Skip to main content

Detection of ploidy and chromosomal aberrations in commercial oil palm using high-throughput SNP markers

Abstract

Main conclusion

Karyotyping using high-density genome-wide SNP markers identified various chromosomal aberrations in oil palm (Elaeis guineensis Jacq.) with supporting evidence from the 2C DNA content measurements (determined using FCM) and chromosome counts.

Abstract

Oil palm produces a quarter of the world’s total vegetable oil. In line with its global importance, an initiative to sequence the oil palm genome was carried out successfully, producing huge amounts of sequence information, allowing SNP discovery. High-capacity SNP genotyping platforms have been widely used for marker–trait association studies in oil palm. Besides genotyping, a SNP array is also an attractive tool for understanding aberrations in chromosome inheritance. Exploiting this, the present study utilized chromosome-wide SNP allelic distributions to determine the ploidy composition of over 1,000 oil palms from a commercial F1 family, including 197 derived from twin-embryo seeds. Our method consisted of an inspection of the allelic intensity ratio using SNP markers. For palms with a shifted or abnormal distribution ratio, the SNP allelic frequencies were plotted along the pseudo-chromosomes. This method proved to be efficient in identifying whole genome duplication (triploids) and aneuploidy. We also detected several loss of heterozygosity regions which may indicate small chromosomal deletions and/or inheritance of identical by descent regions from both parents. The SNP analysis was validated by flow cytometry and chromosome counts. The triploids were all derived from twin-embryo seeds. This is the first report on the efficiency and reliability of SNP array data for karyotyping oil palm chromosomes, as an alternative to the conventional cytogenetic technique. Information on the ploidy composition and chromosomal structural variation can help to better understand the genetic makeup of samples and lead to a more robust interpretation of the genomic data in marker–trait association analyses.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Availability of data

The pseudo-chromosome positions and BAF for the SNP markers analysed in this study are included in this article as Supplementary Table S1.

Abbreviations

AP:

AVROS pisifera

BAF:

B-allele frequency

CMDV:

Centre for marker discovery and validation

CTAB:

Cetyltriammonium bromide

DD:

Deli dura

FCM:

Flow cytometry

FISH:

Fluorescent in situ hybridization

LOH:

Loss of heterozygosity

LTR:

Long terminal repeat

PI:

Propidium iodide

SNP:

Single nucleotide polymorphism

2C:

Nuclear DNA content in a diploid genome

θ :

Theta distribution (the allelic intensity ratio of SNP markers)

References

  • af Sätra JS, Troggio M, Odilbekov F, Sehic J, Mattisson H, Hjalmarsson I, Ingvarsson PK, Garkava-Gustavsson L (2020) Genetic status of the Swedish Central collection of heirloom apple cultivars. Scientia Horticulturae 272:109599https://doi.org/10.1016/j.scienta.2020.109599

  • Aleza P, Juárez J, Hernández M, Ollitrault P, Navarro L (2012) Implementation of extensive citrus triploid breeding programs based on 4x × 2x sexual hybridisations. Tree Genet Genom 8:1293. https://doi.org/10.1007/s11295-012-0515-6

    Article  Google Scholar 

  • Attiyeh EF, Diskin SJ, Attiyeh MA, Mossé YP, Hou C, Jackson EM, Kim C, Glessner J, Hakonarson H, Biegel JA, Maris JM (2009) Genomic copy number determination in cancer cells from single nucleotide polymorphism microarrays based on quantitative genotyping corrected for aneuploidy. Genome Res 19:276–283. https://doi.org/10.1101/gr.075671.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianco L, Cestaro A, James Sargent D, Banchi E, Derdak S, Di Guardo M, Salvi S, Jansen J, Viola R, Gut I, Laurens F, Chagné D, Velasco R, van de Weg E, Troggio M (2014) Development and validation of a 20K single nucleotide polymorphism (SNP) whole genome genotyping array for Apple (Malus x domestica Borkh). PLoS ONE 9:e110377. https://doi.org/10.1371/journal.pone.0110377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianco L, Cestaro A, Linsmith G, Muranty H, Denance C, Theron A, Poncet C, Micheletti D, Kerschbamer E, Di Pierro EA, Larger S, Pindo M, van de Weg E, Davassi A, Laurens F, Velasco R, Durel C-E, Troggio M (2016) Development and validation of the Axiom®Apple480K SNP genotyping array. Plant J 86:62–74. https://doi.org/10.1111/tpj.13145

