin and melatonin in abiotic stress tolerance in plants. Plant Signal Behav 10 (11):e1049788

  • Ke Q, Ye J, Wang B, Ren J, Yin L, Deng X, Wang S (2018) Melatonin mitigates salt stress in wheat seedlings by modulating polyamine metabolism. Front Plant Sci 9:914

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan A, Numan M, Khan AL, Lee I-J, Imran M, Asaf S, Al-Harrasi A (2020) Melatonin: awakening the defense mechanisms during plant oxidative stress. Plants 9(4):407

    Article  CAS  PubMed Central  Google Scholar 

  • Kul R, Esringü A, Dadasoglu E, Sahin Ü, Turan M, Örs S, Ekinci M, Agar G, Yildirim E (2019) Melatonin: role in increasing plant tolerance in abiotic stress conditions. In: De Oliveira A (ed) Abiotic biotic stress in plants. IntechOpen, https://doi.org/10.5772/intechopen.77845

  • Kumar A, Sharma SK, Lata C, Devi R, Kulshrestha N, Krishnamurthy S, Singh K, Yadav RK (2018) Impact of water deficit (salt and drought) stress on physiological, biochemical and yield attributes on wheat (Triticum aestivum) varieties. Indian J Agric Sci 88:1624–1632

    CAS  Google Scholar 

  • Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W (1958) Isolation of melatonin, the pineal gland factor that lightens melanocytes. J Am Chem Soc 80(10):2587–2587

    Article  CAS  Google Scholar 

  • Li D, Batchelor WD, Zhang D, Miao H, Li H, Song S, Li R (2020) Analysis of melatonin regulation of germination and antioxidant metabolism in different wheat cultivars under polyethylene glycol stress. Plos One 15 (8):e0237536

  • Li P-c, Yang X-y, Wang H-m, Ting P, Yang J-y, Wang Y-y, Yang X, Yang Z-f, Xu C-w (2021) Metabolic responses to combined water deficit and salt stress in maize primary roots. J Int Agric 20(1):109–119

    Article  CAS  Google Scholar 

  • Li W, Lu J, Lu K, Yuan J, Huang J, Du H, Li J (2016) Cloning and phylogenetic analysis of Brassica napus L. caffeic acid O-methyltransferase 1 gene family and its expression pattern under drought stress. PloS One 11 (11):e0165975

  • Liu H, Able AJ, Able JA (2019) Genotypic performance of Australian durum under single and combined water-deficit and heat stress during reproduction. Sci Rep 9(1):1–17

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Masoudi-Nejad A, Tonomura K, Kawashima S, Moriya Y, Suzuki M, Itoh M, Kanehisa M, Endo T, Goto S (2006a) EGassembler: online bioinformatics service for large-scale processing, clustering and assembling ESTs and genomic DNA fragments. Nucleic Acids Res 34 (suppl_2):W459-W462

  • Mehrabad Pour-Benab S, Fabriki-Ourang S, Mehrabi A-A (2019) Expression of dehydrin and antioxidant genes and enzymatic antioxidant defense under drought stress in wild relatives of wheat. Biotechnol Biotechnol Equipment 33(1):1063–1073

    Article  CAS  Google Scholar 

  • Morales Iribas F, Ancín M, Fakhet D, González-Torralba J, Gámez AL, Seminario A, Soba D, Ben Mariem S, Garriga M, Aranjuelo I (2020) Photosynthetic metabolism under stressful growth conditions as a bases for crop breeding and yield improvement. Plants 9:88

    Article  CAS  Google Scholar 

  • Nadarajah KK (2020) ROS homeostasis in abiotic stress tolerance in plants. Int J Mol Sci 21(15):5208

    Article  CAS  PubMed Central  Google Scholar 

  • Nawaz MA, Huang Y, Bie Z, Ahmed W, Reiter RJ, Niu M, Hameed S (2016) Melatonin: current status and future perspectives in plant science. Front Plant Sci 6:1230

    Article  PubMed  PubMed Central  Google Scholar 

  • Nikitin A, Egorov S, Daraselia N, Mazo I (2003) Pathway studio—the analysis and navigation of molecular networks. Bioinformatics 19(16):2155–2157

    Article  CAS  PubMed  Google Scholar 

  • Pandian S, Rakkammal K, Rency AS, Muthuramalingam P, Pandian SK, Ramesh M (2020) Abiotic stress and applications of omics approaches to develop stress tolerance in agronomic crops. In: Hasanuzzaman M (ed) Agronomic crops. Springer, Singapore, pp 557–578

