Skip to main content

Traditional in vitro strategies for sustainable production of bioactive compounds and manipulation of metabolomic profile in medicinal, aromatic and ornamental plants

Abstract

Main conclusion

Precursor feeding, elicitation and culture medium parameters are traditional in vitro strategies to enhance bioactive compounds of medicinal, aromatic, and ornamental plants (MAOPs). Machine learning can help researchers find the best combination of these strategies to increase the secondary metabolites content of MAOPs.

Abstract

Many requirements for human life, from food, pharmaceuticals and cosmetics to clothes, fuel and building materials depend on plant-derived natural products. Essential oils, methanolic and ethanolic extracts of in vitro undifferentiated callus and organogenic cultures of medicinal, aromatic, and ornamental plants (MAOPs) contain bioactive compounds that have several applications for various industries, including food and pharmaceutical. In vitro culture systems provide opportunities to manipulate the metabolomic profile of MAOPs. Precursors feeding, elicitation and culture media optimization are the traditional strategies to enhance in vitro accumulation of favorable bioactive compounds. The stimulation of plant defense mechanisms through biotic and abiotic elicitors is a simple way to increase the production of secondary metabolites in different in vitro culture systems. Different elicitors have been applied to stimulate defense machinery and change the metabolomic profile of MAOPs in in vitro cultures. Plant growth regulators (PGRs), stress hormones, chitosan, microbial extracts and physical stresses are the most applied elicitors in this regard. Many other chemical tolerance-enhancer additives, such as melatonin and proline, have been applied along with stress response-inducing elicitors. The use of stress-inducing materials such as PEG and NaCl activates stress tolerance elicitors with the potential of increasing secondary metabolites content of MAOPs. The present study reviewed the state-of-the-art traditional in vitro strategies to manipulate bioactive compounds of MAOPs. The objective is to provide insights to researchers involved in in vitro production of plant-derived natural compounds. The present review provided a wide range of traditional strategies to increase the accumulation of valuable bioactive compounds of MAOPs in different in vitro systems. Traditional strategies are faster, simpler, and cost-effective than other biotechnology-based breeding methods such as genetic transformation, genome editing, metabolic pathways engineering, and synthetic biology. The integrate application of precursors and elicitors along with culture media optimization and the interpretation of their interactions through machine learning algorithms could provide an excellent opportunity for large-scale in vitro production of pharmaceutical bioactive compounds.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current review study.

Abbreviations

ANN:

Artificial neural network

ABA:

Abscisic acid

CKXs:

Cytokinin oxidase/dehydrogenase enzymes

JA:

Jasmonic acid

KAR1:

Karrikinolide

LED:

Light-emitting diodes

MAOPs:

Medicinal, aromatic and ornamental plants

MDA:

Malondialdehyde

MJ:

Methyl jasmonate

PEG:

Polyethylene glycol

PGRs:

Plant growth regulators

RSM:

Response surface methodology

SA:

Salicylic acid

SW:

Smoke water

UV:

Ultraviolet

YE:

Yeast extract

References

  1. Açıkgöz MA (2020) Establishment of cell suspension cultures of Ocimum basilicum L. and enhanced production of pharmaceutical active ingredients. Ind Crops Prod 148:112278. https://doi.org/10.1016/j.indcrop.2020.112278

    CAS  Article  Google Scholar 

  2. Adil M, Ren X, Il KD et al (2018) Effect of explant type and plant growth regulators on callus induction, growth and secondary metabolites production in Cnidium officinale Makino. Mol Biol Rep 45:1919–1927. https://doi.org/10.1007/s11033-018-4340-3

    CAS  Article  PubMed  Google Scholar 

  3. Adil M, Haider Abbasi B, ul Haq I (2019) Red light controlled callus morphogenetic patterns and secondary metabolites production in Withania somnifera L. Biotechnol Rep 24:e00380. https://doi.org/10.1016/j.btre.2019.e00380

    Article  Google Scholar 

  4. Ahmad MA, Javed R, Adeel M et al (2020) PEG 6000-stimulated drought stress improves the attributes of in vitro growth, steviol glycosides production, and antioxidant activities in Stevia rebaudiana Bertoni. Plants 9:1552. https://doi.org/10.3390/plants9111552

    CAS  Article  PubMed Central  Google Scholar 

  5. Ahmadi B, Shariatpanahi ME (2015) Proline and chitosan enhanced efficiency of microspore embryogenesis induction and plantlet regeneration in Brassica napus L. Plant Cell Tissue Organ Cult 123:57–65. https://doi.org/10.1007/s11240-015-0814-3

    CAS  Article  Google Scholar 

  6. Ahmadi B, Shariatpanahi ME, Teixeira da Silva JA (2014) Efficient induction of microspore embryogenesis using abscisic acid, jasmonic acid and salicylic acid in Brassica napus L. Plant Cell Tissue Organ Cult 116:343–351. https://doi.org/10.1007/s11240-013-0408-x

    CAS  Article  Google Scholar 

  7. Ahn H-R, Kim Y-J, Lim Y-J et al (2021) Key genes in the melatonin biosynthesis pathway with circadian rhythm are associated with various abiotic stresses. Plants 10:129. https://doi.org/10.3390/plants10010129

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Ali A, Mohammad S, Khan MA et al (2019a) Silver nanoparticles elicited in vitro callus cultures for accumulation of biomass and secondary metabolites in Caralluma tuberculata. Artif Cells Nanomed Biotechnol 47:715–724. https://doi.org/10.1080/21691401.2019.1577884

    CAS  Article  PubMed  Google Scholar 

  9. Ali H, Khan MA, Kayani WK et al (2019b) Production of biomass and medicinal metabolites through adventitious roots in Ajuga bracteosa under different spectral lights. J Photochem Photobiol B Biol 193:109–117. https://doi.org/10.1016/j.jphotobiol.2019.02.010