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw JE (2016) Plant breeding: past, present and future. Springer International Publishing AG Switzerland, Switzerland

    Book  Google Scholar 

  • Burman B, Misteli T, Pegoraro G (2015) Quantitative detection of rare interphase chromosome breaks and translocations by high-throughput imaging. Genome Biol 16:146. https://doi.org/10.1186/s13059-015-0718-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camillo J, Leão AP, Alves AA, Formighieri EF, Azevedo ALS, Nunes JD, de Capdeville G, de A Mattos JK, Jr MTS (2014) Reassessment of the genome size in Elaeis guineensis and Elaeis oleifera, and its interspecific hybrid. Genom Insights 7, 13–22 https://doi.org/10.4137/GEI.S15522

  • Chagné D, Kirk C, Whitworth C, Erasmuson S, Bicknell R, Sargent DJ, Kumar S, Troggio M (2015) Polyploid and aneuploid detection in apple using a single nucleotide polymorphism array. Tree Genet Genom 11:94. https://doi.org/10.1007/s11295-015-0920-8

    Article  Google Scholar 

  • Chen H, Xing H, Zhang NR (2011) Estimation of parent specific DNA copy number in tumors using high-density genotyping arrays. PLoS Comput Biol 7:e1001060. https://doi.org/10.1371/journal.pcbi.1001060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comertpay G (2019) Assessment of nuclear DNA contents variation and their relationship with flowering in corn genotypes. Turkish J Field Crops 24:39–45 https://doi.org/10.17557/tjfc.562640

  • Cui F, Zhang N, Xl F, Zhang W, Zhao C-H, Yang L-J, Pan R-G, Chen M, Han J, Zhao X-G, Ji J, Tong Y-P, Zhang H-X, Jia J-Z, Zhao G-Y, Li J-M (2017) Utilization of a Wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci Rep 7:3788. https://doi.org/10.1038/s41598-017-04028-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DolezÄ›l J, BartoÅ¡ J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95:99–110. https://doi.org/10.1093/aob/mci005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DolezÄ›l J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244. https://doi.org/10.1038/nprot.2007.310

    Article  CAS  PubMed  Google Scholar 

  • Dunwell JM, Wilkinson MJ, Nelson S, Wening S, Sitorus AC, Mienanti D, Alfiko Y, Croxford AE, Ford CS, Forster BP, Caligari PDS (2010) Production of haploids and doubled haploids in oil palm. BMC Plant Biol 10:218. https://doi.org/10.1186/1471-2229-10-218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang Z, Pyhäjärvi T, Weber AL, Dawe KR, Glaubitz JC, Sánchez González JdJ, Ross-Ibarra C, Doebley J, Peter L, Morrell PL, Ross-Ibarra J (2012) Megabase-scale inversion polymorphism in the wild ancestor of maize. Genetics 191:883–894. https://doi.org/10.1534/genetics.112.138578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fransz P, Linc G, Lee CR, Aflitos SA, Lasky JR, Toomajian C, Ali H, Peters J, van Dam P, Ji X, Kuzak M, Gerats T, Schubert I, Schneeberger K, Colot V, Martienssen R, Koornneef M, Nordborg M, Juenger TE, de Jong H, Schranz ME (2016) Molecular, genetic and evolutionary analysis of a paracentric inversion in Arabidopsis thaliana. Plant J 88:159–178. https://doi.org/10.1111/tpj.13262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez-Seguí I, Sánchez-Izquierdo D, Barragán E, Such E, Luna I, López-Pavía M, Ibáñez M, Villamón E, Alonso C, Martín I, Llop M, Dolz S, Fuster O, Montesinos P, Cañigral C, Boluda B, Salazar C, Cervera J, Sanz MA (2014) Single-nucleotide polymorphism array-based karyotyping of acute promyelocytic leukemia. PLoS ONE 9:e100245. https://doi.org/10.1371/journal.pone.0100245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregory TR, Nicol JA, Tamm H, Kullman B, Kullman K, Leitch IJ, Murray BG, Kapraun DF, Greilhuber J, Bennett MD (2007) Eukaryotic genome size databases. Nucleic Acids Res 35:D332–D338. https://doi.org/10.1093/nar/gkl828