    Chapter  Google Scholar 

  • Pardo-Hernández M, López-Delacalle M, Rivero RM (2020) ROS and NO regulation by melatonin under abiotic stress in plants. Antioxidants 9(11):1078

    Article  PubMed Central  CAS  Google Scholar 

  • Patra H, Kar M, Mishra D (1978) Catalase activity in leaves and cotyledons during plant development and senescence. Biochemie Physiol Pflanzen 172(4):385–390

    Article  CAS  Google Scholar 

  • Paul K, Pauk J, Kondic-Spika A, Grausgruber H, Allahverdiyev T, Sass L, Vass I (2019) Co-occurrence of mild salinity and drought synergistically enhances biomass and grain retardation in wheat. Front Plant Sci 10:501

    Article  PubMed  PubMed Central  Google Scholar 

  • Phan JH, Young AN, Wang MD (2012) Robust microarray meta-analysis identifies differentially expressed genes for clinical prediction. Scientific World Journal 2012, article ID 989637

  • Riasat M, Pessarakli M, Niaz AA, Saed-Moucheshi A (2018) Assessment of different wheat genotypes with altered genetic background in response to different salinity levels. J Plant Nutr 41(14):1821–1833

    Article  CAS  Google Scholar 

  • Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47–e47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sahoo JP, Behera L, Sharma SS, Praveena J, Nayak SK, Samal KC (2020) Omics studies and systems biology perspective towards abiotic stress response in plants. Am J of Plant Sci 11(12):2172

    Article  CAS  Google Scholar 

  • Scardoni G, Petterlini M, Laudanna C (2009) Analyzing biological network parameters with CentiScaPe. Bioinformatics 25(21):2857–2859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sewelam N, Brilhaus D, Bräutigam A, Alseekh S, Fernie AR, Maurino VG (2020) Molecular plant responses to combined abiotic stresses put a spotlight on unknown and abundant genes. J Exp Bot 71(16):5098–5112

    Article  CAS  PubMed  Google Scholar 

  • Shah K, Nahakpam S (2012) Heat exposure alters the expression of SOD, POD, APX and CAT isozymes and mitigates low cadmium toxicity in seedlings of sensitive and tolerant rice cultivars. Plant Physiol Biochem 57:106–113

    Article  CAS  PubMed  Google Scholar 

  • Shamloo-Dashtpagerdi R, Lindlöf A, Niazi A, Pirasteh-Anosheh H (2019) LOS2 gene plays a potential role in barley (Hordeum vulgare L.) salinity tolerance as a hub gene. Mol Breeding 39 (8):1–12

  • Shamloo-Dashtpagerdi R, Razi H, Ebrahimie E (2015) Mining expressed sequence tags of rapeseed (Brassica napus L.) to predict the drought responsive regulatory network. Physiol Mol Biol Plants 21 (3):329–340

  • Shamloo-Dashtpagerdi R, Razi H, Ebrahimie E, Niazi A (2018) Molecular characterization of Brassica napus stress related transcription factors, BnMYB44 and BnVIP1, selected based on comparative analysis of Arabidopsis thaliana and Eutrema salsugineum transcriptomes. Mol Biol Rep 45(5):1111–1124

    Article  CAS  PubMed  Google Scholar 

  • Shamloo‐Dashtpagerdi R, Lindlöf A, Aliakbari M, Pirasteh‐Anosheh H (2020) Plausible association between drought stress tolerance of barley (Hordeum vulgare L.) and programmed cell death via MC1 and TSN1 genes. Physiol Plant 170 (1):46–59

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shayan S, Moghaddam Vahed M, Norouzi M, Mohammadi A, Tourchi M, Molaei B (2018) Inheritance of agronomical and physiological traits in the progeny of Moghan3 and Arg bread wheat varieties cross. J Plant Genetic Res 4(2):43–60

    Google Scholar 

  • Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57

    Article  PubMed  CAS  Google Scholar 

  • Snowdon RJ, Wittkop B, Chen T-W, Stahl A (2020) Crop adaptation to climate change as a consequence of long-term breeding. Theor Appl Genet 134:1613–1623

    Article  PubMed  PubMed Central  Google Scholar 

  • Sourial N, Wolfson C, Zhu B, Quail J, Fletcher J, Karunananthan S, Bandeen-Roche K, Béland F, Bergman H (2010) Correspondence analysis is a useful tool to uncover the relationships among categorical variables. J Clin Epidemiol 63(6):638–646

