Skip to main content
Log in

Comparative transcriptome analyses provide novel insights into etiolated shoot development of walnut (Juglans regia L.)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

In general, genes promoting IAA, CTK GA and ethylene biosynthesis were upregulated, while genes participating in ABA, chlorophyll and starch biosynthesis pathways performed opposite tendency during etiolation.

Abstract

Etiolation as a method for rejuvenation plays an important role in the vegetative propagation of woody plants. However, the molecular mechanism of etiolated shoot development remains unclear. In this study, we investigated changes at different etiolation stages of Juglans regia. The histology and transcriptome of J. regia were analysed using etiolated stems, which were treated in darkness for 30, 60, 90 days. The results showed that the ratios of pith (Pi) diameter/stem diameter (D), cortex (Co) width/D, and phloem (Ph) width/D increased, while the ratio of xylem (Xy) width/D decreased after etiolation, and the difference in these ratios between etiolated stems and the control was more significant at 60 days than 90 days. Differentially expressed genes (DEGs) were significantly enriched in pathways such as plant hormone biosynthesis and signal transduction, chlorophyll biosynthesis and degradation, and starch and sucrose metabolism. The difference in the contents of indole-3-acetic acid (IAA), abscisic acid (ABA), sugar and chlorophyll between etiolated stems and the control increased with increasing treatment duration; in contrast, the concentrations of gibberellin (GA), zeatin (ZT), and starch, as well as the difference between the etiolated stems and control were lowest at 60 days among the three stages. On the whole, the positive effect of etiolation on the rejuvenation of walnut stems changed as the treatment period increased. The present investigation lays a foundation for future studies on the effect of etiolation on rejuvenation and for promoting the efficiency of vegetative propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

DEGs:

Differentially expressed genes

PIN:

Pin-formed

GAox:

GA-oxidase

CKX:

Cytokinin dehydrogenase

NCED:

9-Cis-Epoxycarotenoid dioxygenase

CTK:

Cytokinin

References

  • Achard P, Liao L, Jiang C, Desnos T, Bartlett J, Fu X, Harberd NP (2007) DELLAs contribute to plant photomorphogenesis. Plant Physiol 143:1163–1172

    CAS  Google Scholar 

  • Achim G, Botu I (2001) Results in walnut propagation using different methods. Acta Hortic 544:503–509

    Google Scholar 

  • Agrawal AA, Kearney EE, Hastings AP, Ramsey TE (2012) Attenuation of the jasmonate burst, plant defensive traits, and resistance to specialist monarch caterpillars on shaded common milkweed (Asclepias syriaca). J Chem Ecol 38:893–901

    CAS  Google Scholar 

  • Agulló-Antón MA, Sánchez-Bravo J, Acosta M, Druege U (2011) Auxins or sugars: what makes the difference in the adventitious rooting of stored carnation cuttings? J Plant Growth Regul 30:100–113

    Google Scholar 

  • Andrés H, Fernández B, Rodríguez R, Rodríguez A (2002) Phytohormone contents in Corylus avellana and their relationship to age and other developmental processes. Plant Cell Tiss Org 70:173–180

    Google Scholar 

  • Bae G, Choi G (2008) Decoding of light signals by plant phytochromes and their interacting proteins. Annu Rev Plant Biol 59:281–311

    CAS  Google Scholar 

  • Bagherabadi MM, Krens FA, Visser RGF, De Klerk GJM (2017) Etiolation and flooding of donor plants enhance the capability of Arabidopsis explants to root. Plant Cell Tiss Org 130:531–541

    Google Scholar 

  • Barbez E, Kubeš M, Rolčík J, Béziat C, Pěnčík A, Wang BJ et al (2012) A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature 485:119–122

    CAS  Google Scholar 

  • Basheer-Salimia R, Patakas A, Noitsakis V, Bosabalidis A, Vasilakakis M (2005) Changes of morphological and physiological markers induced by growth phases in leaves olive tree (Olea europaea L). J Biol Res 2:105–114

    Google Scholar 

  • Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44

    CAS  Google Scholar 

  • Bond WJ, Midgley JJ (2001) Ecology of sprouting in woody plants: the persistence niche. Trends Ecol Evol 16:45–51

