Skip to main content
Log in

Dissecting the trade-off of grain number and size in wheat

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Principal component and meta-QTL analyses identified genetic loci affecting the trade-off of wheat grain number and size, which could provide opportunities to optimize local breeding strategies for further yield improvement.

Abstract

Grain yield of wheat is complex, and its physiological and genetic bases remain largely unknown. Using the Forno/Oberkulmer recombinant inbred lines, this study validated the negative phenotypic relationships between thousand grain weight (TGW) and grain number components. This trade-off might be alleviated at the population level by early anthesis and at the shoot level by higher shoot biomass. Principal component (PC) analysis revealed three useful PCs, of which both PC1 and PC3 were positively associated with grain yield and grains m−2 through increased spikes m−2 (for PC1) or grains per spike (for PC3), while PC2 primarily reflected the trade-off of grain number and TGW. Quantitative trait locus (QTL) mapping detected eight and seven loci for PC1 and PC2, respectively, on chromosomes 1D, 2A, 3A, 3B, 4A, 4B, 5A and 7B, individually explaining 11.7‒29.3% of phenotypic variations. Using the 1203 QTLs published previously, a meta-analysis was performed to reveal 12, 21, 37 and 54 genomic regions (MQTLs) affecting grains m−2, spikes m−2, grains per spike and TGW, respectively. Moreover, 67 MQTLs (96%) for grain number were coincided with the TGW MQTLs, with reverse phenotypic effects, suggesting intensive genetic trade-off between grain number and size. The AGP2 gene, which encodes ADP-glucose pyrophosphorylase determining TGW, was found by haplotype analysis in the Forno/Oberkulmer population to affect grain number oppositely, indicating this trade-off at the gene level. Appropriate combinations of the QTLs/genes for local breeding targets, such as higher grain number or larger grains, therefore, would be critical to achieve future yield gains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CS:

Chinese Spring

IWGSC:

International Wheat Genome Sequencing Consortium

LOD:

Likelihood of odd

MQTL:

Meta quantitative trait locus

PC:

Principal component

RIL:

Recombinant inbred line

TGW:

Thousand grain weight

References

  • Bennett D, Izanloo A, Reynolds M, Kuchel H, Langridge P, Schnurbusch T (2012) Genetic dissection of grain yield and physical grain quality in bread wheat (Triticum aestivum L.) under water-limited environments. Theor Appl Genet 125:255–271

    Article  PubMed  Google Scholar 

  • Börner A, Schumann E, Furste A, Coster H, Leithold B, Roder MS, Weber WE (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Brinton J, Simmonds J, Minter F, Leverington-Waite M, Snape J, Uauy C (2017) Increased pericarp cell length underlies a major quantitative trait locus for grain weight in hexaploid wheat. New Phytol 215:1026–1038

    Article  CAS  PubMed  Google Scholar 

  • Brocklehurst PA (1977) Factors controlling grain weight in wheat. Nature 266:348–349

    Article  Google Scholar 

  • Calderini DF, Abeledo LG, Savin R, Slafer GA (1999) Effect of temperature and carpel size during pre-anthesis on potential grain weight in wheat. J Agric Sci 132:453–459

    Article  Google Scholar 

  • Campbell KG, Bergman CJ, Gualberto DG, Anderson JA, Giroux MJ, Hareland G, Fulcher RG, Sorrells ME, Finney PL (1999) Quantitative trait loci associated with kernel traits in a soft × hard wheat cross. Crop Sci 39:1184–1195

    Article  CAS  Google Scholar 

  • Chairi F, Vergara-Diaz O, Vatter T, Aparicio N, Nieto-Taladriz MT, Kefauver SC, Bort J, Serret MD, Araus JL (2018) Post-green revolution genetic advance in durum wheat: the case of Spain. Field Crop Res 228:158–169

    Article  Google Scholar 

  • Deng Z, Cui Y, Han Q, Fang W, Li J, Tian J (2017) Discovery of consistent QTLs of wheat spike-related traits under nitrogen treatment at different development stages. Front Plant Sci 8:2120

