Skip to main content

Exploring the complexity of soybean (Glycine max) transcriptional regulation using global gene co-expression networks

Abstract

Main conclusion

We report a soybean gene co-expression network built with data from 1284 RNA-Seq experiments, which was used to identify important regulators, modules and to elucidate the fates of gene duplicates.

Abstract

Soybean (Glycine max (L.) Merr.) is one of the most important crops worldwide, constituting a major source of protein and edible oil. Gene co-expression networks (GCN) have been extensively used to study transcriptional regulation and evolution of genes and genomes. Here, we report a soybean GCN using 1284 publicly available RNA-Seq samples from 15 distinct tissues. We found modules that are differentially regulated in specific tissues, comprising processes such as photosynthesis, gluconeogenesis, lignin metabolism, and response to biotic stress. We identified transcription factors among intramodular hubs, which probably integrate different pathways and shape the transcriptional landscape in different conditions. The top hubs for each module tend to encode proteins with critical roles, such as succinate dehydrogenase and RNA polymerase subunits. Importantly, gene essentiality was strongly correlated with degree centrality and essential hubs were enriched in genes involved in nucleic acids metabolism and regulation of cell replication. Using a guilt-by-association approach, we predicted functions for 93 of 106 hubs without functional description in soybean. Most of the duplicated genes had different transcriptional profiles, supporting their functional divergence, although paralogs originating from whole-genome duplications (WGD) are more often preserved in the same module than those from other mechanisms. Together, our results highlight the importance of GCN analysis in unraveling key functional aspects of the soybean genome, in particular those associated with hub genes and WGD events.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

GCN:

Gene coexpression network

TF:

Transcription factor

WGD:

Whole-genome duplication

References

  1. Bailey TL, Boden M, Buske FA et al (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202-208. https://doi.org/10.1093/nar/gkp335

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Barabasi AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nature Rev Genet 12:56–68. https://doi.org/10.1038/nrg2918

    CAS  Article  PubMed  Google Scholar 

  3. Batada NN, Hurst LD, Tyers M (2006) Evolutionary and physiological importance of hub proteins. PLoS Comput Biol 2:e88. https://doi.org/10.1371/journal.pcbi.0020088

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Behr M, Sergeant K, Leclercq CC et al (2018) Insights into the molecular regulation of monolignol-derived product biosynthesis in the growing hemp hypocotyl. BMC Plant Biol 18:1. https://doi.org/10.1186/s12870-017-1213-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Belkhadir Y, Jaillais Y, Epple P, Balsemao-Pires E, Dangl JL, Chory J (2012) Brassinosteroids modulate the efficiency of plant immune responses to microbe-associated molecular patterns. Proc Natl Acad Sci USA 109:297–302. https://doi.org/10.1073/pnas.1112840108

    Article  PubMed  Google Scholar 

  6. Bellieny-Rabelo D, De Oliveira EA, Ribeiro ES, Costa EP, Oliveira AE, Venancio TM (2016) Transcriptome analysis uncovers key regulatory and metabolic aspects of soybean embryonic axes during germination. Sci Rep 6:36009. https://doi.org/10.1038/srep36009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Bhuiyan NH, Selvaraj G, Wei Y, King J (2009) Gene expression profiling and silencing reveal that monolignol biosynthesis plays a critical role in penetration defence in wheat against powdery mildew invasion. J Exp Bot 60:509–521. https://doi.org/10.1093/jxb/ern290

    Article  PubMed  Google Scholar 

  8. Bi D, Ning H, Liu S, Que X, Ding K (2015) Gene expression patterns combined with network analysis identify hub genes associated with bladder cancer. Comput Biol Chem 56:71–83. https://doi.org/10.1016/j.compbiolchem.2015.04.001

    CAS  Article  PubMed  Google Scholar 

  9. Birchler JA, Riddle NC, Auger DL, Veitia RA (2005) Dosage balance in gene regulation: biological implications. Trends Genet 21:219–226. https://doi.org/10.1016/j.tig.2005.02.010