    CAS  Article  Google Scholar 

  10. Ali M, Tumbeh Lamin-Samu A, Muhammad I et al (2020) Melatonin mitigates the infection of colletotrichum gloeosporioides via modulation of the chitinase gene and antioxidant activity in Capsicum annuum L. Antioxidants 10:7. https://doi.org/10.3390/antiox10010007

    CAS  Article  PubMed Central  Google Scholar 

  11. Al-Khayri JM, Naik PM (2020) Elicitor-induced production of biomass and pharmaceutical phenolic compounds in cell suspension culture of date palm (Phoenix dactylifera L.). Molecules 25:4669. https://doi.org/10.3390/molecules25204669

    CAS  Article  PubMed Central  Google Scholar 

  12. Alsoufi ASM, Pączkowski C, Szakiel A, Długosz M (2019) Effect of jasmonic acid and chitosan on triterpenoid production in Calendula officinalis hairy root cultures. Phytochem Lett 31:5–11. https://doi.org/10.1016/j.phytol.2019.02.030

    CAS  Article  Google Scholar 

  13. Alvarado AM, Aguirre-Becerra H, Vázquez-Hernández MC et al (2019) Influence of elicitors and eustressors on the production of plant secondary metabolites. In: Akhtar M, Swamy MSU (eds) Natural bio-active compounds. Springer Singapore, Singapore, pp 333–388

    Chapter  Google Scholar 

  14. Alvarenga ICA, Pacheco FV, Silva ST et al (2015) In vitro culture of Achillea millefolium L.: quality and intensity of light on growth and production of volatiles. Plant Cell Tissue Organ Cult 122:299–308. https://doi.org/10.1007/s11240-015-0766-7

    CAS  Article  Google Scholar 

  15. Ascencio-Cabral A, Gutiérrez-Pulido H, Rodríguez-Garay B, Gutiérrez-Mora A (2008) Plant regeneration of Carica papaya L. through somatic embryogenesis in response to light quality, gelling agent and phloridzin. Sci Hortic (amsterdam) 118:155–160. https://doi.org/10.1016/j.scienta.2008.06.014

    CAS  Article  Google Scholar 

  16. Bidabadi SS, VanderWeide J, Sabbatini P (2020) Exogenous melatonin improves glutathione content, redox state and increases essential oil production in two Salvia species under drought stress. Sci Rep 10:6883. https://doi.org/10.1038/s41598-020-63986-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Boonsnongcheep P, Sae-foo W, Banpakoat K et al (2019) Artificial color light sources and precursor feeding enhance plumbagin production of the carnivorous plants Drosera burmannii and Drosera indica. J Photochem Photobiol B Biol 199:111628. https://doi.org/10.1016/j.jphotobiol.2019.111628

    CAS  Article  Google Scholar 

  18. Cabañas-García E, Areche C, Gómez-Aguirre YA et al (2021) Biomass production and secondary metabolite identification in callus cultures of Coryphantha macromeris (Engelm.) Britton & Rose (Cactaceae), a traditional medicinal plant. South African J Bot 137:1–9. https://doi.org/10.1016/j.sajb.2020.10.002

    CAS  Article  Google Scholar 

  19. Chandran H, Meena M, Barupal T, Sharma K (2020) Plant tissue culture as a perpetual source for production of industrially important bioactive compounds. Biotechnol Rep 26:e00450. https://doi.org/10.1016/j.btre.2020.e00450

    Article  Google Scholar 

  20. Cirak C, Radušienė J, Kurtarc ES et al (2020) In vitro plant regeneration and jasmonic acid induced bioactive chemical accumulations in two Hypericum species from Turkey. South African J Bot 128:312–318. https://doi.org/10.1016/j.sajb.2019.11.028

    CAS  Article  Google Scholar 

  21. Coskun Y, Duran RE, Kilic S (2019) Striking effects of melatonin on secondary metabolites produced by callus culture of rosemary (Rosmarinus officinalis L.). Plant Cell Tissue Organ Cult 138:89–95. https://doi.org/10.1007/s11240-019-01605-7

    CAS  Article  Google Scholar 

  22. de Carvalho AA, Bertolucci SKV, da Honorato AC et al (2020) Influence of light spectra and elicitors on growth and ascaridole content using in vitro cultures of Dysphania ambrosioides L. Plant Cell Tissue Organ Cult 143:277–290. https://doi.org/10.1007/s11240-020-01892-5

    CAS  Article  Google Scholar 

  23. de Castro KM, Batista DS, Silva TD et al (2020) Water deficit modulates growth, morphology, and the essential oil profile in Lippia alba L. (Verbenaceae) grown in vitro. Plant Cell Tissue Organ Cult 141:55–65. https://doi.org/10.1007/s11240-020-01766-w

    CAS  Article  Google Scholar 

  24. Del Rosario Cappellari C, Chiappero J, Palermo TB et al (2020) Volatile organic compounds from rhizobacteria increase the biosynthesis of secondary metabolites and improve the antioxidant status in Mentha piperita L. grown under salt stress. Agronomy 10:1–16. https://doi.org/10.3390/agronomy10081094

    CAS  Article  Google Scholar 

  25. Dreger M, Gryszczyńska A, Szalata M, Wielgus K (2020) Micropropagation and HPLC-DAD, UPLC MS/MS analysis of oenothein B and phenolic acids in shoot cultures and in regenerated plants of fireweed (Chamerion angustifolium (L.) Holub). Plant Cell Tissue Organ Cult 143:653–663. https://doi.org/10.1007/s11240-020-01949-5