    Article  PubMed  PubMed Central  Google Scholar 

  • Distelfeld A, Avni R, Fischer AM (2014) Senescence, nutrient remobilization, and yield in wheat and barley. J Exp Bot 65:3783–3798

    Article  PubMed  Google Scholar 

  • Donald CM (1968) The breeding of crop ideotypes. Euphytica 17:385–403

    Article  Google Scholar 

  • Dreccer MF, van Herwaarden AF, Chapman SC (2009) Grain number and grain weight in wheat lines contrasting for stem water soluble carbohydrate concentration. Field Crop Res 112:43–54

    Article  Google Scholar 

  • Gambín BL, Borrás L (2010) Resource distribution and the trade-off between seed number and seed weight: a comparison across crop species. Ann Appl Biol 156:91–102

    Article  Google Scholar 

  • Gegas VC, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, Sayers L, Doonan JH, Snape JW (2010) A genetic framework for grain size and shape variation in wheat. Plant Cell 22:1046–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golan G, Ayalon I, Perry A, Zimran G, Ade-Ajayi T, Mosquna A, Distelfeld A, Peleg Z (2019) GNI-A1 mediates trade-off between grain number and grain weight in tetraploid wheat. Theor Appl Genet 132:2353–2365

    Article  CAS  PubMed  Google Scholar 

  • González FG, Miralles DJ, Slafer GA (2011) Wheat floret survival as related to pre-anthesis spike growth. J Exp Bot 62:4889–4901

    Article  PubMed  Google Scholar 

  • Griffiths S, Wingen L, Pietragalla J, Garcia G, Hasan A, Miralles D, Calderini DF, Ankleshwaria JB, Waite ML, Simmonds J, Snape J, Reynolds M (2015) Genetic dissection of grain size and grain number trade-offs in CIMMYT wheat germplasm. PLoS ONE 10:e0118847

    Article  PubMed  PubMed Central  Google Scholar 

  • Guan P, Lu L, Jia L, Kabir MR, Zhang J, Lan T, Zhao Y, Xin M, Hu Z, Yao Y, Ni Z, Sun Q, Peng H (2018) Global QTL analysis identifies genomic regions on chromosomes 4A and 4B harboring stable loci for yield-related traits across different environments in wheat (Triticum aestivum L.). Front Plant Sci 9:529

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasan AK, Herrera J, Lizana C, Calderini DF (2011) Carpel weight, grain length and stabilized grain water content are physiological drivers of grain weight determination of wheat. Field Crop Res 123:241–247

    Article  Google Scholar 

  • Hou J, Li T, Wang Y, Hao C, Liu H, Zhang X (2017) ADP-glucose pyrophosphorylase genes, associated with kernel weight, underwent selection during wheat domestication and breeding. Plant Biotechnol J 15:1533–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IWGSC (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191

    Article  Google Scholar 

  • Ji X, Shiran B, Wan J, Lewis DC, Jenkins CLD, Condon AG, Richards RA, Dolferus R (2010) Importance of pre-anthesis anther sink strength for maintenance of grain number during reproductive stage water stress in wheat. Plant Cell Environ 33:926–942

    Article  CAS  PubMed  Google Scholar 

  • Jia H, Wan H, Yang S, Zhang Z, Kong Z, Xue S, Zhang L, Ma Z (2013) Genetic dissection of yield-related traits in a recombinant inbred line population created using a key breeding parent in China’s wheat breeding. Theor Appl Genet 126:2123–2139

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Jiang Q, Hao C, Hou J, Wang L, Zhang H, Zhang S, Chen X, Zhang X (2015) A yield-associated gene TaCWI, in wheat: its function, selection and evolution in global breeding revealed by haplotype analysis. Theor Appl Genet 128:131–143

    Article  CAS  PubMed  Google Scholar 

  • Kirby EJM (1988) Analysis of leaf, stem and ear growth in wheat from terminal spikelet stage to anthesis. Field Crop Res 18:127–140

    Article  Google Scholar 

  • Kuchel H, Williams KJ, Langridge P, Eagles HA, Jefferies SP (2007) Genetic dissection of grain yield in bread wheat. I QTL Analysis Theor Appl Genet 115:1029–1041