    Article  CAS  PubMed  Google Scholar 

  • Ha N-T, Freytag S, Bickeboeller H (2014) Coverage and efficiency in current SNP chips. Eur J Hum Genet 22:1124–1130. https://doi.org/10.1038/ejhg.2013.304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henry IM, Dilkes BP, Comai L (2007) Genetic basis for dosage sensitivity in Arabidopsis thaliana. PLoS Genet 3:e70. https://doi.org/10.1371/journal.pgen.0030070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henry IM, Dilkes BP, Miller ES, Burkart-Waco D, Comai L (2010) Phenotypic consequences of aneuploidy in Arabidopsis thaliana. Genetics 186:1231–1245. https://doi.org/10.1534/genetics.110.121079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heslop-Harrison JS, Schwarzacher T (2007) Domestication, genomics and the future for Banana. Ann Bot 100:1073–1084. https://doi.org/10.1093/aob/mcm191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hulse-Kemp AM, Lemm J, Plieske J, Ashrafi H, Buyyarapu R, Fang DD, Frelichowski J, Giband M, Hague S, Hinze LL, Kochan KJ, Riggs PK, Scheffler JA, Udall JA, Ulloa M, Wang SS, Zhu Q-H, Bag SK, Bhardwaj A, Burke JJ, Byers RL, Claverie M, Gore MA, Harker DB, Islam MS, Jenkins JN, Jones DC, Lacape J-M, Llewellyn DJ, Percy RG, Pepper AE, Poland JA, Rai KM, Sawant SV, Singh SK, Spriggs A, Taylor JM, Wang F, Yourstone SM, Zheng X, Lawley CT, Ganal MW, Van Deynze A, Wilson IW, Stelly DM (2015) Development of a 63K SNP array for cotton and high-density mapping of intraspecific and interspecific populations of Gossypium spp. G3 (Bethesda) 5:61187–1209. https://doi.org/10.1534/g3.115.018416

  • Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyère C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Enrico Pè M, Valle G, Morgante M, Caboche M, Adam-Blondon A-F, Weissenbach J, Quétier F, Wincker P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467. https://doi.org/10.1038/nature06148

    Article  CAS  PubMed  Google Scholar 

  • Jiao Y, Leebens-Mack J, Bowers JE, McKain MR, McNeal J, Rolf M, Ruzicka DR, Waful E, Wickett NJ, Wu X, Zhang Y, Wang J, Zhang Y, Carpenter EJ, Deyholos MK, Kutchan TM, Chanderbali AS, Soltis PS, Stevenson DW, McCombie R, Pires JC, Wong GK-S, Soltis DE, de Pamphilis CW (2012) A genome triplication associated with early diversification of the core eudicots. Genome Biol 13:R3. https://doi.org/10.1186/gb-2012-13-1-r3

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson AF, Hou J, Yang H, Shi X, Chen C, Islam MS, Ji T, Cheng J, Birchler JA (2020) Magnitude of modulation of gene expression in aneuploid maize depends on the extent of genomic imbalance. J Genet Genom 47:93–103. https://doi.org/10.1016/j.jgg.2020.02.002

    Article  Google Scholar 

  • Kushairi A, Loh SK, Azman I, Elina H, Ong-Abdullah M, Zanal Bidin MNI, Razmah G, Shamala S, Parveez GKA (2018) Oil palm economic performance in Malaysia and R&D progress in 2017. J Oil Palm Res 30:163–195. https://doi.org/10.21894/jopr.2018.0030

  • Kwong QB, Teh CK, Ong AL, Heng HY, Lee HL, Mohamed M, Low JZ-B, Sukganah A, Chew FT, Mayes S, Kulaveerasingam H, Tammi M, Appleton DR (2016) Development and validation of a high-density SNP genotyping array for African oil palm. Molecular Plant 9:1132–1141. https://doi.org/10.1016/j.molp.2016.04.010