    CAS  Article  PubMed  Google Scholar 

  10. Borin GP, Carazzolle MF, Dos Santos RAC, Riano-Pachon DM, Oliveira JVC (2018) Gene co-expression network reveals potential new genes related to sugarcane bagasse degradation in Trichoderma reesei RUT-30. Front Bioeng Biotechnol 6:151. https://doi.org/10.3389/fbioe.2018.00151

    Article  PubMed  PubMed Central  Google Scholar 

  11. Braasch I, Bobe J, Guiguen Y, Postlethwait JH (2018) Reply to: “Subfunctionalization versus neofunctionalization after whole-genome duplication.” Nat Genet 50:910–911. https://doi.org/10.1038/s41588-018-0163-3

    CAS  Article  PubMed  Google Scholar 

  12. Collakova E, Aghamirzaie D, Fang Y et al (2013) Metabolic and transcriptional reprogramming in developing soybean (Glycine max) embryos. Metabolites 3:347–372. https://doi.org/10.3390/metabo3020347

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Conant GC, Birchler JA, Pires JC (2014) Dosage, duplication, and diploidization: clarifying the interplay of multiple models for duplicate gene evolution over time. Curr Opin Plant Biol 19:91–98. https://doi.org/10.1016/j.pbi.2014.05.008

    CAS  Article  PubMed  Google Scholar 

  14. Coulomb S, Bauer M, Bernard D, Marsolier-Kergoat MC (2005) Gene essentiality and the topology of protein interaction networks. Proc Biol Sci 272:1721–1725. https://doi.org/10.1098/rspb.2005.3128

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Csardi G, Nepusz T (2006) The igraph software package for complex network research. Inter J Complex Syst 1695:1–9

    Google Scholar 

  16. de Matos SR, Emmert-Streib F (2012) Bagging statistical network inference from large-scale gene expression data. PLoS ONE 7:e33624. https://doi.org/10.1371/journal.pone.0033624

    CAS  Article  Google Scholar 

  17. De Smet R, Sabaghian E, Li Z, Saeys Y, Van de Peer Y (2017) Coordinated functional divergence of genes after genome duplication in Arabidopsis thaliana. Plant Cell 29:2786–2800. https://doi.org/10.1105/tpc.17.00531

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Freeling M (2008) The evolutionary position of subfunctionalization, downgraded. Genome Dyn 4:25–40. https://doi.org/10.1159/000126004

    CAS  Article  PubMed  Google Scholar 

  19. Gamboa-Tuz SD, Pereira-Santana A, Zamora-Briseño JA et al (2018) Transcriptomics and co expression networks reveal tissue-specific responses and regulatory hubs under mild and severe drought in papaya (Carica papaya L.). Sci Rep 8:14539. https://doi.org/10.1038/s41598-018-32904-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Gazara RK, de Oliveira EAG, Rodrigues BC, Nunes da Fonseca R, Oliveira AEA, Venancio TM (2019) Transcriptional landscape of soybean (Glycine max) embryonic axes during germination in the presence of paclobutrazol, a gibberellin biosynthesis inhibitor. Sci Rep 9:9601. https://doi.org/10.1038/s41598-019-45898-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Gill N, Findley S, Walling JG et al (2009) Molecular and chromosomal evidence for allopolyploidy in soybean. Plant Physiol 151:1167–1174. https://doi.org/10.1104/pp.109.137935

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Hahn MW, Kern AD (2005) Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks. Mol Biol Evol 22:803–806. https://doi.org/10.1093/molbev/msi072

    CAS  Article  PubMed  Google Scholar 

  23. Han JD, Bertin N, Hao T et al (2004) Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430:88–93. https://doi.org/10.1038/nature02555

    CAS  Article  PubMed  Google Scholar 

  24. Hansen BO, Vaid N, Musialak-Lange M, Janowski M, Mutwil M (2014) Elucidating gene function and function evolution through comparison of co-expression networks of plants. Front Plant Sci 5:394. https://doi.org/10.3389/fpls.2014.00394

    Article  PubMed  PubMed Central  Google Scholar 

  25. Heldt H-W, Piechulla B (2011) Plant biochemistry, 4th edn. Academic Press

  26. Huang J, Vendramin S, Shi L, McGinnis KM (2017) Construction and optimization of a large gene coexpression network in maize using RNA-Seq data. Plant Physiol 175:568–583. https://doi.org/10.1104/pp.17.00825

