Skip to main content

Beyond transport: cytokinin ribosides are translocated and active in regulating the development and environmental responses of plants

Abstract

Main conclusion

Riboside type cytokinins are key components in cytokinin metabolism, transport, and sensitivity, making them important functional signals in plant growth and development and environmental stress responses.

Abstract

Cytokinin (CKs) are phytohormones that regulate multiple processes in plants and are critical for agronomy, as they are involved in seed filling and plant responses to biotic and abiotic stress. Among the over 30 identified CKs, there is uncertainty about the roles of many of the individual CK structural forms. Cytokinin free bases (CKFBs), have been studied in great detail, but, by comparison, roles of riboside-type CKs (CKRs) in CK metabolism and associated signaling pathways and their distal impacts on plant physiology remain largely unknown. Here, recent findings on CKR abundance, transport and localization, are summarized, and their importance in planta is discussed. The history of CKR analyses is reviewed, in the context of the determination of CK metabolic pathways, and research on CKR affinity for CK receptors, all of which yield essential insights into their functions. Recent studies suggest that CKR forms are a lot more than a group of transport CKs and, beyond this, they play important roles in plant development and responses to environmental stress. In this context, this review discusses the involvement of CKRs in plant development, and highlight the less anticipated functions of CKRs in abiotic stress tolerance. Based on this, possible mechanisms for CKR modes of action are proposed and experimental approaches to further uncover their roles and future biotechnological applications are suggested.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abusamhadneh E, McDonald NE, Kline PC (2000) Isolation and characterization of adenosine nucleosidase from yellow lupin (Lupinus luteus). Plant Sci 153(1):25–32. https://doi.org/10.1016/S0168-9452(99)00240-X

    CAS  Article  Google Scholar 

  2. Akiyoshi DE, Regier DA, Gordon MP (1987) Cytokinin production by Agrobacterium and Pseudomonas spp. J Bacteriol 169(9):4242–4248. https://doi.org/10.1128/jb.169.9.4242-4248.1987

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Alvarez S, Marsh EL, Schroeder SG, Schachtman DP (2008) Metabolomic and proteomic changes in the xylem sap of maize under drought. Plant Cell Environ 31(3):325–340. https://doi.org/10.1111/j.1365-3040.2007.01770.x

    CAS  Article  PubMed  Google Scholar 

  4. Andrabi SBA, Tahara M, Matsubara R, Toyama T, Aonuma H, Sakakibara H, Suematsu M, Tanabe K, Nozaki T, Nagamune K (2018) Plant hormone cytokinins control cell cycle progression and plastid replication in apicomplexan parasites. Parasitol Int 67(1):47–58. https://doi.org/10.1016/j.parint.2017.03.003

    CAS  Article  PubMed  Google Scholar 

  5. Andreas P, Kisiala A, Emery RJN, Clerck-Floate D, Tooker JF, Price PW, Miller DG III, Chen MS, Connor EF (2020) Cytokinins are abundant and widespread among insect species. Plants 9(2):208–231. https://doi.org/10.3390/plants9020208

    CAS  Article  PubMed Central  Google Scholar 

  6. Aoki MM, Kisiala A, Li S, Stock NL, Brunetti CR, Huber RJ, Emery RJN (2019a) Cytokinin detection during the Dictyostelium discoideum life cycle: Profiles are dynamic and affect cell growth and spore germination. Biomolecules 9(11):702–718. https://doi.org/10.3390/biom9110702

    CAS  Article  PubMed Central  Google Scholar 

  7. Aoki MM, Seegobin M, Kisiala A, Noble A, Brunetti C, Emery RJN (2019b) Phytohormone metabolism in human cells: Cytokinins are taken up and interconverted in HeLa cell culture. FASEB BioAdvances 1(5):320–331. https://doi.org/10.1096/fba.2018-00032

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Arkhipova TN, Veselov SU, Melentiev AI, Martynenko EV, Kudoyarova GR (2005) Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil 272(1):201–209. https://doi.org/10.1007/s11104-004-5047-x

    CAS  Article  Google Scholar 

  9. Ashihara H, Stasolla C, Fujimura T, Crozier A (2018) Purine salvage in plants. Phytochemistry 147:89–124. https://doi.org/10.1016/j.phytochem.2017.12.008

    CAS  Article  PubMed  Google Scholar 

  10. Atkins CA (2013) Mechanism of long-distance solute transport in phloem elements. Symplasmic Transport in Vascular Plants. Springer, New York, pp 165–181

    Chapter  Google Scholar 

  11. Bedada LT, Seth MS, Runo SM, Teffera W, Mugoya C, Masiga CW, Oduor RO, Blumewald E, Wachira F (2016) Drought tolerant tropical maize (Zea mays L.) developed through genetic transformation with isopentenyltransferase gene. Afr J Biotechnol 15(43):2447–2464. https://doi.org/10.5897/ajb2016.15228

    CAS  Article  Google Scholar 

  12. Bromley JR, Warnes BJ, Newell CA, Thomson JC, James CM, Turnbull CG, Hanke DE (2014) A purine nucleoside phosphorylase in Solanum tuberosum L. (potato) with specificity for cytokinins contributes to the duration of tuber endodormancy. Biochemical J 458(2):225–237. https://doi.org/10.1042/BJ20130792

    CAS  Article  Google Scholar 

  13. Bruce SA, Saville BJ, Emery RJN (2011) Ustilago maydis produces cytokinins and abscisic acid for potential regulation of tumor formation in maize. J Plant Growth Regul 30(1):51–63. https://doi.org/10.1007/s00344-010-9166-8

    CAS  Article  Google Scholar 

  14. Brugière N, Humbert S, Rizzo N, Bohn J, Habben JE (2008) A member of the maize isopentenyl transferase gene family, Zea mays isopentenyl transferase 2 (ZmIPT2), encodes a cytokinin biosynthetic enzyme expressed during kernel development: Cytokinin biosynthesis in maize. Plant Mol Biol 67(3):215–229. https://doi.org/10.1007/s11103-008-9312-x

    CAS  Article  PubMed  Google Scholar 

  15. Bürkle L, Cedzich A, Döpke C, Stransky H, Okumoto S, Gillissen B, Kühn C, Frommer WB (2003) Transport of cytokinins mediated by purine transporters of the PUP family expressed in phloem, hydathodes, and pollen of Arabidopsis. Plant J 34(1):13–26. https://doi.org/10.1046/j.1365-313X.2003.01700.x

    Article  PubMed  Google Scholar 

  16. Chanclud E, Kisiala A, Emery RJN, Chalvon V, Ducasse A, Romiti-Michel C, Gravot A, Kroj T, Morel JB (2016) Cytokinin production by the rice blast fungus is a pivotal requirement for full virulence. PLoS Pathog 12(2):e1005457–e1005482. https://doi.org/10.1371/journal.ppat.1005457