    Article  CAS  PubMed  Google Scholar 

  • Lee Y-G, Jeong N, Kim JH, Lee K, Kim KH, Pirani A, Ha B-K, Kang S-T, Park B-S, Moon J-K, Kim N, Jeong S-C (2015) Development, validation and genetic analysis of a large soybean SNP genotyping array. Plant J 81:625–636. https://doi.org/10.1111/tpj.12755

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Kim M-S, Lee JS, Bae DN, Jeong N, Yang K, Lee J-D, Park J-H, Moon J-K, Jeong S-C (2020) Chromosomal features revealed by comparison of genetic maps of Glycine max and Glycine soja. Genomics 112:1481–1489. https://doi.org/10.1016/j.ygeno.2019.08.019

    Article  CAS  PubMed  Google Scholar 

  • Lodhi MA, Reisch BI (1995) Nuclear DNA content of Vitis species, cultivars, and other genera of the Vitaceae. Theoretical and Applied Genetics 90:11–16. https://doi.org/10.1007/BF00220990

    Article  CAS  PubMed  Google Scholar 

  • Low E-TL, Jayanthi N, Chan K-L, Nik Mohd Sanusi NS, Ab Halim MA, Rosli R, Azizi N, Amiruddin N, Angel LPL, Ong-Abdullah M, Singh R, Abd Manaf MA, Sambanthamurthi R, Ahmad Parveez GK, Kushairi A (2017) The oil palm genome revolution. J Oil Palm Res 29:456–468. https://doi.org/10.21894/jopr.2017.00018

  • Madon M, Clyde MM, Cheah SC (1995) Cytological analysis of Elaeis guineensis (tenera) chromosomes. J Oil Palm Res 7:122–131

    Google Scholar 

  • Madon M, Clyde MM, Hashim H, Mohd Yusuf Y, Mat H, Saratha S (2005) Polyploidy induction of oil palm through colchicine and oryzalin treatments. J Oil Palm Res 17:110–123

    CAS  Google Scholar 

  • Madon M, Phoon LQ, Clyde MM, Amiruddin MD (2008) Application of flow cytometry for estimation of nuclear DNA content in Elaeis. J Oil Palm Res 20:447–452

    CAS  Google Scholar 

  • Makarevitch I, Harris C (2010) Aneuploidy causes tissue-specific qualitative changes in global gene expression patterns in maize. Plant Physiol 152:927–938. https://doi.org/10.1104/pp.109.150466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makarevitch I, Phillips RL, Springer NM (2008) Profiling expression changes caused by a segmental aneuploid in maize. BMC Genom 9:7. https://doi.org/10.1186/1471-2164-9-7

    Article  CAS  Google Scholar 

  • Maluszynska J (2003) Cytogenetic tests for ploidy level analyses - chromosome counting. In: Maluszynska M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer Academic Publishers, Dordrecht, pp 391–395

    Chapter  Google Scholar 

  • McIntosh RA (2016) Wheat genetics Encyclopedia of Food. Grains 4:376–381. https://doi.org/10.1016/B978-0-12-394437-5.00253-9

    Article  Google Scholar 

  • Michael TP (2014) Plant genome size variation: bloating and purging DNA. Brief Funct Genom 13:308–317. https://doi.org/10.1093/bfgp/elu005 (Epub 2014 Mar 20)

    Article  CAS  Google Scholar 

  • Nasution O, Sitorus AC, Nelson SPC, Forster BP, Caligari PDS (2013) A high-throughput flow cytometry method for ploidy determination in oil palm. J Oil Palm Res 25:265–272

    CAS  Google Scholar 

  • Netten H, Young IT, van Vliet LJ, Tanke HJ, Vroljik H, Sloos WCR (1997) FISH and chips: automation of fluorescent dot counting in interphase cell nuclei. Cytometry 28:1–10

    Article  CAS  Google Scholar 

  • Nigro D, Gadaleta A, Mangini G, Colasuonno P, Marcotuli I, Giancaspro A, Giove SL, Simeone R, Blanco A (2019) Candidate genes and genome-wide association study of grain protein content and protein deviation in durum wheat. Planta 249:1157–1175. https://doi.org/10.1007/s00425-018-03075-1

    Article  CAS  PubMed  Google Scholar 

  • Nunes ACP, Clarindo WR (2014) Karyotype characterization and nuclear DNA content measurement in Bromeliaceae: State of the art and future perspectives. An Acad Bras Ciênc 86:1849–1862. https://doi.org/10.1590/0001-3765201420140224