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Jaksik R, Iwanaszko M, Rzeszowska-Wolny J, Kimmel M (2015) Microarray experiments and factors which affect their reliability. Biol Direct 10:46. https://doi.org/10.1186/s13062-015-0077-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Jeong H, Mason SP, Barabasi AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411:41–42. https://doi.org/10.1038/35075138

    CAS  Article  PubMed  Google Scholar 

  29. Jiang Z, Dong X, Li ZG, He F, Zhang Z (2016) Differential coexpression analysis reveals extensive rewiring of Arabidopsis gene coexpression in response to Pseudomonas syringae infection. Sci Rep 6:35064. https://doi.org/10.1038/srep35064

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Jin J, Tian F, Yang DC, Meng YQ, Kong L, Luo J, Gao G (2017) PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res 45:D1040–D1045. https://doi.org/10.1093/nar/gkw982

    CAS  Article  PubMed  Google Scholar 

  31. Koh FM, Lizama CO, Wong P, Hawkins JS, Zovein AC, Ramalho-Santos M (2015) Emergence of hematopoietic stem and progenitor cells involves a Chd1-dependent increase in total nascent transcription. Proc Natl Acad Sci USA 112:E1734-1743. https://doi.org/10.1073/pnas.1424850112

    CAS  Article  PubMed  Google Scholar 

  32. Kromer S (1995) Respiration during photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 46:45–70. https://doi.org/10.1146/annurev.arplant.46.1.45

    Article  Google Scholar 

  33. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9:559. https://doi.org/10.1186/1471-2105-9-559

    CAS  Article  Google Scholar 

  34. Levine ME, Langfelder P, Horvath S (2017) A weighted SNP correlation network method for estimating polygenic risk scores. Methods Mol Biol 1613:277–290. https://doi.org/10.1007/978-1-4939-7027-8_10

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Libault M, Wan JR, Czechowski T, Udvardi M, Stacey G (2007) Identification of 118 Arabidopsis transcription factor and 30 ubiquitin-ligase genes responding to chitin, a plant-defense elicitor. Mol Plant Microbe Int 20:900–911. https://doi.org/10.1094/Mpmi-20-8-0900

    CAS  Article  Google Scholar 

  36. Liu Q, Luo L, Zheng L (2018) Lignins: biosynthesis and biological functions in plants. Int J Mol Sci 19:335. https://doi.org/10.3390/ijms19020335

    CAS  Article  PubMed Central  Google Scholar 

  37. Luscombe NM, Babu MM, Yu H, Snyder M, Teichmann SA, Gerstein M (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431:308–312. https://doi.org/10.1038/nature02782

    CAS  Article  PubMed  Google Scholar 

  38. Machado FB, Moharana KC, Almeida-Silva F et al (2020) Systematic analysis of 1298 RNA-Seq samples and construction of a comprehensive soybean (Glycine max) expression atlas. Plant J 103(5):1894–1909. https://doi.org/10.1111/tpj.14850

    CAS  Article  Google Scholar 

  39. Mack KL, Phifer-Rixey M, Harr B, Nachman MW (2019) Gene expression networks across multiple tissues are associated with rates of molecular evolution in wild house mice. Genes (Basel) 10(3):225. https://doi.org/10.3390/genes10030225

    CAS  Article  Google Scholar 

  40. Mahadevan R, Palsson BO (2005) Properties of metabolic networks: structure versus function. Biophys J 88:L07-09. https://doi.org/10.1529/biophysj.104.055723

    CAS  Article  PubMed  Google Scholar 

  41. Marmagne A, Ferro M, Meinnel T et al (2007) A high content in lipid-modified peripheral proteins and integral receptor kinases features in the Arabidopsis plasma membrane proteome. Mol Cell Proteomics 6:1980–1996. https://doi.org/10.1074/mcp.M700099-MCP200