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Chang C (2016) Q and A: How do plants respond to ethylene and what is its importance? BMC Biol 14(1):7–14. https://doi.org/10.1186/s12915-016-0230-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Chen CM, Kristopeit SM (1981) Metabolism of cytokinin: deribosylation of cytokinin ribonucleoside by adenosine nucleosidase from wheat germ cells. Plant Physiol 68(5):1020–1023. https://doi.org/10.1104/pp.68.5.1020

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Chen CM, Melitz DK, Clough FW (1982) Metabolism of cytokinin: Phosphoribosylation of cytokinin bases by adenine phosphoribosyltransferase from wheat germ. Arch Biochem Biophys 214(2):634–641. https://doi.org/10.1016/0003-9861(82)90069-8

    CAS  Article  PubMed  Google Scholar 

  20. Chen L, Zhao J, Song J, Jameson PE (2020) Cytokinin dehydrogenase: a genetic target for yield improvement in wheat. Plant Biotechnol J 18(3):614–630. https://doi.org/10.1111/pbi.13305

    CAS  Article  PubMed  Google Scholar 

  21. Daudu D, Allion E, Liesecke F, Papon N, Courdavault V, Dugé de Bernonville T, Mélin C, Oudin A, Clastre M, Lanoue A, Courtois M (2017) CHASE-containing histidine kinase receptors in apple tree: From a common receptor structure to divergent cytokinin binding properties and specific functions. Front Plant Sci 8:1614–1629. https://doi.org/10.3389/fpls.2017.01614

    Article  PubMed  PubMed Central  Google Scholar 

  22. Daudu D, Kisiala A, Ribeiro CW, Mélin C, Perrot L, Clastre M, Courdavault V, Papon N, Oudin A, Courtois M, de Bernonville TD (2019) Setting-up a fast and reliable cytokinin biosensor based on a plant histidine kinase receptor expressed in Saccharomyces cerevisiae. J Biotechnol 289:103–111. https://doi.org/10.1016/j.jbiotec.2018.11.013

    CAS  Article  PubMed  Google Scholar 

  23. De Meutter J, Tytgat T, Witters E, Gheysen G, Van Onckelen H, Gheysen G (2003) Identification of cytokinins produced by the plant parasitic nematodes Heterodera schachtii and Meloidogyne incognita. Mol Plant Pathol 4(4):271–277. https://doi.org/10.1046/j.1364-3703.2003.00176.x

    Article  PubMed  Google Scholar 

  24. Dhara A, Raichaudhuri A (2021) ABCG transporter proteins with beneficial activity on plants. Phytochemistry 184:112663. https://doi.org/10.1016/j.phytochem.2021.112663

    CAS  Article  PubMed  Google Scholar 

  25. Dobra J, Motyka V, Dobrev P, Malbeck J, Prasil IT, Haisel D, Gaudinova A, Havlova M, Gubis J, Vankova R (2010) Comparison of hormonal responses to heat, drought and combined stress in tobacco plants with elevated proline content. J Plant Physiol 167(16):1360–1370. https://doi.org/10.1016/j.jplph.2010.05.013

    CAS  Article  PubMed  Google Scholar 

  26. Dolgikh EA, Shaposhnikov AI, Dolgikh AV, Gribchenko ES, Bodyagina KB, Yuzhikhin OS, Tikhonovich IA (2017) Identification of Pisum sativum L. cytokinin and auxin metabolic and signaling genes, and an analysis of their role in symbiotic nodule development. Int J Plant Physiol Biochem 9(3):22–35. https://doi.org/10.5897/ijppb2017.0266

    CAS  Article  Google Scholar 

  27. Durán-Medina Y, Díaz-Ramírez D, Marsch-Martínez N (2017) Cytokinins on the move. Front Plant Sci 8:146–153. https://doi.org/10.3389/fpls.2017.00146

    Article  PubMed  PubMed Central  Google Scholar 

  28. Eguchi T, Yoshida S (2008) Effects of application of sucrose and cytokinin to roots on the formation of tuberous roots in sweetpotato (Ipomoea batatas (L.) Lam.). Plant Root 2:7–13. https://doi.org/10.3117/plantroot.2.7

    CAS  Article  Google Scholar 

  29. Emery RJN, Leport L, Barton JE, Turner NC, Atkins CA (1998) Cis-isomers of cytokinins predominate in chickpea seeds throughout their development. Plant Physiol 117(4):1515–1523. https://doi.org/10.1104/pp.117.4.1515

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Emery RJN, Ma Q, Atkins CA (2000) The forms and sources of cytokinins in developing white lupine seeds and fruits. Plant Physiol 123(4):1593–1604. https://doi.org/10.1104/pp.123.4.1593

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Frébort I, Kowalska M, Hluska T, Frébortová J, Galuszka P (2011) Evolution of cytokinin biosynthesis and degradation. J Exp Bot 62(8):2431–2452. https://doi.org/10.1093/jxb/err004

    CAS  Article  PubMed  Google Scholar 

  32. Gillissen B, Bürkle L, André B, Kühn C, Rentsch D, Brandl B, Frommer WB (2000) A new family of high-affinity transporters for adenine, cytosine, and purine derivatives in Arabidopsis. Plant Cell 12(2):291–300. https://doi.org/10.1105/tpc.12.2.291

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Giron D, Glevarec G (2014) Cytokinin-induced phenotypes in plant-insect interactions: Learning from the bacterial world. J Chem Ecol 40(7):826–835. https://doi.org/10.1007/s10886-014-0466-5

    CAS  Article  PubMed  Google Scholar 

  34. Glanz-Idan N, Tarkowski P, Turečková V, Wolf S (2020) Root–shoot communication in tomato plants: cytokinin as a signal molecule modulating leaf photosynthetic activity. J Exp Bot 71(1):247–257. https://doi.org/10.1093/jxb/erz399

    CAS  Article  PubMed  Google Scholar 

  35. Goggin DE, Emery RJN, Powles SB, Steadman KJ (2010) Initial characterisation of low and high seed dormancy populations of Lolium rigidum produced by repeated selection. J Plant Physiol 167(15):1282–1288. https://doi.org/10.1016/j.jplph.2010.04.004

    CAS  Article  PubMed  Google Scholar 

  36. Goggin DE, Emery RJN, Kurepin LV, Powles SB (2015) A potential role for endogenous microflora in dormancy release, cytokinin metabolism and the response to fluridone in Lolium rigidum seeds. Ann Bot 115(2):293–301. https://doi.org/10.1093/aob/mcu231