    CAS  Google Scholar 

  • Carabelli M, Possenti M, Sessa G, Ciolfi A, Sassi M, Morelli G, Ruberti I (2007) Canopy shade causes a rapid and transient arrest in leaf development through auxin-induced cytokinin oxidase activity. Genes Dev 21:1863–1868

    CAS  Google Scholar 

  • Cerrudo I, Keller MM, Cargnel MD, Demkura PV, de Wit M, Patitucci MS, Pierik R, Pieterse CMJ, Ballaré CL (2012) Low red/far-red ratios reduce Arabidopsis resistance to Botrytis cinerea and jasmonate responses via a COI1-JAZ10-dependent, salicylic acid-independent mechanism. Plant Physiol 158:2042–2052

    CAS  Google Scholar 

  • de Wit M, Spoel SH, Sanchez-Perez GF, Gommers CMM, Pieterse CMJ, Voesenek LACJ, Pierik R (2013) Perception of low red:far-red ratio compromises both salicylic acid- and jasmonic acid-dependent pathogen defences in Arabidopsis. Plant J 75:90–103

    Google Scholar 

  • Dubois M, Van den Broeck L, Inzé D (2018) The pivotal role of ethylene in plant growth. Trends Plant Sci 23:311–323

    CAS  Google Scholar 

  • Fernández-Ocaña A, García-López MC, Jiménez-Ruiz J, Saniger L, Macías D, Navarro F, Oya R, Belaj A, de la Rosa R, Corpas FJ, Barroso JB, Luque F (2010) Identification of a gene involved in the juvenile-to-adult transition (JAT) in cultivated olive trees. Tree Genet Genomes 6:891–903

    Google Scholar 

  • Fouda RA (1996) Anatomical characteristics of juvenile and adult shoots associated with rooting ability of Cupressocyparis leylandii cuttings. Kert Tud 28:107–111

    Google Scholar 

  • Han F, Zhu B (2011) Evolutionary analysis of three gibberellin oxidase genes in rice, Arabidopsis, and soybean. Gene 473:23–35

    CAS  Google Scholar 

  • Hartmann HT, Kester DE, Davies FT, Geneve RL (2011) Hartmann and Kester’s plant propagation principles and practices. Prentice Hall, Boston

    Google Scholar 

  • Hisamatsu T, King RW, Helliwell CA, Koshioka M (2005) The involvement of gibberellin 20-oxidase genes in phytochrome-regulated petiole elongation of Arabidopsis. Plant Physiol 138:1106–1116

    CAS  Google Scholar 

  • Huang LC, Chow TY, Tseng TC, Kuo CI, Liu SM, Ngoh MG, Murashige T, Huang HJ (2003) Association of mitochondrial plasmids with rejuvenation of the coastal redwood, Sequoia sempervirens (D. Don) Endl. Bot Bull Acad Sin 44:25–30

    CAS  Google Scholar 

  • Huang LC, Hsiao LJ, Pu SY, Kuo CI, Huang BL, Tseng TC, Huang HJ, Chen YT (2012) DNA methylation and genome rearrangement characteristics of phase change in cultured shoots of Sequoia sempervirens. Physiol Plant 145:360–368

    CAS  Google Scholar 

  • Husen A (2011) Rejuvenation and adventitious rooting in coppice-shoot cuttings of Tectona grandis. Am J Plant Sci 2:370–374

    Google Scholar 

  • Husen A, Pal M (2006) Variation in shoot anatomy and rooting behaviour of stem cuttings in relation to age of donor plants in teak (Tectona grandisLinn. f.). New Forest 31:57–73

    Google Scholar 

  • Hwang I, Sheen J, Müller B (2012) Cytokinin signaling networks. Annu Rev Plant Biol 63:353–380

    CAS  Google Scholar 

  • Ju YQ, Feng L, Wu JY, Ye YJ, Zheng TC, Cai M, Cheng TG, Wang J, Zhang QX, Pa HT (2018) Transcriptome analysis of the genes regulating phytohormone and cellular patterning in Lagerstroemia plant architecture. Sci Rep 8:15162