    CAS  Article  Google Scholar 

  26. Duran RE, Kilic S, Coskun Y (2019) Melatonin influence on in vitro callus induction and phenolic compound production in sweet basil (Ocimum basilicum L.). Vitr Cell Dev Biol-Plant 55:468–475. https://doi.org/10.1007/s11627-019-10006-6

    CAS  Article  Google Scholar 

  27. El-Garhy HA, Sherif HS, Soliman SM, Haredy SA, Bonfill M (2021) Effect of gamma rays and colchicine on silymarin production in cell suspension cultures of Silybum marianum: a transcriptomic study of key genes involved in the biosynthetic pathway. Gene 790:145700. https://doi.org/10.1016/j.gene.2021.145700

    CAS  Article  PubMed  Google Scholar 

  28. Fatemi F, Abdollahi MR, Mirzaie-asl A et al (2020) Phytochemical, antioxidant, enzyme activity and antifungal properties of Satureja khuzistanica in vitro and in vivo explants stimulated by some chemical elicitors. Pharm Biol 58:286–296. https://doi.org/10.1080/13880209.2020.1743324

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Gai Q-Y, Jiao J, Wang X et al (2019) Chitosan promoting formononetin and calycosin accumulation in Astragalus membranaceus hairy root cultures via mitogen-activated protein kinase signaling cascades. Sci Rep 9:10367. https://doi.org/10.1038/s41598-019-46820-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Gerami M, Majidian P, Ghorbanpour A, Alipour Z (2020) Stevia rebaudiana Bertoni responses to salt stress and chitosan elicitor. Physiol Mol Biol Plants 26:965–974. https://doi.org/10.1007/s12298-020-00788-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Gharari Z, Bagheri K, Danafar H, Sharafi A (2020) Enhanced flavonoid production in hairy root cultures of Scutellaria bornmuelleri by elicitor induced over-expression of MYB7 and FNSП2 genes. Plant Physiol Biochem 148:35–44. https://doi.org/10.1016/j.plaphy.2020.01.002

    CAS  Article  PubMed  Google Scholar 

  32. Ghimire BK, Thiruvengadam M, Chung I-M (2019) Identification of elicitors enhances the polyphenolic compounds and pharmacological potential in hairy root cultures of Aster scaber. South African J Bot 125:92–101. https://doi.org/10.1016/j.sajb.2019.07.006

    CAS  Article  Google Scholar 

  33. Giri CC, Zaheer M (2016) Chemical elicitors versus secondary metabolite production in vitro using plant cell, tissue and organ cultures: recent trends and a sky eye view appraisal. Plant Cell Tissue Organ Cult 126:1–18. https://doi.org/10.1007/s11240-016-0985-6

    CAS  Article  Google Scholar 

  34. Golkar P, Taghizadeh M, Noormohammadi A (2019a) Effects of sodium alginate elicitation on secondary metabolites and antioxidant activity of safflower genotypes under in vitro salinity stress. Vitr Cell Dev Biol - Plant 55:527–538. https://doi.org/10.1007/s11627-019-10008-4

    CAS  Article  Google Scholar 

  35. Golkar P, Taghizadeh M, Yousefian Z (2019b) The effects of chitosan and salicylic acid on elicitation of secondary metabolites and antioxidant activity of safflower under in vitro salinity stress. Plant Cell Tissue Organ Cult 137:575–585. https://doi.org/10.1007/s11240-019-01592-9

    CAS  Article  Google Scholar 

  36. Gonçalves S, Mansinhos I, Rodríguez-Solana R et al (2019) Elicitation improves rosmarinic acid content and antioxidant activity in Thymus lotocephalus shoot cultures. Ind Crops Prod 137:214–220. https://doi.org/10.1016/j.indcrop.2019.04.071

    CAS  Article  Google Scholar 

  37. Hashemyan M, Ganjeali A, Cheniany M (2020) Effect of methyl jasmonate and salicylic acid elicitors on the production of secondary metabolites and antioxidant capacity of Teucrium polium L. in-vitro. Iran J Plant Biol 12:61–76. https://doi.org/10.22108/ijpb.2020.118410.1164

    Article  Google Scholar 

  38. Hawrylak-Nowak B, Dresler S, Rubinowska K, Matraszek-Gawron R (2020) Eliciting effect of foliar application of chitosan lactate on the phytochemical properties of Ocimum basilicum L. and Melissa officinalis L. Food Chem. https://doi.org/10.1016/j.foodchem.2020.128358

    Article  PubMed  Google Scholar 

  39. He H, Qin J, Ma Z et al (2020) Highly efficient regeneration and medicinal component determination of Phellodendron chinense Schneid. Vitr Cell Dev Biol-Plant 56:775–783. https://doi.org/10.1007/s11627-020-10080-1

    CAS  Article  Google Scholar 

  40. Hesami M, Jones AMP (2020) Application of artificial intelligence models and optimization algorithms in plant cell and tissue culture. Appl Microbiol Biotechnol 104:9449–9485. https://doi.org/10.1007/s00253-020-10888-2

    CAS  Article  PubMed  Google Scholar 

  41. Hesami M, Naderi R, Tohidfar M, Yoosefzadeh-Najafabadi M (2020a) Development of support vector machine-based model and comparative analysis with artificial neural network for modeling the plant tissue culture procedures: effect of plant growth regulators on somatic embryogenesis of chrysanthemum, as a case study. Plant Methods 16:112. https://doi.org/10.1186/s13007-020-00655-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Hesami M, Tohidfar M, Alizadeh M, Daneshvar MH (2020b) Effects of sodium nitroprusside on callus browning of Ficus religiosa: an important medicinal plant. J for Res 31:789–796. https://doi.org/10.1007/s11676-018-0860-x