    Article  PubMed  Google Scholar 

  • Stewart RR, Bewley JD (1980) Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiol 65(2):245–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun C, Liu L, Wang L, Li B, Jin C, Lin X (2021) Melatonin: A master regulator of plant development and stress responses. J Integr Plant Biol 63(1):126–145

    Article  CAS  PubMed  Google Scholar 

  • Sun S, Wen D, Yang W, Meng Q, Shi Q, Gong B (2020) Overexpression of caffeic acid O-methyltransferase 1 (COMT1) increases melatonin level and salt stress tolerance in tomato plant. J Plant Growth Regul 39(3):1221–1235

    Article  CAS  Google Scholar 

  • Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P (2019) STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47(D1):D607–D613

    Article  CAS  PubMed  Google Scholar 

  • Tan D-X, Manchester LC, Helton P, Reiter RJ (2007) Phytoremediative capacity of plants enriched with melatonin. Plant Signal Behav 2(6):514–516

    Article  PubMed  PubMed Central  Google Scholar 

  • Tiwari RK, Lal MK, Kumar R, Chourasia KN, Naga KC, Kumar D, Das SK, Zinta G (2021) Mechanistic insights on melatonin-mediated drought stress mitigation in plants. Physiol Plant 172(2):1212–1226

    Article  CAS  PubMed  Google Scholar 

  • Tomar S, Babu MS, Gaikwad DJ, Maitra S (2021) A review on molecular mechanisms of Wheat (Triticum aestivum L.) and rice (Oryza sativa L.) against abiotic stresses with special reference to drought and heat. Int J Agric Environ Biotech 14 (2):215–222

  • Wei Y, Zeng H, Hu W, Chen L, He C, Shi H (2016) Comparative transcriptional profiling of melatonin synthesis and catabolic genes indicates the possible role of melatonin in developmental and stress responses in rice. Front Plant Sci 7:676

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue F, Liu W, Cao H, Song L, Ji S, Tong L, Ding R (2021) Stomatal conductance of tomato leaves is regulated by both abscisic acid and leaf water potential under combined water and salt stress. Physiol Plant 172:2070–2078

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Zhou W, Liang X, Zhou K, Lin X (2019) Increased bound putrescine accumulation contributes to the maintenance of antioxidant enzymes and higher aluminum tolerance in wheat. Environ Pollut 252:941–949

    Article  CAS  PubMed  Google Scholar 

  • Zafar S, Akhtar M, Perveen S, Hasnain Z, Khalil A (2020) Attenuating the adverse aspects of water stress on wheat genotypes by foliar spray of melatonin and indole-3-acetic acid. Physiol Mol Biol Plants 26(9):1751–1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Choi D, Wanamaker S, Fenton R, Chin A, Malatrasi M, Turuspekov Y, Walia H, Akhunov E, Kianian P (2004) Construction and evaluation of cDNA libraries for large-scale expressed sequence tag sequencing in wheat (Triticum aestivum L.). Genetics 168 (2):595–608

  • Zhang HJ, Zhang N, Yang RC, Wang L, Sun QQ, Li DB, Cao YY, Weeda S, Zhao B, Ren S (2014) Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA 4 interaction in cucumber (Cucumis sativus L.). J Pineal Res 57 (3):269–279

  • Zhang Y, Jenkins DF, Manimaran S, Johnson WE (2018) Alternative empirical Bayes models for adjusting for batch effects in genomic studies. BMC Bioinformatics 19(1):1–15

    Article  CAS  Google Scholar 

  • Zhou G, Soufan O, Ewald J, Hancock RE, Basu N, Xia J (2019) NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res 47 (W1):W234-W241

Download references

Acknowledgements

The authors would like to thank Higher education center of Eghlid for funding this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roohollah Shamloo-Dashtpagerdi.

Ethics declarations

Conflict of interest

Authors declare that they do not have any conflict of interest.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamloo-Dashtpagerdi, R., Aliakbari, M., Lindlöf, A. et al. A systems biology study unveils the association between a melatonin biosynthesis gene, O-methyl transferase 1 (OMT1) and wheat (Triticum aestivum L.) combined drought and salinity stress tolerance. Planta 255, 99 (2022). https://doi.org/10.1007/s00425-022-03885-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-022-03885-4

Keywords

Navigation