Skip to main content
Log in

Identification and characterization of SaeIF1 from the eukaryotic translation factor SUI1 family in cadmium hyperaccumulator Sedum alfredii

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Cadmium-sensitive yeast screening resulted in the isolation of protein translation factor SaeIF1 from the hyperaccumulator Sedum alfredii which has both general and special regulatory roles in controlling cadmium accumulation.

Abstract

The hyperaccumulator of Sedum alfredii has the extraordinary ability to hyperaccumulate cadmium (Cd) in shoots. To investigate its underlying molecular mechanisms of Cd hyperaccumulation, a cDNA library was generated from leaf tissues of S. alfredii. SaeIF1, belonging to the eukaryotic protein translation factor SUI1 family, was identified by screening Cd-sensitive yeast transformants with this library. The full-length cDNA of SaeIF1 has 582 bp and encodes a predicted protein with 120 amino acids. Transient expression assays showed subcellular localization of SaeIF1 in the cytoplasm. SaeIF1 was constitutively and highly expressed in roots and shoots of the hyperaccumulator of S. alfredii, while its transcript levels showed over 100-fold higher expression in the hyperaccumulator of S. alfredii relative to the tissues of a nonhyperaccumulating ecotype of S. alfredii. However, the overexpression of SaeIF1 in yeast cells increased Cd accumulation, but conferred more Cd sensitivity. Transgenic Arabidopsis thaliana expressing SaeIF1 accumulated more Cd in roots and shoots without changes in the ratio of Cd content in shoots and roots, but were more sensitive to Cd stress than wild type. Both special and general roles of SaeIF1 in Cd uptake, transportation, and detoxification are discussed, and might be responsible for the hyperaccumulation characteristics of S. alfredii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Cd:

Cadmium

HP:

Hyperaccumulating ecotype

NHP:

Nonhyperaccumulating ecotype

GFP:

Green fluorescent protein

OV:

Overexpression transgenic plants

References

  • Abel S, Theologis A (1994) Transient transformation of Arabidopsis leaf protoplasts: a versatile experimental system to study gene expression. Plant J 5:421–427

    Article  CAS  PubMed  Google Scholar 

  • Baker AJM, Reeves RD, Hajar ASM (1994) Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brasicaceae). New Phytol 127:61–68

    Article  CAS  PubMed  Google Scholar 

  • Becher M, Talke IN, Krall L, Krämer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251–268

    Article  CAS  PubMed  Google Scholar 

  • Bernard C, Roosens N, Czernic P, Lebrun M, Verbruggen N (2004) A novel CPx-ATPase from the cadmium hyperaccumulator Thlaspi caerulescens. FEBS Lett 569:140–148

    Article  CAS  PubMed  Google Scholar 

  • Bert V, Bonnin I, Saumitou LP, De Laguérie P, Petit D (2002) Do Arabidopsis halleri from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations? New Phytol 155:47–57

    Article  CAS  PubMed  Google Scholar 

  • Browning KS, Bailey SJ (2015) Mechanism of cytoplasmic mRNA translation. Arabidopsis Book 13:e0176

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen SS, Yu M, Li H, Wang Y, Lu ZC, Zhang YX, Liu MY, Qiao GR, Wu LH, Han XJ, Zhou RY (2020) SaHsfA4c From Sedum alfredii Hance enhances cadmium tolerance by regulating ROS-scavenger activities and heat shock proteins expression. Front Plant Sci 11:142

    Article  PubMed  PubMed Central  Google Scholar 

  • Clemens S, Kim EJ, Neumann D, Schroeder JI (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J 18:3325–3333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clemens S, Palmgren MG, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damm B, Schmidt R, Willmitzer L (1989) Efficient transformation of Arabidopsis thaliana using direct gene transfer to protoplasts. Mol Gen Genet 217:6–12

    Article  CAS  PubMed  Google Scholar 

  • Diédhiou CJ, Popova OV, Dietz KJ, Golldack D (2008) The SUI-homologous translation initiation factor eIF-1 is involved in regulation of ion homeostasis in rice. Plant Biol 10:298–309