    CAS  Article  Google Scholar 

  43. Ho T-T, Murthy HN, Park S-Y (2020) Methyl jasmonate induced oxidative stress and accumulation of secondary metabolites in plant cell and organ cultures. Int J Mol Sci 21:716. https://doi.org/10.3390/ijms21030716

    CAS  Article  PubMed Central  Google Scholar 

  44. Hosseini NS, Ghasimi Hagh Z, Khoshghalb H (2020) Morphological, antioxidant enzyme activity and secondary metabolites accumulation in response of polyethylene glycol-induced osmotic stress in embryo-derived plantlets and callus cultures of Salvia leriifolia. Plant Cell Tissue Organ Cult 140:143–155. https://doi.org/10.1007/s11240-019-01718-z

    CAS  Article  Google Scholar 

  45. Inyai C, Yusakul G, Komaikul J et al (2020) Improvement of stilbene production by mulberry Morus alba root culture via precursor feeding and co-elicitation. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-020-02474-7

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jafernik K, Szopa A, Barnaś M et al (2020) Schisandra henryi C. B. Clarke in vitro cultures: a promising tool for the production of lignans and phenolic compounds. Plant Cell Tissue Organ Cult 143:45–60. https://doi.org/10.1007/s11240-020-01895-2

    CAS  Article  Google Scholar 

  47. Jeet A, Singh Y, Singh P et al (2020) Strategies for indole alkaloids enrichment through callus culture from Alstonia scholaris (L.) R. Br Plant Growth Regul 90:383–392. https://doi.org/10.1007/s10725-019-00570-7

    CAS  Article  Google Scholar 

  48. Karamian R, Ghasemlou F, Amiri H (2020) Physiological evaluation of drought stress tolerance and recovery in Verbascum sinuatum plants treated with methyl jasmonate, salicylic acid and titanium dioxide nanoparticles. Plant Biosyst 154:277–287. https://doi.org/10.1080/11263504.2019.1591535

    Article  Google Scholar 

  49. Karimzadeh F, Haddad R, Garoosi G, Khademian R (2019) Effects of nanoparticles on activity of lignan biosynthesis enzymes in cell suspension culture of Linum usitatissimum L. Russ J Plant Physiol 66:756–762. https://doi.org/10.1134/S1021443719050078

    CAS  Article  Google Scholar 

  50. Karuppaiya P, Tsay HS (2020) Enhanced production of podophyllotoxin, kaempferol, and quercetin from callus culture of Dysosma pleiantha (Hance) Woodson: an endangered medicinal plant. Biotechnol Appl Biochem 67:95–104. https://doi.org/10.1002/bab.1810

    CAS  Article  PubMed  Google Scholar 

  51. Kaur P, Gupta RC, Dey A et al (2020) Optimization of salicylic acid and chitosan treatment for bitter secoiridoid and xanthone glycosides production in shoot cultures of Swertia paniculata using response surface methodology and artificial neural network. BMC Plant Biol 20:225. https://doi.org/10.1186/s12870-020-02410-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Kępczyński J (2020) Progress in utilizing plant-derived smoke water and smoke-derived KAR 1 in plant tissue culture. Plant Cell Tissue Organ Cult 140:271–278. https://doi.org/10.1007/s11240-019-01739-8

    CAS  Article  Google Scholar 

  53. Khan T, Abbasi BH, Khan MA (2018) The interplay between light, plant growth regulators and elicitors on growth and secondary metabolism in cell cultures of Fagonia indica. J Photochem Photobiol B Biol 185:153–160. https://doi.org/10.1016/j.jphotobiol.2018.06.002

    CAS  Article  Google Scholar 

  54. Khan T, Khan T, Hano C, Abbasi BH (2019) Effects of chitosan and salicylic acid on the production of pharmacologically attractive secondary metabolites in callus cultures of Fagonia indica. Ind Crops Prod 129:525–535. https://doi.org/10.1016/j.indcrop.2018.12.048

    CAS  Article  Google Scholar 

  55. Khare S, Singh NB, Singh A et al (2020) Plant secondary metabolites synthesis and their regulations under biotic and abiotic constraints. J Plant Biol. https://doi.org/10.1007/s12374-020-09245-7

    Article  Google Scholar 

  56. Khattab AR, Farag MA (2020) Current status and perspectives of xanthones production using cultured plant biocatalyst models aided by in-silico tools for its optimization. Crit Rev Biotechnol 40:415–431. https://doi.org/10.1080/07388551.2020.1721426

    CAS  Article  PubMed  Google Scholar 

  57. Khurshid R, Ullah MA, Tungmunnithum D et al (2020) Lights triggered differential accumulation of antioxidant and antidiabetic secondary metabolites in callus culture of Eclipta alba L. PLoS One 15:e0233963. https://doi.org/10.1371/journal.pone.0233963

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Kianersi F, Abdollahi MR, Mirzaie-asl A et al (2020) Biosynthesis of rutin changes in Capparis spinosa due to altered expression of its pathway genes under elicitors’ supplementation. Plant Cell Tissue Organ Cult 141:619–631. https://doi.org/10.1007/s11240-020-01823-4

    CAS  Article  Google Scholar 

  59. Kikowska M, Thiem B, Szopa A, Ekiert H (2020) Accumulation of valuable secondary metabolites: phenolic acids and flavonoids in different in vitro systems of shoot cultures of the endangered plant species—Eryngium alpinum L. Plant Cell Tissue Organ Cult 141:381–391. https://doi.org/10.1007/s11240-020-01795-5

    CAS  Article  Google Scholar 

  60. Koufan M, Belkoura I, Mazri MA et al (2020) Determination of antioxidant activity, total phenolics and fatty acids in essential oils and other extracts from callus culture, seeds and leaves of Argania spinosa (L.) Skeels. Plant Cell Tissue Organ Cult 141:217–227. https://doi.org/10.1007/s11240-020-01782-w