    CAS  Article  PubMed  Google Scholar 

  37. Held MA, Quesnelle PE, Emery RJN (2005) Seasonal changes of cytokinins in upper and lower leaves of a sugar maple crown. Biol Plant 49(3):455–458. https://doi.org/10.1007/s10535-005-0028-3

    CAS  Article  Google Scholar 

  38. Hirose N, Makita N, Yamaya T, Sakakibara H (2005) Functional characterization and expression analysis of a gene, OsENT2, encoding an equilibrative nucleoside transporter in rice suggest a function in cytokinin transport. Plant Physiol 138(1):196–206. https://doi.org/10.1104/pp.105.060137

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Hirose N, Makita N, Kojima M, Kamada-Nobusada T, Sakakibara H (2007) Overexpression of a type-A response regulator alters rice morphology and cytokinin metabolism. Plant Cell Physiol 48(3):523–539. https://doi.org/10.1093/pcp/pcm022

    CAS  Article  PubMed  Google Scholar 

  40. Hirose N, Takei K, Kuroha T, Kamada-Nobusada T, Hayashi H, Sakakibara H (2008) Regulation of cytokinin biosynthesis, compartmentalization and translocation. J Exp Bot 59(1):75–83. https://doi.org/10.1093/jxb/erm157

    CAS  Article  PubMed  Google Scholar 

  41. Hluska T, Hluskova L, Emery RJN (2021) The Hulks and the Deadpools of the cytokinin universe: a dual strategy for cytokinin production, translocation, and signal transduction. Plants 11(2):209. https://doi.org/10.3390/biom11020209

    CAS  Article  Google Scholar 

  42. Hošek P, Hoyerová K, Kiran NS, Dobrev PI, Zahajská L, Filepová R, Motyka V, Müller K, Kamínek M (2020) Distinct metabolism of N-glucosides of isopentenyladenine and trans-zeatin determines cytokinin metabolic spectrum in Arabidopsis. New Phytol 225(6):2423–2438. https://doi.org/10.1111/nph.16310

    CAS  Article  PubMed  Google Scholar 

  43. Hoyerová K, Hošek P (2020) New insights into the metabolism and role of cytokinin n-glucosides in plants. Front Plant Sci 11:741–748. https://doi.org/10.3389/fpls.2020.00741

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hu Z, Lan S, Zhao N, Su N, Xue Q, Liu J, Deng Q, Yang J, Zhang M (2019) Soft-X-irradiated pollens induce parthenocarpy in watermelon via rapid changes of hormone-signaling and hormonal regulation. Sci Hortic 250:317–328. https://doi.org/10.1016/j.scienta.2019.02.036

    CAS  Article  Google Scholar 

  45. Hwang JU, Song WY, Hong D, Ko D, Yamaoka Y, Jang S, Yim S, Lee E, Khare D, Kim K, Palmgren M (2016) Plant ABC transporters enable many unique aspects of a terrestrial plant’s lifestyle. Mol Plant 9(3):338–355. https://doi.org/10.1016/j.molp.2016.02.003

    CAS  Article  PubMed  Google Scholar 

  46. Jain M, Tyagi AK, Khurana JP (2006) Molecular characterization and differential expression of cytokinin-responsive type-A response regulators in rice (Oryza sativa). BMC Plant Biol 6(1):1–12. https://doi.org/10.1186/1471-2229-6-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Jameson PE, Song J (2016) Cytokinin: A key driver of seed yield. J Exp Bot 67(3):593–606. https://doi.org/10.1093/jxb/erv461

    CAS  Article  PubMed  Google Scholar 

  48. Jorge GL, Kisiala A, Morrison E, Aoki M, Nogueira AP, Emery RJN (2019) Endosymbiotic Methylobacterium oryzae mitigates the impact of limited water availability in lentil (Lens culinaris Medik.) by increasing plant cytokinin levels. Environ Exp Bot 162:525–540. https://doi.org/10.1016/j.envexpbot.2019.03.028

    CAS  Article  Google Scholar 

  49. Joshi S, Choukimath A, Isenegger D, Panozzo J, Spangenberg G, Kant S (2019) Improved wheat growth and yield by delayed leaf senescence using developmentally regulated expression of a cytokinin biosynthesis gene. Front Plant Sci 10:1285–1296. https://doi.org/10.3389/FPLS.2019.01285

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jung B, Flörchinger M, Kunz HH, Traub M, Wartenberg R, Jeblick W, Neuhaus HE, Möhlmann T (2009) Uridine-Ribohydrolase is a key regulator in the uridine degradation pathway of Arabidopsis. Plant Cell 21(3):876–891. https://doi.org/10.1105/tpc.108.062612

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Kamada-Nobusada T, Sakakibara H (2009) Molecular basis for cytokinin biosynthesis. Phytochemistry 70:444–449. https://doi.org/10.1016/j.phytochem.2009.02.007

    CAS  Article  PubMed  Google Scholar 

  52. Kambhampati S, Kurepin LV, Kisiala A, Bruce KE, Cober ER, Morrison MJ, Emery RJN (2017) Yield associated traits correlate with cytokinin profiles in developing pods and seeds of field-grown soybean cultivars. Field Crops Res 214:175–184. https://doi.org/10.1016/j.fcr.2017.09.009

    Article  Google Scholar 

  53. Kang J, Lee Y, Sakakibara H, Martinoia E (2017) Cytokinin transporters: Go and stop in signaling. Trends Plant Sci 22(6):455–461. https://doi.org/10.1016/j.tplants.2017.03.003

    CAS  Article  PubMed  Google Scholar 

  54. Karnwal A, Kaushik P (2011) Cytokinin production by fluorescent Pseudomonas in the presence of rice root exudates. Arch Phytopathol 44(17):1728–1735. https://doi.org/10.1080/03235408.2010.526768

    CAS  Article  Google Scholar 

  55. Kiba T, Takei K, Kojima M, Sakakibara H (2013) Side-chain modification of cytokinins controls shoot growth in Arabidopsis. Dev Cell 27(4):452–461. https://doi.org/10.1016/j.devcel.2013.10.004

    CAS  Article  PubMed  Google Scholar 

  56. Kieber JJ, Schaller GE (2014) Cytokinins. The Arabidopsis Book/american Society of Plant Biologists. https://doi.org/10.1199/tab.0168

    Article  PubMed Central  Google Scholar 

  57. Kieber JJ, Schaller GE (2018) Cytokinin Signaling in Plant Development. Development 145:4–11. https://doi.org/10.1242/dev.149344