    Google Scholar 

  • Keuskamp DH, Pollmann S, Voesenek LACJ, Peeters AJM, Pierik R (2010) Auxin transport through PIN-FORMED 3 (PIN3) controls shade avoidance and fitness during competition. Proc Natl Acad Sci USA 107:22740–22744

    CAS  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    CAS  Google Scholar 

  • Kozuka T, Kobayashi J, Horiguchi G, Demura T, Sakakibara H, Tsukaya H, Nagatani A (2010) Involvement of auxin and brassinosteroid in the regulation of petiole elongation under the shade. Plant Physiol 153:1608–1618

    CAS  Google Scholar 

  • Kuroha T, Tokunaga H, Kojima M, Ueda N, Ishida T, Nagawa S, Fukuda H, Sugimoto K, Sakakibara H (2009) Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell 21:3152–3169

    CAS  Google Scholar 

  • Lau OS, Deng XW (2010) Plant hormone signaling lightens up: integrators of light and hormones. Curr Opin Plant Biol 13:571–577

    CAS  Google Scholar 

  • Li QF, He JX (2016) BZR1 interacts with HY5 to mediate brassinosteroid-and light-regulated cotyledon opening in Arabidopsis in darkness. Mol Plant 9:113–125

    CAS  Google Scholar 

  • Liu H, Gao Y, Song XB, Ma QG, Zhang JP, Pei D (2018) A novel rejuvenation approach to induce endohormones and improve rhizogenesis in mature Juglans tree. Plant Methods 14:13

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCt method. Methods 25:402–408

    CAS  Google Scholar 

  • Li L, Ljung K, Breton G, Schmitz RJ, Pruneda-Paz J, Cowing-Zitron C, Cole BJ, Ivans LJ, Pedmale UV, Jung HS et al (2012) Linking photoreceptor excitation to changes in plant architecture. Genes Dev 26:785–790

    CAS  Google Scholar 

  • Lumba S, Tsuchiya Y, Delmas F, Hezky J, Provart NJ, Lu QS, McCourt P, Gazzarrini S (2012) The embryonic leaf identity gene FUSCA3 regulates vegetative phase transitions by negatively modulating ethylene-regulated gene expression in Arabidopsis. BMC Biol 10:8. https://doi.org/10.1186/1741-7007-10-8

    Article  CAS  Google Scholar 

  • Lu N, Dai L, Luo ZJ, Wang SM, Wen YZ, Duan HJ, Hou RX, Sun YH, Li Y (2017) Characterization of the transcriptome and gene expression of tetraploid black locust cuttings in response to etiolation. Genes 8:345

    Google Scholar 

  • Martínez-García PJ, Crepeau MW, Puiu D, Gonzalez-Ibeas D et al (2016) The walnut (Juglans regia) genome sequence reveals diversity in genes coding for the biosynthesis of nonstructural polyphenols. Plant J 87:507–532

    Google Scholar 

  • Materán ME, Fernández M, Valenzuela S, Sáez K, Seemann P, Sánchez-Olate M, Ríos D (2009) Abscisic acid and 3-indolacetic acid levels during the reinvigoration process of Pinus radiata D. Don adult material. Plant Growth Regul 59:171–177

    Google Scholar 

  • Matsoukas IG, Massiah AJ, Thomas B (2013) Starch metabolism and antiflorigenic signals modulate the juvenile-to-adult phase transition in Arabidopsis. Plant Cell Environ 36:1802–1811

    CAS  Google Scholar 

  • Maynard BK, Bassuk NL (1996) Effects of stock plant etiolation, shading, banding, and shoot development on histology and cutting propagation of Carpinus betulus L. fastigiata. J Am Soc Hortic Sci 121:853–860

    Google Scholar 

  • Meier AR, Saunders MR, Michler CH (2012) Epicormic buds in trees: a review of bud establishment, development and dormancy release. Tree Physiol 32:565–584

    Google Scholar 

  • Menzies MI, Faulds T, Holden DG, Kumar S, Klomp BK (2004) Maturation status and genetic improvement effects on growth, form, and wood properties of Pinus radiata cuttings up to age 12 years. N Z J Forest Sci 34:255–271