    CAS  Article  Google Scholar 

  61. Koul A, Mallubhotla S (2020) Elicitation and enhancement of bacoside production using suspension cultures of Bacopa monnieri (L) Wettst. 3 Biotech 10:256. https://doi.org/10.1007/s13205-020-02242-0

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lazzarini LES, Bertolucci SKV, Pacheco FV et al (2018) Quality and intensity of light affect Lippia gracilis Schauer plant growth and volatile compounds in vitro. Plant Cell Tissue Organ Cult 135:367–379. https://doi.org/10.1007/s11240-018-1470-1

    CAS  Article  Google Scholar 

  63. Lema-Rumińska J, Kulus D, Tymoszuk A, Varejão JM, Bahcevandziev K (2019) Profile of secondary metabolites and genetic stability analysis in new lines of Echinacea purpurea (L) Moench micropropagated via somatic embryogenesis. Ind Crops Prod 142:111851. https://doi.org/10.1016/j.indcrop.2019.111851

    CAS  Article  Google Scholar 

  64. Lertphadungkit P, Suksiriworapong J, Satitpatipan V et al (2020) Enhanced production of bryonolic acid in Trichosanthes cucumerina L. (Thai Cultivar) cell cultures by elicitors and their biological activities. Plants 9:709. https://doi.org/10.3390/plants9060709

    CAS  Article  PubMed Central  Google Scholar 

  65. Li Y, Kong D, Fu Y et al (2020) The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol Biochem 148:80–89. https://doi.org/10.1016/j.plaphy.2020.01.006

    CAS  Article  Google Scholar 

  66. Mahajan M, Kuiry R, Pal PK (2020) Understanding the consequence of environmental stress for accumulation of secondary metabolites in medicinal and aromatic plants. J Appl Res Med Aromat Plants 18:100255. https://doi.org/10.1016/j.jarmap.2020.100255

    Article  Google Scholar 

  67. Mahendran D, PB KK, Sreeramanan S, Venkatachalam P (2018) Enhanced biosynthesis of colchicine and thiocolchicoside contents in cell suspension cultures of Gloriosa superba L. exposed to ethylene inhibitor and elicitors. Ind Crops Prod 120:123–130. https://doi.org/10.1016/j.indcrop.2018.04.040

    CAS  Article  Google Scholar 

  68. Makowski W, Tokarz B, Banasiuk R et al (2019) Is a blue–red light a good elicitor of phenolic compounds in the family Droseraceae? A comparative study. J Photochem Photobiol B Biol 201:111679. https://doi.org/10.1016/j.jphotobiol.2019.111679

    CAS  Article  Google Scholar 

  69. Makowski W, Tokarz KM, Tokarz B et al (2020) Elicitation-based method for increasing the production of antioxidant and bactericidal phenolic compounds in Dionaea muscipula. J Ellis Tissue Mol 25:1794. https://doi.org/10.3390/molecules25081794

    CAS  Article  Google Scholar 

  70. Malik MQ, Mujib A, Gulzar B et al (2020) Enrichment of alliin in different in vitro grown tissues of Allium sativum through CdCl2 elicitation as revealed by high performance thin layer chromatography (HPTLC). Ind Crops Prod 158:113007. https://doi.org/10.1016/j.indcrop.2020.113007

    CAS  Article  Google Scholar 

  71. Marchev AS, Yordanova ZP, Georgiev MI (2020) Green (cell) factories for advanced production of plant secondary metabolites. Crit Rev Biotechnol 40:443–458. https://doi.org/10.1080/07388551.2020.1731414

    CAS  Article  PubMed  Google Scholar 

  72. Miclea I, Suhani A, Zahan M, Bunea A (2020) Effect of jasmonic acid and salicylic acid on growth and biochemical composition of in-vitro-propagated Lavandula angustifolia Mill. Agronomy 10:1722. https://doi.org/10.3390/agronomy10111722

    CAS  Article  Google Scholar 

  73. Mirmazloum I, Ladányi M, Beinrohr L et al (2019) Identification of a novel UDP-glycosyltransferase gene from Rhodiola rosea and its expression during biotransformation of upstream precursors in callus culture. Int J Biol Macromol 136:847–858. https://doi.org/10.1016/j.ijbiomac.2019.06.086

    CAS  Article  PubMed  Google Scholar 

  74. Mosavat N, Golkar P, Yousefifard M, Javed R (2019) Modulation of callus growth and secondary metabolites in different Thymus species and Zataria multiflora micropropagated under ZnO nanoparticles stress. Biotechnol Appl Biochem 66:316–322. https://doi.org/10.1002/bab.1727

    CAS  Article  PubMed  Google Scholar 

  75. Muley AB, Shingote PR, Patil AP et al (2019) Gamma radiation degradation of chitosan for application in growth promotion and induction of stress tolerance in potato (Solanum tuberosum L.). Carbohydr Polym 210:289–301. https://doi.org/10.1016/j.carbpol.2019.01.056

    CAS  Article  PubMed  Google Scholar 

  76. Munim Twaij B, Jazar ZH, Hasan MN (2019) The effects of elicitors and precursor on in-vitro cultures of Trifolium resupinatum for sustainable metabolite accumulation and antioxidant activity. Biocatal Agric Biotechnol 22:101337. https://doi.org/10.1016/j.bcab.2019.101337

    Article  Google Scholar 

  77. Namjoyan S, Sorooshzadeh A, Rajabi A, Aghaalikhani M (2020) Nano-silicon protects sugar beet plants against water deficit stress by improving the antioxidant systems and compatible solutes. Acta Physiol Plant 42:157. https://doi.org/10.1007/s11738-020-03137-6