    Article  PubMed  Google Scholar 

  • Gao J, Sun L, Yang X, Liu JX (2013) Transcriptomic analysis of cadmium stress response in the heavy metal hyperaccumulator Sedum alfredii Hance. PLoS ONE 8:e64643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godt J, Scheidig F, Grosse-Siestrup C, Esche V, Brandenburg P, Reich A, Groneberg DA (2006) The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol 1:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Hammond JP, Bowen HC, White PJ, Mills V, Pyke KA, Baker AJ, Whiting SN, May ST, Broadley MR (2006) A comparison of the Thlaspi caerulescens and Thlaspi arvense shoot transcriptomes. New Phytol 170:239–260

    Article  CAS  PubMed  Google Scholar 

  • Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Krämer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–395

    Article  CAS  PubMed  Google Scholar 

  • He B, Yang XE, Ni WZ, Wei YZ, Long XX, Ye Z (2002) Sedum alfredii: a new lead accumulating ecotype. J Integr Plant Biol 44:1365–1370

    CAS  Google Scholar 

  • Hinnebusch AG (2014) The scanning mechanism of eukaryotic translation initiation. Annu Rev Biochem 83:779–812

    Article  CAS  PubMed  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn Circ 347(5406):357–359

    Google Scholar 

  • Inaba T, Kobayashi E, Suwazono Y, Uetani M, Oishi M, Nakagawa H, Nogawa K (2005) Estimation of cumulative cadmium intake causing Itai–itai disease. Toxicol Lett 159:192–201

    Article  CAS  PubMed  Google Scholar 

  • Jackson R, Hellen CUT, Pestova TV (2010) The mechanism of eyukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 10:113–127

    Article  Google Scholar 

  • Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534

    Article  PubMed  Google Scholar 

  • Lee K, Bae DW, Kim SH, Han HJ, Liu X, Park HC, Lim CO, Lee SY, Chung WS (2010) Comparative proteomic analysis of the short-term responses of rice roots and leaves to cadmium. Plant Physiol 167:161–168

    Article  CAS  Google Scholar 

  • Liu H, Zhao H, Wu L, Liu A, Zhao FJ, Xu W (2017) Heavy metal ATPase 3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola. New Phytol 215:687–698

    Article  CAS  PubMed  Google Scholar 

  • Long XX, Ni WZ, Fu CX (2002) Sedum alfredii H: a new Zn hyperaccumulating plant first found in China. Chinese Sci Bull 47:1634–1637

    Article  Google Scholar 

  • Lu LL, Tian SK, Yang XE, Li TQ, He ZL (2009) Cadmium uptake and xylem loading are active processes in the hyperaccumulator Sedum alfredii. J Plant Physiol 166:579–587

    Article  CAS  PubMed  Google Scholar 

  • Negrutiu I, Shillito R, Potrykus I, Biasini G, Sala F (1987) Hybrid genes in the analysis of transformation conditions. Plant Mol Biol 8:363–373

    Article  CAS  PubMed  Google Scholar 

  • Ni WZ, Yang XE, Long XX (2004) Comparative studies on zinc tolerance and accumulation between two ecotypes of Sedum alfredii Hance in southeastern China. J Plant Nutr 27:627–635

    Article  CAS  Google Scholar 

  • Nordberg GF (2004) Cadmium and health in the 21st century - historical remarks and trends for the future. Biometals 17:485–489

    Article  CAS  PubMed  Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139

    Article  CAS  PubMed  Google Scholar 

  • Papoyan A, Kochian LV (2004) Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiol 136:3814–3823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pence NS, Larsen PB, Ebbs SD, Letham DL, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci USA 97:4956–4960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng JS, Wang YJ, Ding G, Ma HL, Zhang YJ, Gong JM (2017) A pivotal role of cell wall in cadmium accumulation in the Crassulaceae hyperaccumulator Sedum plumbizincicola. Mol Plant 10:771–774

    Article  CAS  PubMed  Google Scholar 

  • Reeves RD, Baker AJM, Jaffré T, Erskine PD, Echevarria G, van der Ent A (2018) A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol 218:407–411

    Article  PubMed  Google Scholar 

  • Satarug S, Baker JR, Urbenjapol S, Haswell-Elkins M, Reilly PE, Williams DJ, Moore MR (2003) A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett 137:65–83