    CAS  Article  Google Scholar 

  58. Kisiala A, Laffont C, Emery RJN, Frugier F (2013) Bioactive cytokinins are selectively secreted by sinorhizobium meliloti nodulating and nonnodulating strains. Mol Plant Microbe Interact 26(10):1225–1231. https://doi.org/10.1094/MPMI-02-13-0054-R

    CAS  Article  PubMed  Google Scholar 

  59. Kisiala A, Kambhampati S, Stock NL, Aoki M, Emery RN (2019) Quantification of cytokinins using high-resolution accurate-mass Orbitrap mass spectrometry and parallel reaction monitoring (PRM). Anal Chem 91(23):15049–15056. https://doi.org/10.1021/acs.analchem.9b03728

    CAS  Article  PubMed  Google Scholar 

  60. Kojima M, Kamada-Nobusada T, Komatsu H, Takei K, Kuroha T, Mizutani M, Ashikari M, Ueguchi-Tanaka M, Matsuoka M, Suzuki K, Sakakibara H (2009) Highly sensitive and high-throughput analysis of plant hormones using ms-probe modification and liquid chromatography tandem mass spectrometry: An application for hormone profiling in Oryza sativa. Plant Cell Physiol 50(7):1201–1214. https://doi.org/10.1093/pcp/pcp057

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Kraigher H, Grayling A, Wang TL, Hanke DE (1991) Cytokinin production by two ectomycorrhizal fungi in liquid culture. Phytochemistry 30(7):2249–2254. https://doi.org/10.1016/0031-9422(91)83623-S

    CAS  Article  Google Scholar 

  62. Kubiasová K, Montesinos JC, Šamajová O, Nisler J, Mik V, Semerádová H, Plíhalová L, Novák O, Marhavý P, Cavallari N, Zalabák D (2020) Cytokinin fluoroprobe reveals multiple sites of cytokinin perception at plasma membrane and endoplasmic reticulum. Nat Commun 11(1):1–11. https://doi.org/10.1038/s41467-020-17949-0

    CAS  Article  Google Scholar 

  63. Kuderová A, Gallová L, Kuricová K, Nejedlá E, Čurdová A, Micenková L, Plíhal O, Šmajs D, Spíchal L, Hejátko J (2015) Identification of AHK2- and AHK3-like cytokinin receptors in Brassica napus reveals two subfamilies of AHK2 orthologues. J Exp Bot 66(1):339–353. https://doi.org/10.1093/jxb/eru422

    CAS  Article  PubMed  Google Scholar 

  64. Kudo T, Kiba T, Sakakibara H (2010) Metabolism and long-distance translocation of cytokinins. J Integr Plant Biol 52(1):53–60. https://doi.org/10.1111/j.1744-7909.2010.00898.x

    CAS  Article  PubMed  Google Scholar 

  65. Kumar MN, Verslues PE (2015) Stress physiology functions of the Arabidopsis histidine kinase cytokinin receptors. Physiol Plant 154(3):369–380. https://doi.org/10.1111/ppl.12290

    CAS  Article  PubMed  Google Scholar 

  66. Kurepin LV, Emery RJN, Pharis RP, Reid DM (2007) The interaction of light quality and irradiance with gibberellins, cytokinins and auxin in regulating growth of Helianthus annuus hypocotyls. Plant Cell Environ 30(2):147–155. https://doi.org/10.1111/j.1365-3040.2006.01612.x

    CAS  Article  PubMed  Google Scholar 

  67. Kuroha T (2002) A trans-zeatin riboside in root xylem sap negatively regulates adventitious root formation on cucumber hypocotyls. J Exp Bot 53(378):2193–2200. https://doi.org/10.1093/jxb/erf077

    CAS  Article  PubMed  Google Scholar 

  68. Kuroha T, Tokunaga H, Kojima M, Ueda N, Ishida T, Nagawa S, Fukuda H, Sugimoto K, Sakakibara H (2009) Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell 21(10):3152–3169. https://doi.org/10.1105/tpc.109.068676

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Le DT, Nishiyama R, Watanabe Y, Vankova R, Tanaka M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2012) Identification and expression analysis of cytokinin metabolic genes in soybean under normal and drought conditions in relation to cytokinin levels. PLoS ONE 7(8):e42411–e42426. https://doi.org/10.1371/journal.pone.0042411

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. Li G, Liu K, Baldwin SA, Wang D (2003) Equilibrative nucleoside transporters of Arabidopsis thaliana: cDNA cloning, expression pattern, and analysis of transport activities. J of Biol Chem 278(37):35732–35742. https://doi.org/10.1074/jbc.M304768200

    CAS  Article  Google Scholar 

  71. Li Y, Yang L, Wang H, Xu R, Chang S, Hou F, Jia Q (2019) Nutrient and planting modes strategies improves water use efficiency, grain-filling and hormonal changes of maize in semi-arid regions of China. Agric Water Manag 223:105723–105731. https://doi.org/10.1016/j.agwat.2019.105723

    Article  Google Scholar 

  72. Lindner AC, Lang D, Seifert M, Podlešáková K, Novák O, Strnad M, Reski R, von Schwartzenberg K (2014) Isopentenyltransferase-1 (IPT1) knockout in Physcomitrella together with phylogenetic analyses of IPTs provide insights into evolution of plant cytokinin biosynthesis. J Exp Bot 65(9):2533–2543. https://doi.org/10.1093/jxb/eru142

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. Liu Z, Lv Y, Zhang M, Liu Y, Kong L, Zou M, Lu G, Cao J, Yu X (2013) Identification, expression, and comparative genomic analysis of the IPT and CKX gene families in Chinese cabbage (Brassica rapa ssp. pekinensis). BMC Genom 14:594. https://doi.org/10.1186/1471-2164-14-594

    CAS  Article  Google Scholar 

  74. Liu CJ, Zhao Y, Zhang K (2019a) Cytokinin transporters: multisite players in cytokinin homeostasis and signal distribution. Front Plant Sci 10:693. https://doi.org/10.3389/fpls.2019.00693

    Article  PubMed  PubMed Central  Google Scholar 

  75. Liu X, Liang W, Li YX, Li MJ, Ma BQ, Liu CH, Ma FW, Li CY (2019b) Transcriptome analysis reveals the effects of alkali stress on root system architecture and endogenous hormones in apple rootstocks. J Integr Agric 18(10):2264–2271. https://doi.org/10.1016/S2095-3119(19)62706-1

    CAS  Article  Google Scholar 

  76. Lomin SN, Yonekura-Sakakibara K, Romanov GA, Sakakibara H (2011) Ligand-binding properties and subcellular localization of maize cytokinin receptors. J Exp Bot 62(14):5149–5159. https://doi.org/10.1093/jxb/err220