    CAS  Article  Google Scholar 

  78. Nawaz MA, Huang Y, Bie Z et al (2016) Melatonin: current status and future perspectives in plant science. Front Plant Sci. https://doi.org/10.3389/fpls.2015.01230

    Article  PubMed  PubMed Central  Google Scholar 

  79. Nazir M, Asad Ullah M, Mumtaz S et al (2020) Interactive effect of melatonin and UV-C on phenylpropanoid metabolite production and antioxidant potential in callus cultures of purple basil (Ocimum basilicum L. var purpurascens). Molecules 25:1072. https://doi.org/10.3390/molecules25051072

    CAS  Article  PubMed Central  Google Scholar 

  80. Niazian M (2019) Application of genetics and biotechnology for improving medicinal plants. Planta 249:953–973. https://doi.org/10.1007/s00425-019-03099-1

    CAS  Article  PubMed  Google Scholar 

  81. Niazian M, Niedbała G (2020) Machine learning for plant breeding and biotechnology. Agriculture 10:436. https://doi.org/10.3390/agriculture10100436

    CAS  Article  Google Scholar 

  82. Niazian M, Shariatpanahi M (2020) In vitro-based doubled haploid production: recent improvements. Euphytica 216:69. https://doi.org/10.1007/s10681-020-02609-7(012

    CAS  Article  Google Scholar 

  83. Niazian M, Sadat-Noori SA, Tohidfar M et al (2019a) Agrobacterium-mediated genetic transformation of ajowan (Trachyspermum ammi (L.) Sprague): an important industrial medicinal plant. Ind Crops Prod 132:29–40. https://doi.org/10.1016/j.indcrop.2019.02.005

    CAS  Article  Google Scholar 

  84. Niazian M, Shariatpanahi M, Abdipour M, Oroojloo M (2019b) Modeling callus induction and regeneration in an anther culture of tomato (Lycopersicon esculentum L.) using image processing and artificial neural network method. Protoplasma. https://doi.org/10.1007/s00709-019-01379-x

    Article  PubMed  Google Scholar 

  85. Niazian M, Howyzeh MS, Sadat-Noori SA (2021) Integrative effects of stress- and stress tolerance-inducing elicitors on in vitro bioactive compounds of ajowan [Trachyspermum ammi (L.) Sprague] medicinal plant. Plant Cell Tissue Organ Cult. https://doi.org/10.1007/s11240-021-02096-1

    Article  Google Scholar 

  86. Nourozi E, Hosseini B, Maleki R, Abdollahi Mandoulakani B (2019) Iron oxide nanoparticles: a novel elicitor to enhance anticancer flavonoid production and gene expression in Dracocephalum kotschyi hairy-root cultures. J Sci Food Agric 99:6418–6430. https://doi.org/10.1002/jsfa.9921

    CAS  Article  PubMed  Google Scholar 

  87. Park J-S, Seong Z-K, Kim M-S et al (2020a) Production of flavonoids in callus cultures of Sophora flavescens Aiton. Plants 9:688. https://doi.org/10.3390/plants9060688

    CAS  Article  PubMed Central  Google Scholar 

  88. Park YJ, Kim JK, Park SU (2020b) Yeast extract improved biosynthesis of astragalosides in hairy root cultures of Astragalus membranaceus. Prep Biochem Biotechnol. https://doi.org/10.1080/10826068.2020.1830415

    Article  PubMed  Google Scholar 

  89. Pourianezhad F, Rahnama H, Mousavi A et al (2019) Effects of combined elicitors on parthenolide production and expression of parthenolide synthase (TpPTS) in Tanacetum parthenium hairy root culture. Plant Biotechnol Rep 13:211–218. https://doi.org/10.1007/s11816-019-00526-3

    Article  Google Scholar 

  90. Qu J, Zhang W, Yu X (2011) A combination of elicitation and precursor feeding leads to increased anthocyanin synthesis in cell suspension cultures of Vitis vinifera. Plant Cell, Tissue Organ Cult 107:261–269. https://doi.org/10.1007/s11240-011-9977-8

    CAS  Article  Google Scholar 

  91. Rajkumari S, Sanatombi K (2020) Secondary metabolites content and essential oil composition of in vitro cultures of Zingiber montanum (Koenig) Link ex A. Dietr Biotechnol Lett 42:1237–1245. https://doi.org/10.1007/s10529-020-02872-7

    CAS  Article  PubMed  Google Scholar 

  92. Rashki S, Asgarpour K, Tarrahimofrad H et al (2021) Chitosan-based nanoparticles against bacterial infections. Carbohydr Polym 251:117108. https://doi.org/10.1016/j.carbpol.2020.117108

    CAS  Article  PubMed  Google Scholar 

  93. Rasouli D, Werbrouck S, Maleki B et al (2021) Elicitor-induced in vitro shoot multiplication and steviol glycosides production in Stevia rebaudiana. South African J Bot 137:265–271. https://doi.org/10.1016/j.sajb.2020.10.023

    CAS  Article  Google Scholar 

  94. Raza A, Charagh S, Zahid Z et al (2020) Jasmonic acid: a key frontier in conferring abiotic stress tolerance in plants. Plant Cell Rep. https://doi.org/10.1007/s00299-020-02614-z

    Article  PubMed  Google Scholar 

  95. Razavizadeh R, Adabavazeh F, Komatsu S (2020) Chitosan effects on the elevation of essential oils and antioxidant activity of Carum copticum L. seedlings and callus cultures under in vitro salt stress. J Plant Biochem Biotechnol 29:473–483. https://doi.org/10.1007/s13562-020-00560-1

    CAS  Article  Google Scholar 

  96. Rodríguez-Sánchez LK, Pérez-Bernal JE, Santamaría-Torres MA et al (2020) Effect of methyl jasmonate and salicylic acid on the production of metabolites in cell suspensions cultures of Piper cumanense (Piperaceae). Biotechnol Reports 28:e00559. https://doi.org/10.1016/j.btre.2020.e00559