    Article  PubMed  Google Scholar 

  • Ong PW, Maizura I, Marhalil M, Rajanaidu N, Abdullah NAP, Rafii MY, Ooi LCL, Low ETL, Singh R (2018) Association of SNP markers with height increment in MPOB-Angolan natural oil palm populations. J Oil Palm Res 30:61–70. https://doi.org/10.21894/jopr.2017.0003

  • Ooi LCL, Low ETL, Abdullah MO, Rajanaidu N, Ting N-C, Nagappan J, Manaf MAA, Chan K-L, Halim MA, Azizi N, Omar W, Murad AJ, Lakey N, Ordway JM, Favello A, Budiman MA, Van Brunt A, Beil M, Leininger MT, Jiang N, Smith SW, Brown CR, Kuek ACS, Bahrain S, Hoynes-O’Connor A, Nguyen AY, Chaudhari HG, Shah SA, Choo Y-M, Sambanthamurthi R, Singh R (2016) Non-tenera contamination and the economic impact of SHELL genetic testing in the Malaysian independent oil palm industry. Front Plant Sci 7:771. https://doi.org/10.3389/fpls.2016.00771

    Article  PubMed  PubMed Central  Google Scholar 

  • Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34:401–437. https://doi.org/10.1146/annurev.genet.34.1.401

    Article  CAS  PubMed  Google Scholar 

  • Peiffer DA, Le JM, Steemers FJ, Chang W, Jenniges T, Garcia F, Haden K, Li J, Shaw CA, Belmont J, Cheung SW, Shen RM, Barker DL, Gunderson KL (2006) High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping. Genome Res 16:1136–1148. https://doi.org/10.1101/gr.5402306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pootakham W, Jomchai N, Ruang-areerate P, Shearman JR, Sonthirod C, Sangsrakru D, Tragoonrung S, Tangphatsornruang S (2015) Genome-wide SNP discovery and identification of QTL associated with agronomic traits in oil palm using genotyping-by-sequencing (GBS). Genomics 105:288–295. https://doi.org/10.1016/j.ygeno.2015.02.002

    Article  CAS  PubMed  Google Scholar 

  • Poulíèková A, Mazalová P, VaÅ¡ut RJ, Å arhanová P, Neustupa J, Å kaloud P (2014) DNA content variation and its significance in the evolution of the genus Micrasterias (Desmidiales, Streptophyta). PLoS ONE 9:e86247. https://doi.org/10.1371/journal.pone.0086247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahimah AR, Cheah SC, Singh R (2006) Freeze-drying of oil palm (Elaeis guineensis) leaf and its effect on the quality of extractable DNA. J Oil Palm Res 18:296–304

    CAS  Google Scholar 

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 29:467–501. https://doi.org/10.1146/annurev.ecolsys.29.1.467

    Article  Google Scholar 

  • Renny-Byfield S, Wendel JF (2014) Doubling down on genomes: polyploidy and crop plants. Am J Bot 101:1711–1725. https://doi.org/10.3732/ajb.1400119

    Article  PubMed  Google Scholar 

  • Rival A, Beule T, Barre P, Hamon S, Duval Y, Noirot M (1997) Comparative flow cytometric estimation of nuclear DNA content in oil palm (Elaeis guineensis Jacq) tissue cultures and seed-derived plants. Plant Cell Rep 16:884. https://doi.org/10.1007/s002990050339

    Article  CAS  PubMed  Google Scholar 

  • Sattler MC, Carvalho CR, Clarindo WR (2016) The polyploidy and its key role in plant breeding. Planta 243:281–296. https://doi.org/10.1007/s00425-015-2450-x

    Article  CAS  Google Scholar 

  • Sedov EN (2014) Apple breeding programs and methods, their development and improvement. Russian J Genet Appl Res 4:43–51. https://doi.org/10.1134/S2079059714010092

