Skip to main content
Log in

Multiple Xanthomonas campestris pv. campestris 8004 type III effectors inhibit immunity induced by flg22

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Xanthomonas campestris pv. campestris 8004 secretes several effector proteins that interfere with plant phosphorylation.

Abstract

Xanthomonas campestris pv. campestris (Xcc) can infect cruciferous plants and cause black rot. The strain Xcc8004 secretes effector proteins that interfere with plant cellular processes into host cells using a type III secretion (T3S) system. Several of the 24 predicted T3S effectors in the Xcc8004 genome have been implicated in the suppression of the Arabidopsis thaliana pattern-triggered immunity (PTI) response. We used an A. thaliana mesophyll protoplast-based assay to identify Xcc8004 T3S effectors that effectively interfere with PTI signalling induced by the bacterial peptide flg22. 11 of the 24 tested effector proteins (XopK, XopQ, HrpW, XopN, XopAC, XopD, XopZ1, XopAG, AvrBs2, XopL and XopX-1) inhibited expression of the flg22-inducible gene FRK1, and five effectors (XopK, XopG, XopQ, XopL and XopX-1) inhibited the expression of the flg22-inducible gene WRKY33. Therefore, there are 12 effector proteins that can inhibit the expression of relevant flg22-inducible genes. It was further investigated whether the 12 effector proteins affect the phosphorylation activation of mitogen-activated protein (MAP) kinases MPK3/MPK6, and four effector proteins (XopK, XopQ, XopZ1 and XopX-1) were found to markedly inhibit MPK3/MPK6 activation. Moreover, a subcellular localisation analysis revealed that the tested effectors were localised within various subcellular compartments. These results indicate that multiple T3S effectors in the Xcc8004 genome interfere with flg22-induced PTI signalling via various molecular mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983

    CAS  Google Scholar 

  • Bozkurt TO, Schornack S, Banfield MJ, Kamoun S (2012) Oomycetes, effectors, and all that jazz. Curr Opin Plant Biol 15:483–492

    Google Scholar 

  • Büttner D (2016) Behind the lines-actions of bacterial type III effector proteins in plant cells. FEMS Microbiol Rev 40:894–937

    Google Scholar 

  • Cai Y, Jia T, Lam SK, Ding Y, Gao C, San MW, Pimpl P, Jiang L (2011) Multiple cytosolic and transmembrane determinants are required for the trafficking of SCAMP1 via an ER-Golgi-TGN-PM pathway. Plant J 65(6):882–896

    CAS  Google Scholar 

  • Dean P (2011) Functional domains and motifs of bacterial type III effector proteins and their roles in infection. FEMS Microbiol Rev 35:1100–1125

    CAS  Google Scholar 

  • Deslandes L, Rivas S (2012) Catch me if you can: bacterial effectors and plant targets. Trends Plant Sci 17:644–655

    CAS  Google Scholar 

  • Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11(8):539–548

    CAS  Google Scholar 

  • Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for themost conserved domain of bacterial flagellin. Plant J 18:265–276

    CAS  Google Scholar 

  • Feng F, Zhou JM (2012) Plant-bacterial pathogen interactions mediated by type III effectors. Curr Opin Plant Biol 15:469–476

    Google Scholar 

  • Feng F, Yang F, Rong W, Wu X, Zhang J, Chen S, He C, Zhou JM (2012) A Xanthomonas uridine 5'-monophosphate transferase inhibits plant immune kinases. Nature 485:114–118

    CAS  Google Scholar 

  • Fraiture M, Zheng X, Brunner F (2014) An Arabidopsis and tomato mesophyll protoplast system for fast identification of early MAMP-triggered immunity-suppressing effectors. Methods Mol Biol 1127:213–230

    Google Scholar 

  • Gimenez-Ibanez S, Hann DR, Ntoukakis V, Petutschnig E, Lipka V, Rathjen JP (2009) AvrPtoB targets the lysM receptor kinase CERK1 to promote bacterial virulence on plants. Curr Biol 19:423–429

    CAS  Google Scholar 

  • Göhre V, Robatzek S (2008) Breaking the barriers: microbial effector molecules subvert plant immunity. Annu Rev Phytopathol 46:189–215

    Google Scholar 

  • Göhre V, Spallek T, Häweker H, Mersmann S, Mentzel T, Boller T, de Torres M, Mansfield JW, Robatzek S (2008) Plant pattern-recognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase AvrPtoB. Curr Biol 18:1824–1832

    Google Scholar 

  • Gómez-Gómez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011

    Google Scholar 

  • Guo M, Tian F, Wamboldt Y, Alfano JR (2009) The majority of the type III effctor inventory of Pseudomonas syringae pv. tomato DC3000 can suppress plant immunity. Mol Plant-Microbe Interact 22:1069–1080