    Article  Google Scholar 

  97. Roy A, Bharadvaja N (2019) Establishment of root suspension culture of Plumbago zeylanica and enhanced production of plumbagin. Ind Crops Prod 137:419–427. https://doi.org/10.1016/j.indcrop.2019.05.007

    CAS  Article  Google Scholar 

  98. Salehi M, Farhadi S, Moieni A et al (2020a) Mathematical modeling of growth and paclitaxel biosynthesis in Corylus avellana cell culture responding to fungal elicitors using multilayer perceptron-genetic algorithm. Front Plant Sci. https://doi.org/10.3389/fpls.2020.01148

    Article  PubMed  PubMed Central  Google Scholar 

  99. Salehi M, Moieni A, Safaie N, Farhadi S (2020b) Whole fungal elicitors boost paclitaxel biosynthesis induction in Corylus avellana cell culture. PLoS One 15:e0236191. https://doi.org/10.1371/journal.pone.0236191

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  100. Salmalian M, Ghasemnejad A, Mashayekhi K (2019) The effect of salicylic acid, methyl jasmonate and NaCl stimulants on biochemical compounds of stevia’s callus in solid and liquid media. Iran J Med Aromat Plants Res 35:731–744. https://doi.org/10.22092/ijmapr.2019.123589.2407

    Article  Google Scholar 

  101. Samuolienė G, Brazaitytė A, Viršilė A et al (2016) Red light-dose or wavelength-dependent photoresponse of antioxidants in herb microgreens. PLoS One 11:e0163405. https://doi.org/10.1371/journal.pone.0163405

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  102. Santisree P, Sanivarapu H, Gundavarapu S et al (2020) Nitric oxide as a signal in inducing secondary metabolites during plant stress. In: Mérillon JM, Ramawat K (eds) Co-evolution of secondary metabolites. Reference series in phytochemistry. Springer, Cham, pp 593–621. https://doi.org/10.1007/978-3-319-96397-6_61

    Chapter  Google Scholar 

  103. Santos GS, Sinoti SBP, de Almeida FTC et al (2020) Use of galantamine in the treatment of Alzheimer’s disease and strategies to optimize its biosynthesis using the in vitro culture technique. Plant Cell Tissue Organ Cult 143:13–29. https://doi.org/10.1007/s11240-020-01911-5

    Article  Google Scholar 

  104. Sathish S, Vasudevan V, Karthik S et al (2020) Elicitors induced l-Dopa accumulation in adventitious root cultures of Hybanthus enneaspermus (L.) F. Muell Vegetos 33:304–312. https://doi.org/10.1007/s42535-020-00108-7

    Article  Google Scholar 

  105. Sen SK, Chouhan D, Das D et al (2020) Improvisation of salinity stress response in mung bean through solid matrix priming with normal and nano-sized chitosan. Int J Biol Macromol 145:108–123. https://doi.org/10.1016/j.ijbiomac.2019.12.170

    CAS  Article  PubMed  Google Scholar 

  106. Shahhoseini R, Azizi M, Asili J et al (2020) Effects of zinc oxide nanoelicitors on yield, secondary metabolites, zinc and iron absorption of Feverfew (Tanacetum parthenium (L.) Schultz Bip). Acta Physiol Plant 42:52. https://doi.org/10.1007/s11738-020-03043-x

    CAS  Article  Google Scholar 

  107. Shaikh S, Shriram V, Khare T, Kumar V (2020) Biotic elicitors enhance diosgenin production in Helicteres isora L. suspension cultures via up-regulation of CAS and HMGR genes. Physiol Mol Biol Plants 26:593–604. https://doi.org/10.1007/s12298-020-00774-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  108. Sharan S, Sarin NB, Mukhopadhyay K (2019) Elicitor-mediated enhanced accumulation of ursolic acid and eugenol in hairy root cultures of Ocimum tenuiflorum L. is age, dose, and duration dependent. South African J Bot 124:199–210. https://doi.org/10.1016/j.sajb.2019.05.009

    CAS  Article  Google Scholar 

  109. Sharifi-Rad R, Esmaeilzadeh Bahabadi S, Samzadeh-Kermani A, Gholami M (2020) The Effect of non-biological elicitors on physiological and biochemical properties of medicinal plant Momordica charantia L. Iran J Sci Technol Trans A Sci 44:1315–1326. https://doi.org/10.1007/s40995-020-00939-8

    Article  Google Scholar 

  110. Sharma U, Agrawal V (2018) In vitro shoot regeneration and enhanced synthesis of plumbagin in root callus of Plumbago zeylanica L.—an important medicinal herb. Vitr Cell Dev Biol 54:423–435. https://doi.org/10.1007/s11627-018-9889-y

    CAS  Article  Google Scholar 

  111. Silva ST, Bertolucci SKV, da Cunha SHB et al (2017) Effect of light and natural ventilation systems on the growth parameters and carvacrol content in the in vitro cultures of Plectranthus amboinicus (Lour.) Spreng. Plant Cell Tissue Organ Cult 129:501–510. https://doi.org/10.1007/s11240-017-1195-6

    CAS  Article  Google Scholar 

  112. Singh M, Poddar NK, Singh D, Agrawal S (2020a) Foliar application of elicitors enhanced the yield of withanolide contents in Withania somnifera (L.) Dunal (variety, Poshita). 3 Biotech. https://doi.org/10.1007/s13205-020-2153-2

    Article  PubMed  PubMed Central  Google Scholar 

  113. Singh T, Sharma U, Agrawal V (2020b) Isolation and optimization of plumbagin production in root callus of Plumbago zeylanica L. augmented with chitosan and yeast extract. Ind Crops Prod 151:112446. https://doi.org/10.1016/j.indcrop.2020.112446