    Article  Google Scholar 

  • Sheltzer JM, Amon A (2011) The aneuploidy paradox: costs and benefits of an incorrect karyotype. Trends Genet 27:446–453. https://doi.org/10.1016/j.tig.2011.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Ong-Abdullah M, Low ETL, Abdul Manaf MA, Rosli R, Rajanaidu N, Ooi LCL, Ooi SE, Chan KL, Halim MA, Azizi N, Nagappan J, Bacher B, Lakey N, Smith SW, He D, Hogan M, Budiman MA, Lee EK, DeSalle R, Kudrna D, Goicoechea JL, Wing RA, Wilson RK, Fulton RS, Ordway JM, Martienssen RA, Sambanthamurthi R (2013a) Oil palm genome sequence reveals divergence of infertile species in old and new worlds. Nature 500:335–339. https://doi.org/10.1038/nature12309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Low ETL, Leslie Ooi CL, Ong-Abdullah M, Ting N-C, Nagappan J, Nookiah R, Amiruddin MD, Rosli R, Abdul Manaf MA, Chan K-L, Halim MA, Azizi N, Lakey N, Smith SW, Budiman MA, Hogan M, Bacher B, Van Brunt A, Wang C, Ordway JM, Sambanthamurthi R, Martienssen RA (2013b) The oil palm SHELL gene controls oil yield and encodes a homologue of SEEDSTICK. Nature 500:340–344. https://doi.org/10.1038/nature12356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Low ETL, Leslie Ooi CL, Ong-Abdullah M, Nookiah R, Ting N-C, Marjuni M, Chan P-L, Ithnin M, Abdul Manaf MA, Nagappan J, Chan K-L, Rosli R, Halim MA, Azizi N, Budiman MA, Lakey N, Bacher B, Van Brunt A, Wang C, Hogan M, He D, MacDonald JD, Smith SW, Ordway JM, Martienssen RA, Sambanthamurthi R (2014) The oil palm VIRESCENS gene controls fruit colour and encodes a R2R3-MYB. Nat Commun 5:4106. https://doi.org/10.1038/ncomms5106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srisawat T, Kanchanapoom K, Pattanapanyasat K, Srikul S, Chuthammathat W (2005) Flow cytometric analysis of oil palm: a preliminary analysis for cultivars and genomic DNA alteration. Songklanakarin J Sci Technol 27:645–652

    Google Scholar 

  • Suzana M, Rahimah AR, Maizura I, Singh R (2015) A simple and rapid protocol for isolation of genomic DNA from oil palm leaf tissue. J Oil Palm Res 27:282–287

    CAS  Google Scholar 

  • Tang H, Wang X, Bowers JE, Ming R, Alam M, Paterson AH (2008) Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. Genome Res 18:1944–1954. https://doi.org/10.1101/gr.080978.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teh C-K, Ong A-L, Kwong Q-B, Apparow S, Chew F-T, Mayes S, Mohamed M, Appleton D, Kulaveerasingam H (2016) Genome-wide association study identifies three key loci for high mesocarp oil content in perennial crop oil palm. Sci Rep 6:19075. https://doi.org/10.1038/srep19075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ting N-C, Jansen J, Mayes S, Massawe F, Sambanthamurthi R, Ooi LC-L, Chin CW, Arulandoo X, Seng T-Y, Syed Alwee SSR, Ithnin M, Singh R (2014) High density SNP and SSR-based genetic maps of two independent oil palm hybrids. BMC Genom 15:309. https://doi.org/10.1186/1471-2164-15-309

    Article  Google Scholar 

  • Ting N-C, Yaakub Z, Kamaruddin K, Mayes S, Massawe F, Sambanthamurthi R, Jansen J, Low LET, Ithnin M, Kushairi A, Arulandoo X, Rosli R, Chan K-L, Amiruddin N, Sritharan K, Lim CC, Nookiah R, Amiruddin MD, Singh R (2016) Fine-mapping and cross-validation of QTLs linked to fatty acid composition in multiple independent interspecific crosses of oil palm. BMC Genom 17:289. https://doi.org/10.1186/s12864-016-2607-4

    Article  CAS  Google Scholar 

  • Vanderzande S, Howard NP, Cai L, Da Silva LC, Antanaviciute L, Bink MCAM, Kruisselbrink JW, Bassil N, Gasic K, Iezzoni A, Van de Weg E, Peace C (2019) High-quality, genome-wide SNP genotypic data for pedigreed germplasm of the diploid outbreeding species apple, peach, and sweet cherry through a common workflow. PLoS ONE 14:e0210928. https://doi.org/10.1371/journal.pone.0210928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Bucan M (2008) Copy number variation detection via high-density SNP genotyping. CSH Protoc.:pdb.top46. https://doi.org/10.1101/pdb.top46