    CAS  Article  PubMed  Google Scholar 

  42. Meinke DW (2019) Genome-wide identification of EMBRYO-DEFECTIVE (EMB) genes required for growth and development in Arabidopsis. New Phytol 226(2):306–325. https://doi.org/10.1111/nph.16071

    Article  PubMed  Google Scholar 

  43. Moharana KC, Venancio TM (2020) Polyploidization events shaped the transcription factor repertoires in legumes (Fabaceae). Plant J 103(2):726–741. https://doi.org/10.1111/tpj.14765

    CAS  Article  PubMed  Google Scholar 

  44. Motohashi K, Hisabori T (2010) CcdA is a thylakoid membrane protein required for the transfer of reducing equivalents from stroma to thylakoid lumen in the higher plant chloroplast. Antioxid Redox Sign 13:1169–1176. https://doi.org/10.1089/ars.2010.3138

    CAS  Article  Google Scholar 

  45. Nagai S, Koide M, Takahashi S et al (2007) Induction of isoforms of tetrapyrrole biosynthetic enzymes, AtHEMA2 and AtFC1, under stress conditions and their physiological functions in Arabidopsis. Plant Physiol 144:1039–1051. https://doi.org/10.1104/pp.107.100065

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Osman GH, Assem SK, Alreedy RM, El-Ghareeb DK, Basry MA, Rastogi A, Kalaji HM (2015) Development of insect resistant maize plants expressing a chitinase gene from the cotton leaf worm Spodoptera littoralis. Sci Rep 5:18067. https://doi.org/10.1038/Srep18067

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Ozaki S et al (2010) Coexpression analysis of tomato genes and experimental verification of coordinated expression of genes found in a functionally enriched coexpression module. DNA Res 17:105–116. https://doi.org/10.1093/dnares/dsq002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Page MLD, Hamel PP, Gabilly ST et al (2004) A homolog of prokaryotic thiol disulfide transporter CcdA is required for the assembly of the cytochrome b(6)f complex in Arabidopsis chloroplasts. J Biol Chem 279:32474–32482. https://doi.org/10.1074/jbc.M404285200

    CAS  Article  PubMed  Google Scholar 

  49. Panchy N, Lehti-Shiu M, Shiu SH (2016) Evolution of gene duplication in plants. Plant Physiol 171:2294–2316. https://doi.org/10.1104/pp.16.00523

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Papp B, Pal C, Hurst LD (2003) Dosage sensitivity and the evolution of gene families in yeast. Nature 424:194–197. https://doi.org/10.1038/nature01771

    CAS  Article  PubMed  Google Scholar 

  51. Patel H, Dobson RJB, Newhouse SJ (2019) A meta-analysis of Alzheimer’s disease brain transcriptomic data. J Alzheimers Dis 68:1635–1656. https://doi.org/10.3233/JAD-181085

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Pereira Lima JJ, Buitink J, Lalanne D, Rossi RF, Pelletier S, da Silva EAA, Leprince O (2017) Molecular characterization of the acquisition of longevity during seed maturation in soybean. PLoS ONE 12:e0180282. https://doi.org/10.1371/journal.pone.0180282

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Petereit J, Smith S, Harris FC Jr, Schlauch KA (2016) petal: Co-expression network modelling in R. BMC Syst Biol 10(Suppl 2):51. https://doi.org/10.1186/s12918-016-0298-8

    Article  PubMed  PubMed Central  Google Scholar 

  54. Qiao X, Li Q, Yin H et al (2019) Gene duplication and evolution in recurring polyploidization-diploidization cycles in plants. Genome Biol 20:38. https://doi.org/10.1186/s13059-019-1650-2

    Article  PubMed  PubMed Central  Google Scholar 

  55. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842. https://doi.org/10.1093/bioinformatics/btq033

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Rabara RC, Tripathi P, Rushton PJ (2014) the potential of transcription factor-based genetic engineering in improving crop tolerance to drought. Omics A J Integr Biol 18:601–614. https://doi.org/10.1089/omi.2013.0177

    CAS  Article  Google Scholar 

  57. Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D (2012) Seed germination and vigor. Annu Rev Plant Biol 63:507–533. https://doi.org/10.1146/annurev-arplant-042811-105550