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. Mader JC, Emery RJN, Turnbull CGN (2003) Spatial and temporal changes in multiple hormone groups during lateral bud release shortly following apex decapitation of chickpea (Cicer arietinum) seedlings. Physiol Plant 119(2):295–308. https://doi.org/10.1034/j.1399-3054.2003.00179.x

    CAS  Article  Google Scholar 

  78. Mangieri MA, Hall AJ, Striker GG, Chimenti CA (2017) Cytokinins: A key player in determining differences in patterns of canopy senescence in Stay-Green and Fast Dry-Down sunflower (Helianthus annuus L.) hybrids. Eur J Agron 86:60–70. https://doi.org/10.1016/j.eja.2017.03.007

    CAS  Article  Google Scholar 

  79. Mapes CC, Davies PJ (2001) Cytokinins in the ball gall of Solidago altissima and in the gall forming larvae of Eurosta solidaginis. New Phytol 151(1):203–212. https://doi.org/10.1046/j.1469-8137.2001.00158.x

    CAS  Article  PubMed  Google Scholar 

  80. Mi X, Wang X, Wu H, Gan L, Ding J, Li Y (2017) Characterization and expression analysis of cytokinin biosynthesis genes in Fragaria vesca. Plant Growth Regul 82(1):139–149. https://doi.org/10.1007/s10725-016-0246-z

    CAS  Article  Google Scholar 

  81. Miller CO, Skoog F, Okumura FS, Von Saltza MH, Strong FM (1956) Isolation, structure and synthesis of kinetin, a substance promoting cell division. J Am Chem Soc 78(7):1375–1380. https://doi.org/10.1021/ja01588a032

    CAS  Article  Google Scholar 

  82. Morrison EN, Emery RJN, Saville BJ (2015a) Phytohormone involvement in the Ustilago maydis- Zea mays pathosystem: Relationships between abscisic acid and cytokinin levels and strain virulence in infected cob tissue. PLoS ONE 10(6):e0130945–e0130969. https://doi.org/10.1371/journal.pone.0130945

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. Morrison EN, Knowles S, Hayward A, Thorn RG, Saville BJ, Emery RJ (2015b) Detection of phytohormones in temperate forest fungi predicts consistent abscisic acid production and a common pathway for cytokinin biosynthesis. Mycologia 107(2):245–257. https://doi.org/10.3852/14-157

    CAS  Article  PubMed  Google Scholar 

  84. Müller B, Sheen J (2008) Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature 453(7198):1094–1097. https://doi.org/10.1038/nature06943

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. Nawiri S, Oduor R, Mbinda W (2018) Isopentenyletransferase gene enhances drought tolerance in genetically engineered sweetpotato (Ipomoea batatas (L.) Lam). J Plant Biochem. Physiol 6(3):221. https://doi.org/10.4172/2329-9029.1000221

    Article  Google Scholar 

  86. Nguyen HN, Lai N, Kisiala AB, Emery RJN (2021) Isopentenyltransferases (IPT) as master regulators of crop performance: their function, manipulation and genetic potential for stress adaptation and yield improvement. Plant Biotechnol J. https://doi.org/10.1111/1467-7652

    Article  PubMed  PubMed Central  Google Scholar 

  87. Noble A, Kisiala A, Galer A, Clysdale D, Emery RJN (2014) Euglena gracilis (Euglenophyceae) produces abscisic acid and cytokinins and responds to their exogenous application singly and in combination with other growth regulators. Eur J Phycol 49(2):244–254. https://doi.org/10.1080/09670262.2014.911353

    CAS  Article  Google Scholar 

  88. Novák O, Tarkowski P, Tarkowská D, Doležal K, Lenobel R, Strnad M (2003) Quantitative analysis of cytokinins in plants by liquid chromatography-single-quadrupole mass spectrometry. Anal Chim Acta 480(2):207–218. https://doi.org/10.1016/S0003-2670(03)00025-4

    CAS  Article  Google Scholar 

  89. Ogawa J, Takeda S, Xie SX, Hatanaka H, Ashikari T, Amachi T, Shimizu S (2001) Purification, characterization, and gene cloning of purine nucleosidase from Ochrobactrum anthropi. Appl Environ Microbiol 67(4):1783–1787. https://doi.org/10.1128/AEM.67.4.1783-1787.2001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  90. Oslovsky VE, Savelieva EM, Drenichev MS, Romanov GA, Mikhailov SN (2020) Distinct peculiarities of in planta synthesis of isoprenoid and aromatic cytokinins. Biomolecules 10(1):86–100. https://doi.org/10.3390/biom10010086

    CAS  Article  PubMed Central  Google Scholar 

  91. Osugi A, Sakakibara H (2015) Q and A: How do plants respond to cytokinins and what is their importance? BMC Biol 13(1):1–10. https://doi.org/10.1186/s12915-015-0214-5

    CAS  Article  Google Scholar 

  92. Osugi A, Kojima M, Takebayashi Y, Ueda N, Kiba T, Sakakibara H (2017) Systemic transport of trans-zeatin and its precursor have differing roles in Arabidopsis shoots. Nat Plants 3(8):1–6. https://doi.org/10.1038/nplants.2017.112

    CAS  Article  Google Scholar 

  93. Pallai R, Hynes RK, Verma B, Nelson LM (2012) Phytohormone production and colonization of canola (Brassica napus L) roots by Pseudomonas fluorescens 6–8 under gnotobiotic conditions. Can J Microbiol 58(2):170–178. https://doi.org/10.1139/w11-120

    CAS  Article  PubMed  Google Scholar 

  94. Palni LM, Summons R, Letham D (1983) Mass spectrometric analysis of cytokinins in plant tissues: V. Identification of the cytokinin complex of Datura innoxia crown gall tissue. Plant Physiol 72(3):858–863. https://doi.org/10.1104/pp.72.3.858

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  95. Panda BB, Sekhar S, Dash SK, Behera L, Shaw BP (2018) Biochemical and molecular characterisation of exogenous cytokinin application on grain filling in rice. BMC Plant Biol 18(1):89–108. https://doi.org/10.1186/s12870-018-1279-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. Pate JS (1980) Transport and partitioning of nitrogenous solutes. Annu Rev Plant Physiol 31(1):313–340. https://doi.org/10.1146/annurev.pp.31.060180.001525

    CAS  Article  Google Scholar 

  97. Pate JS, Atkins CA, Hamel K, McNeil DL, Layzell DB (1979) Transport of organic solutes in phloem and xylem of a nodulated legume. Plant Physiol 63(6):1082–1088. https://doi.org/10.1104/pp.63.6.1082