    CAS  Article  Google Scholar 

  114. Skrzypczak-Pietraszek E, Urbańska A, Żmudzki P, Pietraszek J (2019) Elicitation with methyl jasmonate combined with cultivation in the PlantformTM temporary immersion bioreactor highly increases the accumulation of selected centellosides and phenolics in Centella asiatica (L.) urban shoot culture. Eng Life Sci 19:931–943. https://doi.org/10.1002/elsc.201900051

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  115. Sun H, Xu Z-X, Zhou J, Guo L-P (2020) Karrikins-induced accumulation of Salvianolic acid B is mediated by calcium–calmodulin, brassinolide and jasmonic acid in Salvia miltiorrhiza. South African J Bot 132:45–49. https://doi.org/10.1016/j.sajb.2020.03.033

    CAS  Article  Google Scholar 

  116. Szopa A, Kokotkiewicz A, Król A, Luczkiewicz M, Ekiert H (2018) Improved production of dibenzocyclooctadiene lignans in the elicited microshoot cultures of Schisandra chinensis (Chinese magnolia vine). Appl Microbiol Biotechnol 102:945–959. https://doi.org/10.1007/s00253-017-8640-7

    CAS  Article  PubMed  Google Scholar 

  117. Takshak S, Agrawal SB (2019) Defense potential of secondary metabolites in medicinal plants under UV-B stress. J Photochem Photobiol B Biol 193:51–88. https://doi.org/10.1016/j.jphotobiol.2019.02.002

    CAS  Article  Google Scholar 

  118. Tarakemeh A, Azizi M, Rowshan V et al (2019) Screening of Amaryllidaceae alkaloids in bulbs and tissue cultures of Narcissus papyraceus and four varieties of N. tazetta. J Pharm Biomed Anal 172:230–237. https://doi.org/10.1016/j.jpba.2019.04.043

    CAS  Article  PubMed  Google Scholar 

  119. Thakur M, Bhattacharya S, Khosla PK, Puri S (2019) Improving production of plant secondary metabolites through biotic and abiotic elicitation. J Appl Res Med Aromat Plants 12:1–12. https://doi.org/10.1016/j.jarmap.2018.11.004

    Article  Google Scholar 

  120. Ullah MA, Tungmunnithum D, Garros L et al (2019) Effect of ultraviolet-C radiation and melatonin stress on biosynthesis of antioxidant and antidiabetic metabolites produced in in vitro callus cultures of Lepidium sativum L. Int J Mol Sci 20:1–19. https://doi.org/10.3390/ijms20071787

    CAS  Article  Google Scholar 

  121. Wang S, Liang W, Lu J et al (2020) Penicillium sp. YJM-2013 induces ginsenosides biosynthesis in Panax ginseng adventitious roots by inducing plant resistance responses. Chinese Herb Med 12:257–264. https://doi.org/10.1016/j.chmed.2020.02.003

    Article  Google Scholar 

  122. Wei T, Deng K, Gao Y et al (2020) SmKSL overexpression combined with elicitor treatment enhances tanshinone production from Salvia miltiorrhiza hairy roots. Biochem Eng J 158:107562. https://doi.org/10.1016/j.bej.2020.107562

    CAS  Article  Google Scholar 

  123. Yeow LC, Chew BL, Sreeramanan S (2020) Elevation of secondary metabolites production through light-emitting diodes (LEDs) illumination in protocorm-like bodies (PLBs) of Dendrobium hybrid orchid rich in phytochemicals with therapeutic effects. Biotechnol Reports 27:e00497. https://doi.org/10.1016/j.btre.2020.e00497

    Article  Google Scholar 

  124. Yu Y, Wang T, Wu Y et al (2019) Effect of elicitors on the metabolites in the suspension cell culture of Salvia miltiorrhiza Bunge. Physiol Mol Biol Plants 25:229–242. https://doi.org/10.1007/s12298-018-0605-5

    CAS  Article  PubMed  Google Scholar 

  125. Yue W, Ming Q, Lin B et al (2016) Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Crit Rev Biotechnol 36:215–232. https://doi.org/10.3109/07388551.2014.923986

    CAS  Article  PubMed  Google Scholar 

  126. Zare-Hassani E, Motafakkerazad R, Razeghi J, Kosari-Nasab M (2019) The effects of methyl jasmonate and salicylic acid on the production of secondary metabolites in organ culture of Ziziphora persica. Plant Cell Tissue Organ Cult 138:437–444. https://doi.org/10.1007/s11240-019-01639-x

    CAS  Article  Google Scholar 

  127. Zhang N, Sun Q, Zhang H et al (2015) Roles of melatonin in abiotic stress resistance in plants. J Exp Bot 66:647–656. https://doi.org/10.1093/jxb/eru336

    CAS  Article  PubMed  Google Scholar 

  128. Zhou J, Xu Z, Ran Z et al (2018) Effects of smoke-water and smoke-derived butenolide on accumulation of phenolic acids in cultured hairy roots of Salvia miltiorrhiza Bung. Bangladesh J Bot 47:479–485. https://doi.org/10.3329/bjb.v47i3.38715

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohsen Niazian.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interests. All the authors read and approved the manuscript in its final form.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Gerhard Leubner.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Niazian, M., Sabbatini, P. Traditional in vitro strategies for sustainable production of bioactive compounds and manipulation of metabolomic profile in medicinal, aromatic and ornamental plants. Planta 254, 111 (2021). https://doi.org/10.1007/s00425-021-03771-5

Download citation

Keywords

  • Antioxidants
  • Degree of differentiation
  • Inductive stresses
  • Precursors
  • Secondary metabolites
  • Tolerance-enhancer elicitors