    CAS  Article  PubMed  Google Scholar 

  58. Raman K, Damaraju N, Joshi GK (2014) The organisational structure of protein networks: revisiting the centrality-lethality hypothesis. Syst Synth Biol 8:73–81. https://doi.org/10.1007/s11693-013-9123-5

    Article  PubMed  Google Scholar 

  59. Raviv B, Godwin J, Granot G, Grafi G (2018) The dead can nurture: novel insights into the function of dead organs enclosing embryos. Int J Mol Sci 19(8):2455. https://doi.org/10.3390/Ijms19082455

    Article  PubMed Central  Google Scholar 

  60. Rensing SA (2014) Gene duplication as a driver of plant morphogenetic evolution. Curr Opin Plant Biol 17:43–48. https://doi.org/10.1016/j.pbi.2013.11.002

    CAS  Article  PubMed  Google Scholar 

  61. Resendis-Antonio O, Freyre-Gonzalez JA, Menchaca-Mendez R, Gutierrez-Rios RM, Martinez-Antonio A, Avila-Sanchez C, Collado-Vides J (2005) Modular analysis of the transcriptional regulatory network of E. coli. Trends Genet 21:16–20. https://doi.org/10.1016/j.tig.2004.11.010

    CAS  Article  PubMed  Google Scholar 

  62. Resendis-Antonio O, Hernandez M, Mora Y, Encarnacion S (2012) Functional modules, structural topology, and optimal activity in metabolic networks. PLoS Comput Biol 8:e1002720. https://doi.org/10.1371/journal.pcbi.1002720

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Rolletschek H, Weber H, Borisjuk L (2003) Energy status and its control on embryogenesis of legumes. Embryo photosynthesis contributes to oxygen supply and is coupled to biosynthetic fluxes. Plant Physiol 132:1196–1206. https://doi.org/10.1104/pp.102.017376

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Romero-Campero FJ, Lucas-Reina E, Said FE, Romero JM, Valverde F (2013) A contribution to the study of plant development evolution based on gene co-expression networks. Front Plant Sci 4:291. https://doi.org/10.3389/fpls.2013.00291

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ronald PC, Beutler B (2010) Plant and animal sensors of conserved microbial signatures. Science 330:1061–1064. https://doi.org/10.1126/science.1189468

    CAS  Article  PubMed  Google Scholar 

  66. Roulin A, Auer PL, Libault M et al (2013) The fate of duplicated genes in a polyploid plant genome. Plant J 73:143–153. https://doi.org/10.1111/tpj.12026

    CAS  Article  PubMed  Google Scholar 

  67. Sandelin A, Alkema W, Engstrom P, Wasserman WW, Lenhard B (2004) JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res 32:D91-94. https://doi.org/10.1093/nar/gkh012

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Schmutz J, Cannon SB et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183. https://doi.org/10.1038/nature08670

    CAS  Article  PubMed  Google Scholar 

  69. Severin AJ, Woody JL, Bolon Y-T et al (2010) RNA-Seq atlas of Glycine max: a guide to the soybean transcriptome. BMC Plant Biol 10:160. https://doi.org/10.1186/1471-2229-10-160

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. Shahan R, Zawora C, Wight H, Sittmann J, Wang W, Mount SM, Liu Z (2018) Consensus coexpression network analysis identifies key regulators of flower and fruit development in wild strawberry. Plant Physiol 178:202–216. https://doi.org/10.1104/pp.18.00086

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. Sharma V, Goel P, Kumar S, Singh AK (2019) An apple transcription factor, MdDREB76, confers salt and drought tolerance in transgenic tobacco by activating the expression of stress-responsive genes. Plant Cell Rep 38:221–241. https://doi.org/10.1007/s00299-018-2364-8

    CAS  Article  PubMed  Google Scholar 

  72. Song HS, McClure RS, Bernstein HC, Overall CC, Hill EA, Beliaev AS (2015) Integrated in silico analyses of regulatory and metabolic networks of Synechococcus sp. PCC 7002 reveal relationships between gene centrality and essentiality. Life 5:1127–1140. https://doi.org/10.3390/life5021127