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  98. Pertry I, Václavíková K, Depuydt S, Galuszka P, Spíchal L, Temmerman W, Stes E, Schmülling T, Kakimoto T (2009) Identification of Rhodococcus fascians cytokinins and their modus operandi to reshape the plant. PNAS 106(3):929–934. https://doi.org/10.1073/pnas.0811683106

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  99. Polya GM (1974) Regulation of a plant 5’(3’) ribonucleotide phosphohydrolase by cyclic nucleotides and pyrimidine, purine, and cytokinin ribosides. PNAS 71(4):1299–1303. https://doi.org/10.1073/pnas.71.4.1299

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  100. Powell AF, Paleczny AR, Olechowski H, Emery RJN (2013) Changes in cytokinin form and concentration in developing kernels correspond with variation in yield among field-grown barley cultivars. Plant Physiol Biochem 64:33–40. https://doi.org/10.1016/j.plaphy.2012.12.010

    CAS  Article  PubMed  Google Scholar 

  101. Prerostova S, Dobrev PI, Kramna B, Gaudinova A, Knirsch V, Spichal L, Zatloukal M, Vankova R (2020) Heat acclimation and inhibition of cytokinin degradation positively affect heat stress tolerance of Arabidopsis. Front Plant Sci 11:87–101. https://doi.org/10.3389/fpls.2020.00087

    Article  PubMed  PubMed Central  Google Scholar 

  102. Prudent M, Salon C, Smith DL, Emery RJN (2016) Nod factor supply under water stress conditions modulates cytokinin biosynthesis and enhances nodule formation and N nutrition in soybean. Plant Signal Behav 11(9):e1212799–e1212805. https://doi.org/10.1080/15592324.2016.1212799

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  103. Průšová A (2016) Light on phloem transport (an MRI approach). Dissertation, Wageningen University

    Google Scholar 

  104. Qi Z, Xiong L (2013) Characterization of a purine permease family gene OsPUP7 involved in growth and development control in rice. J Integr Plant Biol 55(11):1119–1135. https://doi.org/10.1111/jipb.12101

    CAS  Article  PubMed  Google Scholar 

  105. Qin S, Chen X, Jiang C, Li M, Yuan Y, Yang J, Wu Q (2019) Pruning induced yield and quality variations and the correlated gene expression and phytohormone changes in Lonicera japonica. Ind Crops Prod 132:386–395. https://doi.org/10.1016/j.indcrop.2019.02.048

    CAS  Article  Google Scholar 

  106. Quesnelle PE, Emery RJN (2007) cis-cytokinins that predominate in Pisum sativum during early embryogenesis will accelerate embryo growth in vitro. Can J Bot 85(1):91–103. https://doi.org/10.1139/B06-149

    Article  Google Scholar 

  107. Ralph RK, Wojcik SJ (1977) Effects of N6-benzyladenine on nucleotides in Chinese cabbage leaf discs. Plant Sci Lett 10(1):41–44. https://doi.org/10.1016/0304-4211(77)90047-5

    CAS  Article  Google Scholar 

  108. Raspor M, Motyka V, Ninković S, Dobrev PI, Malbeck J, Ćosić T, Cingel A, Savić J, Tadić V, Dragićević IČ (2020) Endogenous levels of cytokinins, indole-3-acetic acid and abscisic acid in in vitro grown potato: A contribution to potato hormonomics. Sci Rep 10(1):1–13. https://doi.org/10.1038/s41598-020-60412-9

    CAS  Article  Google Scholar 

  109. Reid D, Nadzieja M, Novák O, Heckmann AB, Sandal N, Stougaard J (2017) Cytokinin biosynthesis promotes cortical cell responses during nodule development. Plant Physiol 175(1):361–375. https://doi.org/10.1104/pp.17.00832

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  110. Riegler H, Geserick C, Zrenner R (2011) Arabidopsis thaliana nucleosidase mutants provide new insights into nucleoside degradation. New Phytol 191(2):349–359. https://doi.org/10.1111/j.1469-8137.2011.03711.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  111. Rolle RS, Chism GW (1989) Kinetic comparison of cytokinin nucleosidase activity isolated from normally ripening and mutant tomato varieties. Plant Physiol 91(1):148–150. https://doi.org/10.1104/pp.91.1.148

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  112. Romanov GA, Schmülling T (2021) Opening doors for cytokinin trafficking at the ER membrane. Trends Plant Sci 26(4):305–308. https://doi.org/10.1016/j.tplants.2021.02.006

    CAS  Article  PubMed  Google Scholar 

  113. Romanov GA, Lomin SN, Schmülling T (2006) Biochemical characteristics and ligand-binding properties of Arabidopsis cytokinin receptor AHK3 compared to CRE1/AHK4 as revealed by a direct binding assay. J Exp Bot 57(15):4051–4058. https://doi.org/10.1093/jxb/erl179

    CAS  Article  PubMed  Google Scholar 

  114. Sakakibara H (2006) Cytokinins: Activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449. https://doi.org/10.1146/annurev.arplant.57.032905.105231

    CAS  Article  PubMed  Google Scholar 

  115. Sakakibara H (2010) Cytokinin biosynthesis and metabolism. Springer, Dordrecht 2010:95–114

    Google Scholar 

  116. Samuelson ME, Eliasson L, Larsson CM (1992) Nitrate-regulated growth and cytokinin responses in seminal roots of barley. Plant Physiol 98(1):309–315. https://doi.org/10.1104/pp.98.1.309

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  117. Schäfer M, Brütting C, Meza-Canales ID, Großkinsky DK, Vankova R, Baldwin IT, Meldau S (2015) The role of cis-zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions. J Exp Bot 66(16):4873–4884. https://doi.org/10.1093/jxb/erv214

    CAS  Article  PubMed  Google Scholar 

  118. Schaller GE, Street IH, Kieber JJ (2014) Cytokinin and the cell cycle. Curr Op Plant Biol 21:7–15. https://doi.org/10.1016/j.pbi.2014.05.015

    CAS  Article  Google Scholar 

  119. Seegobin M, Kisiala A, Noble A, Kaplan D, Brunetti C, Emery RJN (2018) Canis familiaris tissues are characterized by different profiles of cytokinins typical of the tRNA degradation pathway. FASEB J 32(12):6575–6581. https://doi.org/10.1096/fj.201800347

    CAS  Article  Google Scholar 

  120. Shoaib M, Yang W, Shan Q, Sajjad M, Zhang A (2019) Genome-wide identification and expression analysis of new cytokinin metabolic genes in bread wheat (Triticum aestivum L.). PeerJ 7:e6300–e6323. https://doi.org/10.7717/peerj.6300

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  121. Sokołowska K (2013) Symplasmic transport in wood: the importance of living xylem cells. Symplasmic transport in vascular plants. Springer, New York, pp 101–132