    Article  CAS  PubMed  Google Scholar 

  • Sonenberg N, Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136:731–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spriggs KA, Bushell M, Willis AE (2010) Translational regulation of gene expression during conditions of cell stress. Mol Cell 40:228–237

    Article  CAS  PubMed  Google Scholar 

  • Sun YL, Hong SK (2013) Sensitivity of translation initiation factor eIF1 as a molecular target of salt toxicity to sodic-alkaline stress in the halophytic grass Leymus chinensis. Biochem Genet 51:101–118

    Article  CAS  PubMed  Google Scholar 

  • Ueno D, Milner MJ, Yamaji N, Yokosho K, Koyama E, Clemencia Zambrano M, Kaskie M, Ebbs S, Kochian LV, Ma JF (2011) Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Plant J 66:852–862

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    Article  CAS  PubMed  Google Scholar 

  • Weber M, Harada E, Vess C, von Roepenack-Lahaye E, Clemens S (2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri root identifies nicotinamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37:269–281

    Article  CAS  PubMed  Google Scholar 

  • Weber M, Trampczynska A, Clemens S (2006) Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd2+-hypertolerant facultative metallophyte Arabidopsis halleri. Plant Cell Environ 29:950–963

    Article  CAS  PubMed  Google Scholar 

  • Yang XE, Long XX, Ni WZ, Ni SF (2001) Zinc tolerance and hyperaccumulation in a new ecotype of sedum alfredii hance. Chin J Plant Ecol 25:665–672

    Google Scholar 

  • Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 259:181–189

    Article  CAS  Google Scholar 

  • Yang QY, Shohag MJI, Feng Y, He ZL, Yang XE (2017) Transcriptome comparison reveals the adaptive evolution of two contrasting ecotypes of Zn/Cd hyperaccumulator Sedum alfredii hance. Front Plant Sci 8:425

    PubMed  PubMed Central  Google Scholar 

  • Yang Q, Li Z, Lu X, Duan Q, Huang L, Bi J (2018) A review of soil heavy metal pollution from industrial and agricultural regions in China: pollution and risk assessment. Sci Total Environ 642:690–700

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZC, Chen BX, Qiu BS (2010) Phytochelatin synthesis plays a similar role in shoots of the cadmium hyperaccumulator Sedum alfredii as in non-resistant plants. Plant Cell Environ 33:1248–1255

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZC, Xie QQ, Jobe TO, Kau AR, Wang C, Li YX, Qiu BS, Wang QQ, Mendoza-Cózatl DG, Schroeder JI (2016a) Identification of AtOPT4 as a plant glutathione transporter. Mol Plant 9:481–484

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZC, Yu Q, Du HY, Ai WL, Yao X, Mendoza-Cózatl DG, Qiu BS (2016b) Enhanced cadmium efflux and root-to-shoot translocation are conserved in the hyperaccumulator Sedum alfredii (Crassulaceae family). FEBS Lett 590:1757–1764

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZC, Zhou HN, Yu Q, Li YX, Mendoza-Cózatl DG, Qiu BS, Liu PP, Chen QS (2017) Quantitative proteomics analysis of leaves from two Sedum alfredii (Crassulaceae) populations that differ in cadmium accumulation. Proteomics 17:1600456

    Article  Google Scholar 

  • Zhao FJ, Jiang RF, Dunham SJ, McGrath SP (2006) Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri. New Phytol 172:646–654

    Article  CAS  PubMed  Google Scholar 

  • Zhou WB, Qiu BS (2005) Effects of cadmium hyperaccumulation on physiological characteristics of Sedum alfredii Hance (Crassulaceae). Plant Sci 169:737–745

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant nos. 31770396, and 31300211) and by a National Institutes of Health grant (ES010337). QY was supported by an international graduate fellowship from the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-Sheng Qiu.

Ethics declarations

Conflict of interest

No conflict of interest has been declared.

Additional information

Communicated by Anastasios Melis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 345 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Q., Zhang, ZC., Wang, MY. et al. Identification and characterization of SaeIF1 from the eukaryotic translation factor SUI1 family in cadmium hyperaccumulator Sedum alfredii. Planta 253, 12 (2021). https://doi.org/10.1007/s00425-020-03539-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-020-03539-3

Keywords

Navigation