    Article  CAS  PubMed  Google Scholar 

  • Labra MH, Struik PC, Evers JB, Calderini DF (2017) Plasticity of seed weight compensates reductions in seed number of oilseed rape in response to shading at flowering. Eur J Agron 84:113–124

    Article  Google Scholar 

  • Lalonde S, Morse D, Saini HS (1997) Expression of a wheat ADP-glucose pyrophosphorylase gene during development of normal and water-stress-affected anthers. Plant Mol Biol 34:445–453

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Eom J, Hwang S, Shin D, An G, Okita TW, Jeon J (2016) Plastidic phosphoglucomutase and ADP-glucose pyrophosphorylase mutants impair starch synthesis in rice pollen grains and cause male sterility. J Exp Bot 67:5557–5569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Wen W, He Z, Liu J, Jin H, Cao S, Geng H, Yan J, Zhang P, Wan Y, Xia X (2018) Genome-wide linkage mapping of yield-related traits in three Chinese bread wheat populations using high-density SNP markers. Theor Appl Genet 131:1903–1924

    Article  PubMed  Google Scholar 

  • Liu Y, Lin Y, Gao S, Li Z, Ma J, Deng M, Chen G, Wei Y, Zheng Y (2017a) A genome-wide association study of 23 agronomic traits in Chinese wheat landraces. Plant J 91:861–873

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhang J, Hu Y, Chen J (2017b) Dwarfing genes Rht4 and Rht-B1b affect plant height and key agronomic traits in common wheat under two water regimes. Field Crop Res 204:242–248

    Article  Google Scholar 

  • Liu K, Sun X, Ning T, Duan X, Wang Q, Liu T, An Y, Guan X, Tian J, Chen J (2018) Genetic dissection of wheat panicle traits using linkage analysis and a genome-wide association study. Theor Appl Genet 131:1073–1090

    Article  CAS  PubMed  Google Scholar 

  • Lizana XC, Riegel R, Gomez LD, Herrera J, Isla A, McQueen-Mason SJ, Calderini DF (2010) Expansins expression is associated with grain size dynamics in wheat (Triticum aestivum L.). J Exp Bot 61:1147–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo Valvo PJ, Miralles DJ, Serrago RA (2018) Genetic progress in Argentine bread wheat varieties released between 1918 and 2011: changes in physiological and numerical yield components. Field Crop Res 221:314–321

    Article  Google Scholar 

  • Lozada DN, Mason RE, Sukumaran S, Dreisigacker S (2018) Validation of grain yield QTLs from soft winter wheat using a CIMMYT spring wheat panel. Crop Sci 58:1964–1971

    Article  CAS  Google Scholar 

  • Ma Z, Sorrells ME (1995) Genetic analysis of fertility restoration in wheat using restriction fragment length polymorphisms. Crop Sci 35:1137–1143

    Article  CAS  Google Scholar 

  • Maccaferri M, Sanguineti MC, Demontis A, El-Ahmed A, del Moral LG, Maalouf F, Nachit M, Nserallah N, Ouabbou H, Rhouma S, Royo C, Villegas D, Tuberosa R (2011) Association mapping in durum wheat grown across a broad range of water regimes. J Exp Bot 62:409–438

    Article  CAS  PubMed  Google Scholar 

  • Maphosa L, Langridge P, Taylor H, Parent B, Emebiri LC, Kuchel H, Reynolds MP, Chalmers KJ, Okada A, Edwards J, Mather DE (2014) Genetic control of grain yield and grain physical characteristics in a bread wheat population grown under a range of environmental conditions. Theor Appl Genet 127:1607–1624

    Article  PubMed  Google Scholar 

  • Maydup ML, Antonietta M, Guiamet JJ, Graciano C, López JR, Tambussi EA (2010) The contribution of ear photosynthesis to grain filling in bread wheat (Triticum aestivum L.). Field Crop Res 119:48–58

    Article  Google Scholar 

  • McIntyre CL, Mathews KL, Rattey A, Chapman SC, Drenth J, Ghaderi M, Reynolds M, Shorter R (2010) Molecular detection of genomic regions associated with grain yield and yield-related components in an elite bread wheat cross evaluated under irrigated and rainfed conditions. Theor Appl Genet 120:527–541