    Chapter  Google Scholar 

  122. Stolz A, Riefler M, Lomin SN, Achazi K, Romanov GA, Schmülling T (2011) The specificity of cytokinin signalling in Arabidopsis thaliana is mediated by differing ligand affinities and expression profiles of the receptors. Plant J 67(1):157–168. https://doi.org/10.1111/j.1365-313X.2011.04584.x

    CAS  Article  PubMed  Google Scholar 

  123. Straka JR, Hayward AR, Emery RJN (2010) Gall-inducing Pachypsylla celtidis (Psyllidae) infiltrate hackberry trees with high concentrations of phytohormones. J Plant Interact 5(3):197–203. https://doi.org/10.1080/17429145.2010.484552

    CAS  Article  Google Scholar 

  124. Sun J, Hirose N, Wang X, Wen P, Xue L, Sakakibara H, Zuo J (2005) Arabidopsis SOI33/AtENT8 gene encodes a putative equilibrative nucleoside transporter that is involved in cytokinin transport in planta. J Integr Plant Biol 47(5):588–603. https://doi.org/10.1111/j.1744-7909.2005.00104.x

    CAS  Article  Google Scholar 

  125. Svačinová J, Novák O, Plačková L, Lenobel R, Holík J, Strnad M, Doležal K (2012) A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction. Plant Methods 8(1):17–31. https://doi.org/10.1186/1746-4811-8-17

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  126. Takagi M, Yokota T, Murofushi N, Saka H, Takahashi N (1989) Quantitative changes of free-base, riboside, ribotide and glucoside cytokinins in developing rice grains. Plant Growth Regul 8(4):349–364. https://doi.org/10.1007/BF00024665

    CAS  Article  Google Scholar 

  127. Takei K, Sakakibara H, Taniguchi M, Sugiyama T (2001) Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf: Implication of cytokinin species that induces gene expression of maize response regulator. Plant Cell Physiol 42(1):85–93. https://doi.org/10.1093/pcp/pce009

    CAS  Article  PubMed  Google Scholar 

  128. Takei K, Yamaya T, Sakakibara H (2004) Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-Zeatin. J Biol Chem 279(40):41866–41872. https://doi.org/10.1074/jbc.M406337200

    CAS  Article  PubMed  Google Scholar 

  129. Talarek-Karwel M, Bajguz A, Piotrowska-Niczyporuk A (2020) Hormonal response of Acutodesmus obliquus exposed to combined treatment with 24-epibrassinolide and lead. J Appl Phycol 32(5):2903–2914. https://doi.org/10.1007/s10811-020-02191-4

    CAS  Article  Google Scholar 

  130. Tan M, Li G, Qi S, Liu X, Chen X, Ma J, Zhang D, Han M (2018) Identification and expression analysis of the IPT and CKX gene families during axillary bud outgrowth in apple (Malus domestica Borkh.). Gene 651:106–117. https://doi.org/10.1016/j.gene.2018.01.101

    CAS  Article  PubMed  Google Scholar 

  131. Tang YJ, Qian W, Xue JY, Yan L, Li RM, Van Nocker S, Wang YJ, Zhang CH (2018) Gene cloning and expression analyses of WBC genes in the developing grapevine seeds. J Integr Agric 17(6):1348–1359. https://doi.org/10.1016/S2095-3119(17)61827-6

    CAS  Article  Google Scholar 

  132. Tarkowská D, Filek M, Biesaga-Kościelniak J, Marcińska I, Macháčková I, Krekule J, Strnad M (2012) Cytokinins in shoot apices of Brassica napus plants during vernalization. Plant Sci 187:105–112. https://doi.org/10.1016/j.plantsci.2012.02.003

    CAS  Article  PubMed  Google Scholar 

  133. Tarkowski P, Ge L, Yong JWH, Tan SN (2009) Analytical methods for cytokinins. Trends Anal Chem 28(3):323–335. https://doi.org/10.1016/j.trac.2008.11.010

    CAS  Article  Google Scholar 

  134. Tessi TM, Brumm S, Winklbauer E, Schumacher B, Pettinari G, Lescano I, González CA, Wanke D, Maurino VG, Harter K, Desimone M (2021) Arabidopsis AZG2 transports cytokinins in vivo and regulates lateral root emergence. New Phytol 229(2):979–993. https://doi.org/10.1111/nph.16943

    CAS  Article  PubMed  Google Scholar 

  135. To JPC, Kieber JJ (2008) Cytokinin signaling: two-components and more. Trends Plant Sci 13:85–92. https://doi.org/10.1016/j.tplants.2007.11.005

    CAS  Article  PubMed  Google Scholar 

  136. To JPC, Haberer G, Ferreira FJ, Deruere J, Mason MG, Schaller GE, Alonso JM, Ecker JR, Kieber JJ (2004) Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell 16(3):658–671. https://doi.org/10.1105/tpc.018978

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  137. Tokunaga H, Kojima M, Kuroha T, Ishida T, Sugimoto K, Kiba T, Sakakibara H (2012) Arabidopsis lonely guy (LOG) multiple mutants reveal a central role of the LOG-dependent pathway in cytokinin activation. Plant J 69(2):355–365. https://doi.org/10.1111/j.1365-313X.2011.04795.x

    CAS  Article  PubMed  Google Scholar 

  138. Tran LSP, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. PNAS 104(51):20623–20628. https://doi.org/10.1073/pnas.0706547105

    Article  PubMed  PubMed Central  Google Scholar 

  139. Tuan PA, Yamasaki Y, Kanno Y, Seo M, Ayele BT (2019) Transcriptomics of cytokinin and auxin metabolism and signaling genes during seed maturation in dormant and non-dormant wheat genotypes. Sci Rep 9(1):1–16. https://doi.org/10.1038/s41598-019-40657-9

    CAS  Article  Google Scholar 

  140. Vanková R, Kosová K, Dobrev P, Vítámvás P, Trávníčková A, Cvikrová M, Pešek B, Gaudinová A, Prerostová S, Musilová J, Galiba G (2014) Dynamics of cold acclimation and complex phytohormone responses in Triticum monococcum lines G3116 and DV92 differing in vernalization and frost tolerance level. Env Exp Bot 101:12–25. https://doi.org/10.1016/j.envexpbot.2014.01.002

    CAS  Article  Google Scholar 

  141. Wang W, Hao Q, Wang W, Li Q, Chen F, Ni F, Wang Y, Fu D, Wu J, Wang W (2019) The involvement of cytokinin and nitrogen metabolism in delayed flag leaf senescence in a wheat stay-green mutant, tasg1. Plant Sci 278:70–79. https://doi.org/10.1016/j.plantsci.2018.10.024