  • Wang X, Yu K, Li H, Peng Q, Chen F, Zhang W, Chen S, Hu M, Zhang J (2015) High-density SNP map construction and QTL identification for the apetalous character in Brassica napus L. Frontiers in Plant Science 6:1164. https://www.frontiersin.org/article/10.3389/fpls.2015.01164

  • Wang X, Cheng Z-M (Max), Zhi S, Xu F (2016) Breeding triploid plants: a review. Czech J Genet Plant Breed 52:41–54. https://doi.org/10.17221/151/2015-CJGPB

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, International Wheat Genome Sequencing Consortium, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M-C, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014) Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotech. J. 12:787–796. https://doi.org/10.1111/pbi.12183

  • WAPA (2016) European apple and pear crop forecast August 2016. World Apple and Pear Association. http://www.wapa-association.org/docs/2016/European_Summary_2016.pdf. Accessed 20 December 2019

  • Wendel JF, Jackson SA, Meyers BC, Wing RA (2016) Evolution of plant genome architecture. Genome Biol 17:37. https://doi.org/10.1186/s13059-016-0908-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winfield MO, Allen AM, Burridge AJ, Barker GL, Benbow HR, Wilkinson PA, Coghill J, Waterfall C, Davassi A, Scopes G, Pirani A, Webster T, Brew F, Bloor C, King J, West C, Griffiths S, King I, Bentley AR, Edwards KJ (2016) High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnol J 14:1195–1206. https://doi.org/10.1111/pbi.12485

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Li Y, Fu J, Li X, Li C, Zhang D, Shi Y, Song Y, Li Y, Wang T (2016) Exploring identity-by-descent segments and putative functions using different foundation parents in maize. PLoS ONE 11:e0168374. https://doi.org/10.1371/journal.pone.0168374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaki NM, Singh R, Mohd Nor NH, Zulkifli MA, Smith SW, Schwarzacher T, Madon M, Heslop-Harrison JS (2017) Short communication: towards development of Elaeis guineensis chromosome-arm specific markers and their utility across the Elaeis genus. J Oil Palm Res 29:594–599. https://doi.org/10.21894/jopr.2017.0001

  • Zhang K, Kuraparthy V, Fang H, Zhu L, Sood S, Jones DC (2019) High-density linkage map construction and QTL analyses for fiber quality, yield and morphologicl traits using CottonSNP63K array in upland cotton (Gossypium hirsutum L.). BMC Genomics 20:889. https://doi.org/10.1186/s12864-019-6214-z

  • Zonneveld BJM (2008) The systematic value of nuclear DNA content for all species of Narcissus L. (Amaryllidaceae). Plant Syst. Evol. 275:109. https://doi.org/10.1007/s00606-008-0015-1

Download references

Acknowledgements

The authors would like to thank the Director-General of Malaysian Palm Oil Board for permission to publish this paper. We would also like to thank Zainab Anip, Maizura Azwanie Mohd Zarawi, Mohamad Razali Mohd Nor and MPOB Breeding and Quantitative Genetics Group for technical assistance in sampling and lab work.

Funding

The project was funded by Malaysian Palm Oil Board (ABBC23-2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajinder Singh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Anastasios Melis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2021_3567_MOESM1_ESM.xlsx

Supplementary Table S1. The oil palm (EG5) pseudo-chromosome positions and BAF for the SNP markers analysed in this study (xlsx 5732 kb)

Supplementary Table S2. Example of the FCM histogram statistics for two palms (docx 1880 kb)

Supplementary Table S3. Comparison 4.5 Mbp chromosomal region on CHR08 among diploids (xlsx 66 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngoot-Chin, T., Zulkifli, M.A., van de Weg, E. et al. Detection of ploidy and chromosomal aberrations in commercial oil palm using high-throughput SNP markers. Planta 253, 63 (2021). https://doi.org/10.1007/s00425-021-03567-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-021-03567-7

Keywords