    Google Scholar 

  • Miao YY, Guo QS, Zhu ZB, Yang XH, Wang CL, Sun Y, Liu L (2016) Dynamic changes in starch metabolism and endogenous hormones during stolon formation in Tulipa edulis. J Am Soc Hortic Sci 141:211–221

    CAS  Google Scholar 

  • Moncaleán R, Rodrìguez A, Fernández B (2001) Plant growth regulators as putative physiological markers of developmental stage in Prunus persica. Plant Growth Regul 36:27–29

    Google Scholar 

  • Mortier V, Wasson A, Jaworek P, De Keyser A, Decroos M, Holsters M, Tarkowski P, Mathesius U, Goormachtig S (2014) Role of LONELY GUY genes in indeterminate nodulation on Medicago truncatula. New Phytol 202:582–593

    CAS  Google Scholar 

  • Novak P, Svoboda D (2019) Research progress on plant chlorophyll anabolism. J Plant Soil Sci 1:10–15

    Google Scholar 

  • Oñate M, Munné-Bosch S (2008) Meristem aging is not responsible for age-related changes in growth and abscisic acid levels in the Mediterranean shrub, Cistus clusii. Plant Biol 10:148–155

    Google Scholar 

  • Pacholczak A, Szydło W, Łukaszewska A (2005) The effect of etiolation and shading of stock plants on rhizogenesis in stem cuttings of Cotinus coggygria. Acta Physiol Plant 27:417–428

    CAS  Google Scholar 

  • Pierik R, De Wit M, Voesenek LACJ (2011) Growth-mediated stress escape: convergence of signal transduction pathways activated upon exposure to two different environmental stresses. New Phytol 189:122–134

    CAS  Google Scholar 

  • Radhika V, Kost C, Mithöfer A, Boland W (2010) Regulation of extrafloral nectar secretion by jasmonates in lima bean is light dependent. Proc Natl Acad Sci USA 107:17228–17233

    CAS  Google Scholar 

  • Rajput KS, Patil VS, Rao KS (2014) Stem anatomy of the dwarf subshrub Cressa cretica L. (Convolvulaceae). Flora 209:408–413

    Google Scholar 

  • Reid JB, Botwright NA, Smith JJ, O’Neill DP, Kerckhoffs LHJ (2002) Control of gibberellin levels and gene expression during de-etiolation in pea. Plant Physiol 128:734–741

    CAS  Google Scholar 

  • Reid D, Nadzieja M, Novák O, Heckmann AB, Sandal N, Stougaard J (2017) Cytokinin biosynthesis promotes cortical cell responses during nodule development. Plant Physiol 175:361–375

    CAS  Google Scholar 

  • Ribeiro DM, Mapeli AM, Carnelossi MAG, Delatorre CA, Barros RS (2010) Dormancy breakage of Stylosanthes humilis seeds by aluminium. Seed Sci Res 20:145–152

    CAS  Google Scholar 

  • Santner A, Estelle M (2009) Recent advances and emerging trends in plant hormone signalling. Nature 459:1071–1078

    CAS  Google Scholar 

  • Sato T, Shimoda Y, Matsuda K, Tanaka A, Ito H (2018) Mg-dechelation of chlorophyll a by stay-green activates chlorophyll b degradation through expressing non-yellow coloring 1 in Arabidopsis thaliana. J Plant Physiol 222:94–102

    CAS  Google Scholar 

  • Singh SR, Ahmed N, Srivastava KK, Shagoo PA (2018) Studies on factors influencing the vegetative propagation in walnut (Juglans regia L.). J Hortic Sci 13:91–96

    Google Scholar 

  • Sorin C, Bussell JD, Camus I, Ljung K, Kowalczyk M, Geiss G, McKhann H, Garcion C, Vaucheret H, Sandberg G, Bellini C (2005) Auxin and light control of adventitious rooting in Arabidopsis require ARGONAUTE1. Plant Cell 17:1343–1359