    CAS  Article  PubMed  Google Scholar 

  142. Wang L, Xue J, Yan J, Liu M, Tang Y, Wang Y, Zhang C (2020) Expression and functional analysis of VviABCG14 from Vitis vinifera suggest the role in cytokinin transport and the interaction with VviABCG7. Plant Physiol Biochem 153:1–10. https://doi.org/10.1016/j.plaphy.2020.05.011

    CAS  Article  PubMed  Google Scholar 

  143. Wheeldon CD, Bennett T (2020) There and back again: An evolutionary perspective on long-distance coordination of plant growth and development. Academic Press, Semin Cell Dev Biol. https://doi.org/10.1016/j.semcdb.2020.06.011

    Book  Google Scholar 

  144. Wulfetange K, Lomin SN, Romanov GA, Stolz A, Heyl A, Schmülling T (2011) The cytokinin receptors of Arabidopsis are located mainly to the endoplasmic reticulum. Plant Physiol 156(4):1808–1818. https://doi.org/10.1104/pp.111.180539

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  145. Wybouw B, De Rybel B (2019) Cytokinin – A developing story. Trends Plant Sci 24(2):177–185. https://doi.org/10.1016/j.tplants.2018.10.012

    CAS  Article  PubMed  Google Scholar 

  146. Xiao Y, Zhang J, Yu G, Lu X, Mei W, Deng H, Zhang G, Chen G, Chu C, Tong H, Tang W (2020) Endoplasmic reticulum-localized PURINE PERMEASE1 regulates plant height and grain weight by modulating cytokinin distribution in rice. Front Plant Sci 11:618560. https://doi.org/10.3389/fpls.2020.618560

    Article  PubMed  PubMed Central  Google Scholar 

  147. Yang J, Peng S, Visperas RM, Sanico AL, Zhu Q, Gu S (2000) Grain filling pattern and cytokinin content in the grains and roots of rice plants. Plant Growth Regul 30(3):261–270. https://doi.org/10.1023/A:1006356125418

    CAS  Article  Google Scholar 

  148. Yang W, Cortijo S, Korsbo N, Roszak P, Schiessl K, Gurzadyan A, Wightman R, Jönsson H, Meyerowitz E (2021) Molecular mechanism of cytokinin-activated cell division in Arabidopsis. Science 371.6536:1350–1355. https://doi.org/10.1126/science.abe2305

    CAS  Article  Google Scholar 

  149. Zalabák D, Pospíšilová H, Šmehilová M, Mrízová K, Frébort I, Galuszka P (2013) Genetic engineering of cytokinin metabolism: Prospective way to improve agricultural traits of crop plants. Biotechnol Adv 31(1):97–117. https://doi.org/10.1016/j.biotechadv.2011.12.003

    CAS  Article  PubMed  Google Scholar 

  150. Zalabák D, Galuszka P, Mrízová K, Podlešáková K, Gu R, Frébortová J (2014) Biochemical characterization of the maize cytokinin dehydrogenase family and cytokinin profiling in developing maize plantlets in relation to the expression of cytokinin dehydrogenase genes. Plant Physiol Biochem 74:283–293. https://doi.org/10.1016/j.plaphy.2013.11.020

    CAS  Article  PubMed  Google Scholar 

  151. Zemanová V, Pavlíková D, Dobrev PI, Motyka V, Pavlik M (2019) Endogenous phytohormone profiles in Pteris fern species differing in arsenic accumulating ability. Environ Exp Bot 166:103822–103832. https://doi.org/10.1016/j.envexpbot.2019.103822

    CAS  Article  Google Scholar 

  152. Zhang K, Novak O, Wei Z, Gou M, Zhang X, Yu Y, Yang H, Cai Y, Strnad M, Liu CJ (2014) Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins. Nat Commun 5(1):1–12. https://doi.org/10.1038/ncomms4274

    CAS  Article  Google Scholar 

  153. Zhang YJ, Li A, Liu XQ, Sun JX, Guo WJ, Zhang JW, Lyu YM (2019) Changes in the morphology of the bud meristem and the levels of endogenous hormones after low temperature treatment of different Phalaenopsis cultivars. S Afr J Bot 125:499–504. https://doi.org/10.1016/j.sajb.2019.08.016

    CAS  Article  Google Scholar 

  154. Zhao J, Yu N, Ju M, Fan B, Zhang Y, Zhu E, Zhang M, Zhang K (2019) ABC transporter OsABCG18 controls the shootward transport of cytokinins and grain yield in rice. J Exp Bot 70(21):6277–6291. https://doi.org/10.1093/jxb/erz382

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  155. Zhao J, Ding B, Zhu E, Deng X, Zhang M, Zhang P, Wang L, Dai Y, Xiao S, Zhang C, Liu CJ (2021) Phloem 25 unloading via the apoplastic pathway is essential for shoot distribution of root-synthesized cytokinins. Plant Physiol. https://doi.org/10.1093/plphys/kiab188

    Article  PubMed  PubMed Central  Google Scholar 

  156. Zhou M, Ghnaya T, Dailly H, Cui G, Vanpee B, Han R, Lutts S (2019) The cytokinin trans-zeatine riboside increased resistance to heavy metals in the halophyte plant species Kosteletzkya pentacarpos in the absence but not in the presence of NaCl. Chemosphere 233:954–965. https://doi.org/10.1016/j.chemosphere.2019.06.023

    CAS  Article  PubMed  Google Scholar 

  157. Žižková E, Kubeš M, Dobrev PI, Přibyl P, Šimura J, Zahajská L, Záveská Drábková L, Novák O, Motyka V (2017) Control of cytokinin and auxin homeostasis in cyanobacteria and algae. Ann Bot 119(1):151–166. https://doi.org/10.1093/aob/mcw194

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support from the Natural Sciences and Engineering Council of Canada (RGPIN-05436 and STPGP 521417 to RJNE) is gratefully acknowledged. HNN is supported by International Graduate Scholarship (IGS) from Environmental Life Sciences Graduate (EnLS) Program, Trent University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hai Ngoc Nguyen.

Ethics declarations

Conflict of interest

The authors report no commercial or proprietary interest in any product or concept discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Gerhard Leubner.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.N., Nguyen, T.Q., Kisiala, A.B. et al. Beyond transport: cytokinin ribosides are translocated and active in regulating the development and environmental responses of plants. Planta 254, 45 (2021). https://doi.org/10.1007/s00425-021-03693-2

Download citation

Keywords

  • Cytokinins
  • Hormone activity
  • Signal transduction
  • Stress response
  • Translocation
  • Riboside conjugates