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. Supek F, Bosnjak M, Skunca N, Smuc T (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6:e21800. https://doi.org/10.1371/journal.pone.0021800

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. Tan M, Cheng D, Yang Y et al (2017) Co-expression network analysis of the transcriptomes of rice roots exposed to various cadmium stresses reveals universal cadmium-responsive genes. BMC Plant Biol 17:194. https://doi.org/10.1186/s12870-017-1143-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Teufel AI, Johnson MM, Laurent JM, Kachroo AH, Marcotte EM, Wilke CO (2019) The many nuanced evolutionary consequences of duplicated genes. Mol Biol Evol 36:304–314. https://doi.org/10.1093/molbev/msy210

    CAS  Article  PubMed  Google Scholar 

  76. Usadel B, Obayashi T, Mutwil M et al (2009) Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ 32:1633–1651. https://doi.org/10.1111/j.1365-3040.2009.02040.x

    CAS  Article  PubMed  Google Scholar 

  77. Wang NN, Xu SW, Sun YL, Liu D, Zhou L, Li Y, Li XB (2019) The cotton WRKY transcription factor (GhWRKY33) reduces transgenic Arabidopsis resistance to drought stress. Sci Rep 9:724. https://doi.org/10.1038/s41598-018-37035-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. Ward JM, Kuhn C, Tegeder M, Frommer WB (1998) Sucrose transport in higher plants. Int Rev Cytol 178:41–71

    CAS  Article  Google Scholar 

  79. Wu Z, Wang M, Yang S et al (2019) A global coexpression network of soybean genes gives insights into the evolution of nodulation in nonlegumes and legumes. New Phytol 223:2104–2119. https://doi.org/10.1111/nph.15845

    CAS  Article  PubMed  Google Scholar 

  80. Xu C, Nadon BD, Kim KD, Jackson SA (2018) Genetic and epigenetic divergence of duplicate genes in two legume species. Plant Cell Environ 41:2033–2044. https://doi.org/10.1111/pce.13127

    CAS  Article  PubMed  Google Scholar 

  81. You Q et al (2016) Co-expression network analyses identify functional modules associated with development and stress response in Gossypium arboreum. Sci Rep 6:38436. https://doi.org/10.1038/srep38436

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. Yu H, Greenbaum D, Xin LuH, Zhu X, Gerstein M (2004) Genomic analysis of essentiality within protein networks. Trends Genet 20:227–231. https://doi.org/10.1016/j.tig.2004.04.008

    CAS  Article  PubMed  Google Scholar 

  83. Yu H, Kim PM, Sprecher E, Trifonov V, Gerstein M (2007) The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Comput Biol 3:e59. https://doi.org/10.1371/journal.pcbi.0030059

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  84. Yu CP, Lin JJ, Li WH (2016) Positional distribution of transcription factor binding sites in Arabidopsis thaliana. Sci Rep 6:25164. https://doi.org/10.1038/srep25164

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. Zhao C, Avci U, Grant EH, Haigler CH, Beers EP (2008) XND1, a member of the NAC domain family in Arabidopsis thaliana, negatively regulates lignocellulose synthesis and programmed cell death in xylem. Plant J 53:425–436. https://doi.org/10.1111/j.1365-313X.2007.03350.x

    CAS  Article  PubMed  Google Scholar 

  86. Zotenko E, Mestre J, O’Leary DP, Przytycka TM (2008) Why do hubs in the yeast protein interaction network tend to be essential: reexamining the connection between the network topology and essentiality. PLoS Comput Biol 4:e1000140. https://doi.org/10.1371/journal.pcbi.1000140

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Finance code 001), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ). The authors declare no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thiago M. Venancio.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Dorothea Bartels.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3089 kb)

Supplementary file2 (XLSX 240 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Almeida-Silva, F., Moharana, K.C., Machado, F.B. et al. Exploring the complexity of soybean (Glycine max) transcriptional regulation using global gene co-expression networks. Planta 252, 104 (2020). https://doi.org/10.1007/s00425-020-03499-8

Download citation

Keywords

  • Gene duplication
  • Gene function
  • Genome evolution
  • Systems biology
  • Transcription factors