    Article  CAS  PubMed  Google Scholar 

  • Messmer MM, Keller M, Zanetti S, Keller B (1999) Genetic linkage map of a wheat × spelt cross. Theor Appl Genet 98:1163–1170

    Article  CAS  Google Scholar 

  • Qin X, Zhang F, Liu C, Yu H, Cao B, Tian S, Liao Y, Siddique KHM (2015) Wheat yield improvements in China: past trends and future directions. Field Crop Res 177:117–124

    Article  Google Scholar 

  • Quarrie SA, Quarrie SP, Radosevic R, Rancic D, Kaminska A, Barnes JD, Leverington M, Ceoloni C, Dodig D (2006) Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. J Exp Bot 57:2627–2637

    Article  CAS  PubMed  Google Scholar 

  • Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8:e66428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebetzke GJ, van Herwaarden AF, Jenkins C, Weiss M, Lewis D, Ruuska S, Tabe L, Fettell NA, Richards RA (2008) Quantitative trait loci for water-soluble carbohydrates and associations with agronomic traits in wheat. Aust J Agric Res 59:891–905

    Article  CAS  Google Scholar 

  • Rebetzke GJ, Bonnett DG, Reynolds MP (2016) Awns reduce grain number to increase grain size and harvestable yield in irrigated and rainfed spring wheat. J Exp Bot 67:2573–2586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds M, Foulkes J, Furbank R, Griffiths S, King J, Murchie E, Parry M, Slafer G (2012) Achieving yield gains in wheat. Plant Cell Environ 35:1799–1823

    Article  PubMed  Google Scholar 

  • Sadras VO (2007) Evolutionary aspects of the trade-off between seed size and number in crops. Field Crop Res 100:125–138

    Article  Google Scholar 

  • Sadras VO, Denison RF (2009) Do plant parts compete for resources? An evolutionary viewpoint. New Phytol 183:565–574

    Article  PubMed  Google Scholar 

  • Sanchez-Bragado R, Molero G, Reynolds MP, Araus JL (2014) Relative contribution of shoot and ear photosynthesis to grain filling in wheat under good agronomical conditions assessed by differential organ δ13C. J Exp Bot 65:5401–5413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Bragado R, Kim JW, Rivera-Amado C, Molero G, Araus JL, Savin R, Slafer GA (2020) Are awns truly relevant for wheat yields? A study of performance of awned/awnless isogenic lines and their response to source–sink manipulations. Field Crop Res 254:107827

    Article  Google Scholar 

  • Sanchez-Garcia M, Royo C, Aparicio N, Martin-Sanchez JA, Alvaro F (2013) Genetic improvement of bread wheat yield and associated traits in Spain during the 20th century. J Agric Sci 151:105–118

    Article  CAS  PubMed  Google Scholar 

  • Schulthess AW, Reif JC, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillier O, Stiewe G, Ganal MW, Röder MS, Jiang Y (2017) The roles of pleiotropy and close linkage as revealed by association mapping of yield and correlated traits of wheat (Triticum aestivum L.). J Exp Bot 68:4089–4101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shearman VJ, Sylvester-Bradley R, Scott RK, Foulkes MJ (2005) Physiological processes associated with wheat yield progress in the UK. Crop Sci 45:175–185

    Article  Google Scholar 

  • Shi S, Azam FI, Li H, Chang X, Li B, Jing R (2017) Mapping QTL for stay-green and agronomic traits in wheat under diverse water regimes. Euphytica 213:246

    Article  Google Scholar 

  • Slafer GA (2012) Wheat development: its role in phenotyping and improving crop adaptation. In: Reynolds MP, Pask AJD, Mullan DM (eds) Physiological breeding I: interdisciplinary approaches to improve crop adaptation. CIMMYT, Mexico, pp 107–121

    Google Scholar 

  • Slafer GA, Savin R, Sadras VO (2014) Coarse and fine regulation of wheat yield components in response to genotype and environment. Field Crop Res 157:71–83