    CAS  Google Scholar 

  • He P, Shan L, Lin NC, Martin GB, Kemmerling B, Nürnberger T, Sheen J (2006) Specific bacterial suppressors of MAMP signalling upstream of MAPKKK in Arabidopsis innate immunity. Cell 125:563–575

    CAS  Google Scholar 

  • Heilmann RM, Allenspach K (2017) Pattern-recognition receptors: signalling pathways and dysregulation in canine chronic enteropathies-brief review. J Vet Diagn Invest 29:781–787

    CAS  Google Scholar 

  • Hogenhout SA, Van der Hoorn RA, Terauchi R, Kamoun S (2009) Emerging concepts in effector biology of plant-associated organisms. Mol Plant Microbe Interact 22:115–122

    CAS  Google Scholar 

  • Hueck CJ (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62:379–433

    CAS  Google Scholar 

  • Jiang BL, He YQ, Cen WJ, Wei HY, Jiang GF, Jiang W, Hang XH, Feng JX, Lu GT, Tang DJ, Tang JL (2008) The type III secretion effector XopXccN of Xanthomonas campestris pv. campestris is required for full virulence. Res Microbiol 159:216–220

    CAS  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    CAS  Google Scholar 

  • Li JF, Zhang D, Sheen J (2014) Epitope-tagged protein-based artificial miRNA screens for optimized gene silencing in plants. Nat Protoc 9(4):939–949

    CAS  Google Scholar 

  • Liu X, Luo M, Zhang W, Zhao J, Zhang J, Wu K, Tian L, Duan J (2012) Histone acetyltransferases in rice (Oryza sativa L.): phylogenetic analysis, subcellular localization and expression. BMC Plant Biol 12:145

    CAS  Google Scholar 

  • Liu L, Wang Y, Cui F, Fang A, Wang S, Wang J, Wei C, Li S, Sun W (2017) The type III effector AvrXccB in Xanthomonas campestris pv. campestris targets putative methyltransferases and suppresses innate immunity in Arabidopsis. Mol Plant Pathol 18:768–782

    CAS  Google Scholar 

  • Liu S, Wang J, Jiang S, Wang H, Gao Y, Zhang H, Li D, Song F (2019) Tomato SlSAP3, a member of the stress-associated protein family, is a positive regulator of immunity against Pseudomonas syringae pv. tomato DC3000. Mol Plant Pathol 20:815–830

    CAS  Google Scholar 

  • Macho AP, Zipfel C (2014) Plant PRRs and the activation of innate immune signalling. Mol Cell 54:263–272

    CAS  Google Scholar 

  • Merda D, Briand M, Bosis E, Rousseau C, Portier P, Barret M, Jacques MA, Fischer-Le Saux M (2017) Ancestral acquisitions, gene flow and multiple evolutionary trajectories of the type three secretion system and effectors in Xanthomonas plant pathogens. Mol Ecol 26:5939–5952

    CAS  Google Scholar 

  • Popescu SC, Popescu GV, Bachan S, Zhang Z, Gerstein M, Snyder M, Dinesh-Kumar SP (2009) MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev 23:80–92

    CAS  Google Scholar 

  • Popov G, Fraiture M, Brunner F, Sessa G (2016) Multiple Xanthomonas euvesicatoria Type III effectors inhibit flg22-triggered immunity. Mol Plant-Microbe Interact 29:651–660

    CAS  Google Scholar 

  • Qian W, Jia Y, Ren SX, He YQ, Feng JX, Lu LF, Sun Q, Ying G, Tang DJ, Tang H, Wu W, Hao P, Wang L, Jiang BL, Zeng S, Gu WY, Lu G, Rong L, Tian Y, Yao Z, Fu G, Chen B, Fang R, Qiang B, Chen Z, Zhao GP, Tang JL, He C (2005) Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. Genome Res 15:757–767

    CAS  Google Scholar 

  • Qin J, Zhou X, Sun L, Wang K, Yang F, Liao H, Rong W, Yin J, Chen H, Chen X, Zhang J (2018) The Xanthomonas effector XopK harbours E3 ubiquitin-ligase activity that is required for virulence. New Phytol 220:219–231

    CAS  Google Scholar 

  • Rafiqi M, Ellis JG, Ludowici VA, Hardham AR, Dodds PN (2012) Challenges and progress towards understanding the role of effectors in plant-fungal interactions. Curr Opin Plant Biol 15:477–482

    CAS  Google Scholar 

  • Schoonbeek HJ, Wang HH, Stefanato FL, Craze M, Bowden S, Wallington E, Zipfel C, Ridout CJ (2015) Arabidopsis EF-Tu receptor enhances bacterial disease resistance in transgenic wheat. New Phytol 206:606–613

    CAS  Google Scholar 

  • Shan L, He P, Li J, Heese A, Peck SC, Nürnberger T, Martin GB, Sheen J (2008) Bacterial effectors target the common signalling partner BAK1 to disrupt multiple MAMP receptor-signalling complexes and impede plant immunity. Cell Host Microbe 4:17–27

    CAS  Google Scholar 

  • Sheen J (2001) Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol 127(4):1466–1475

    CAS  Google Scholar 

  • Sun W, Liu L, Bent AF (2011) Type III secretion-dependent host defence elicitation and type III secretion-independent growth within leaves by Xanthomonas campestris pv. campestris. Mol Plant Pathol 12:731–745

    CAS  Google Scholar 

  • Tan L, Rong W, Luo H, Chen Y, He C (2014) The Xanthomonas campestris effector protein XopDXcc8004 triggers plant disease tolerance by targeting DELLA proteins. New Phytol 204:595–608

    CAS  Google Scholar 

  • Tan CM, Li MY, Yang PY, Chang SH, Ho YP, Lin H, Deng WL, Yang JY (2015) Arabidopsis HFR1 is a potential nuclear substrate regulated by the Xanthomonas type III effector XopD (Xcc8004). PLoS ONE 10(2):e0117067

    Google Scholar 

  • Vicente JG, Holub EB (2013) Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to brassica crops. Mol Plant Pathol 14:2–18

    CAS  Google Scholar 

  • Wang H, Shi C, Xie Q, Wang Y, Liu S, Li C, He C, Tao J (2018) Genome-wide analysis of β-Galactosidases in Xanthomonas campestris pv. campestris 8004. Front Microbiol 9:957

    Google Scholar 

  • Xiang T, Zong N, Zou Y, Wu Y, Zhang J, Xing W, Li Y, Tang X, Zhu L, Chai J, Zhou JM (2008) Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Curr Biol 18:74–80

    CAS  Google Scholar 

  • Xu RQ, Blanvillain S, Feng JX, Jiang BL, Li XZ, Wei HY, Kroj T, Lauber E, Roby D, Chen B, He YQ, Lu GT, Tang DJ, Vasse J, Arlat M, Tang JL (2008) AvrAC(Xcc8004), a type III effector with a leucine-rich repeat domain from Xanthomonas campestris pv. campestris confers avirulence in vascular tissues of Arabidopsis thaliana ecotype Col-0. J Bacteriol 190:343–355

    CAS  Google Scholar 

  • Yan X, Tao J, Luo HL, Tan LT, Rong W, Li HP, He CZ (2019) A type III effector Xoplxcc8004 is vital for Xanthomonas campestris pv. campestris to regulate plant immunity. Res Microbiol 170:138–146

    CAS  Google Scholar 

  • Zhang J, Shao F, Li Y, Cui H, Chen L, Li H, Zou Y, Long C, Lan L, Chai J, Chen S, Tang X, Zhou JM (2007) A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants. Cell Host Microbe 1:175–185

    CAS  Google Scholar 

  • Zheng X, McLellan H, Fraiture M, Liu X, Boevink PC, Gilroy EM, Chen Y, Kandel K, Sessa G, Birch PR, Brunner F (2014) Functionally redundant RXLR effectors from Phytophthora infestans act at different steps to suppress early flg22-triggered immunity. PLoS Pathog 10:e1004057

    Google Scholar 

Download references

Acknowledgements

We thank Mr. Xiong Yan, who generously provided the MAPK3 and MAPK6 carriers. The carriers HBT95, pFRK1::LUC, pUBQ10::GUS were bountifully given by Prof. Jen Sheen and Prof. Wu Keqiang generously presented the VirD2NLS-mCherry carriers. This work were supported by the Sichuan Provincial Department of Science and Technology, China [2017JQ0034]; Youth Science and Technology Fund project [17QNJJ0048]; Key Project of Sichuan Provincial Department of Education (#16ZA0030); the Henry Fok Foundation [151104]; Ministry of Human Resources and Social Security, China; Sichuan Provincial Department of Science and Technology, China [2016JQ0009] and Sichuan Provincial Department of Education, China [16TD0005, 15ZA0001].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Cai.

Additional information

Communicated by Anastasios Melis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Li, T., Xu, T. et al. Multiple Xanthomonas campestris pv. campestris 8004 type III effectors inhibit immunity induced by flg22. Planta 252, 88 (2020). https://doi.org/10.1007/s00425-020-03484-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-020-03484-1

Keywords

Navigation