    Article  Google Scholar 

  • Sukumaran S, Dreisigacker S, Lopes M, Chavez P, Reynolds MP (2015) Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments. Theor Appl Genet 128:353–363

    Article  CAS  PubMed  Google Scholar 

  • Sukumaran S, Lopes M, Dreisigacker S, Reynolds M (2018) Genetic analysis of multi-environmental spring wheat trials identifies genomic regions for locus-specific trade-offs for grain weight and grain number. Theor Appl Genet 131:985–998

    Article  CAS  PubMed  Google Scholar 

  • Sylvester-Bradley R, Berry P, Blake J, Kindred D, Spink J, Bingham I, McVittie J, Foulkes J (2008) The wheat growth guide, 2nd edn. HGCA, London

    Google Scholar 

  • Thorneycroft D, Hosein F, Thangavelu M, Clark J, Vizir I, Burrell MM, Ainsworth C (2003) Characterization of a gene from chromosome 1B encoding the large subunit of ADPglucose pyrophosphorylase from wheat: evolutionary divergence and differential expression of Agp2 genes between leaves and developing endosperm. Plant Biotechnol J 1:259–270

    Article  CAS  PubMed  Google Scholar 

  • Tottman DR, Broad H (1987) The decimal code for the growth stages of cereals, with illustrations. Ann Appl Biol 110:441–454

    Article  Google Scholar 

  • van Herwaarden AF, Angus JF, Richards RA, Farquhar GD (1998) ‘Haying-off’, the negative grain yield response of dryland wheat to nitrogen fertiliser. II. Carbohydrate and protein dynamics. Aust J Agric Res 49:1083–1093

    Article  Google Scholar 

  • Van Ooijen JW (2009) MapQTL® 6, software for the mapping of quantitative traits loci in experimental populations of diploid species. Wageningen, Kyazma BV

    Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, IWGSC, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014) Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    Article  Google Scholar 

  • Xie Q, Mayes S, Sparkes DL (2015) Carpel size, grain filling, and morphology determine individual grain weight in wheat. J Exp Bot 66:6715–6730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Q, Fernando KMC, Mayes S, Sparkes DL (2017) Identifying seedling root architectural traits associated with yield and yield components in wheat. Ann Bot 119:1115–1129

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie Q, Li N, Yang Y, Lv Y, Yao H, Wei R, Sparkes DL, Ma Z (2018) Pleiotropic effects of the wheat domestication gene Q on yield and grain morphology. Planta 247:1089–1098

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Li S, Li L, Ma F, Fu X, Shi Z, Xu H, Ma P, An D (2017) QTL mapping for yield and photosynthetic related traits under different water regimes in wheat. Mol Breed 37:34

    Article  Google Scholar 

  • Yang J, Zhou Y, Wu Q, Chen Y, Zhang P, Zhang Ye HuW, Wang X, Zhao H, Dong L, Han J, Liu Z, Cao T (2019) Molecular characterization of a novel TaGL3-5A allele and its association with grain length in wheat (Triticum aestivum L.). Theor Appl Genet 132:1799–1814

    Article  CAS  PubMed  Google Scholar 

  • Zhai H, Feng Z, Du X, Song Y, Liu X, Qi Z, Song L, Li J, Li L, Peng H, Hu Z, Yao Y, Xin M, Xiao S, Sun Q, Ni Z (2018) A novel allele of TaGW2-A1 is located in a finely mapped QTL that increases grain weight but decreases grain number in wheat (Triticum aestivum L.). Theor Appl Genet 131:539–553

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Beat Keller (University of Zurich, Switzerland) and Monika Messmer (Research Institute of Organic Agriculture, Switzerland) for providing the plant materials and marker information of the Forno/Oberkulmer RIL population. This work was supported by the Natural Science Foundation of China (No.: 31801354) and the Innovation and Entrepreneurship Talents Program of Jiangsu, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 33 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Q., Sparkes, D.L. Dissecting the trade-off of grain number and size in wheat. Planta 254, 3 (2021). https://doi.org/10.1007/s00425-021-03658-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-021-03658-5

Keywords

Navigation