    CAS  Google Scholar 

  • Spartz AK, Lor VS, Ren H, Olszewski NE, Miller ND, Wu G, Spalding EP, Gray WM (2017) Constitutive expression of Arabidopsis SMALL AUXIN UP RNA19 (SAUR19) in tomato confers auxin-independent hypocotyl elongation. Plant Physiol 173:1453–1462

    CAS  Google Scholar 

  • Stevens ME, Pijut PM (2018) Rapid in vitro shoot multiplication of the recalcitrant species Juglans nigra L. Vitro Cell Dev Pl 54:309–317

    CAS  Google Scholar 

  • Tan B, Joseph LM, Deng W, Liu L, Li Q, Cline K, McCarty DR (2003) Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant J 35:44–56

    CAS  Google Scholar 

  • Tan J, Tu L, Deng F, Wu R, Zhang X (2012) Exogenous jasmonic acid inhibits cotton fiber elongation. Plant Growth Regul 31:599–605

    CAS  Google Scholar 

  • Uddenberg D, Reimegård J, Clapham D, Almqvist C, von Arnold S, Emanuelsson O, Sundström JF (2013) Early cone setting in Picea abies acrocona is associated with increased transcriptional activity of a MADS box transcription factor. Plant Physiol 161:813–823

    CAS  Google Scholar 

  • Ueguchi-Tanaka M, Ashikari M, Nakajima M, Katoh HIE, Kobayashi M, Chow T (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437:693–698

    CAS  Google Scholar 

  • Vahdati K, Aalifar M (2016) Development and extension of walnut propagation in Iran. Acta Hortic 1139:467–474

    Google Scholar 

  • Valdés AE, Centeno ML, Fernández B (2004a) Age-related changes in the hormonal status of Pinus radiate needle fascicle meristems. Plant Sci 167:373–378

    Google Scholar 

  • Valdés AE, Fernández B, Centeno ML (2004b) Hormonal changes throughout maturation and ageing in Pinus pinea. Plant Physiol Biochem 42:335–340

    Google Scholar 

  • Wang JW, Czech B, Weigel D (2009) miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138:738–749

    CAS  Google Scholar 

  • Wang T, Liu L, Wang XJ, Liang LX, Yue JJ, Li LB (2018) Comparative analyses of anatomical structure, phytohormone levels, and gene expression profiles reveal potential dwarfing mechanisms in shengyin bamboo (Phyllostachys edulis f. tubaeformis). Int J Mol Sci 19:1697

    Google Scholar 

  • Weller JL, Hecht V, Vander Schoor JK, Davidson SE, Ross JJ (2009) Light regulation of gibberellin biosynthesis in pea is mediated through the COP1/HY5 pathway. Plant Cell 21:800–813

    CAS  Google Scholar 

  • Wendling I, Trueman SJ, Xavier A (2014a) Maturation and related aspects in clonal forestry—part I: concepts, regulation and consequences of phase change. New Forest 45:449–471

    Google Scholar 

  • Wendling I, Trueman SJ, Xavier A (2014b) Maturation and related aspects in clonal forestry—part II: reinvigoration, rejuvenation and juvenility maintenance. New Forest 45:473–486

    Google Scholar 

  • Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750–759

    CAS  Google Scholar 

  • Yang PP, Xu LF, Xu H, Tang YC, He GR, Cao YW, Feng YY, Yuan SX, Ming J (2017) Histological and transcriptomic analysis during bulbil formation in Lilium lancifolium. Front Plant Sci 8:1508

    Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:R14

    Google Scholar 

  • Yu S, Cao L, Zhou CM, Zhang TQ, Lian H, Sun Y, Wu JQ, Huang JR, Wang GD, Wang JW (2013) Sugar is an endogenous cue for juvenile-to-adult phase transition in plants. eLife 2:e00269

    Google Scholar 

  • Zarghami R, Salari A (2015) Effect of different hormonal treatments on proliferation and rooting of three Persian walnut (Juglans regia L.) genotypes. Pak J Agric Sci 18:260–266

    CAS  Google Scholar 

  • Zhang SC, Wang XJ (2008) Expression pattern of GASA, downstream genes of DELLA, in Arabidopsis. Sci Bull 53:3839–3846

    CAS  Google Scholar 

  • Zhang Y, Wang BB, Guo LQ, Xu WT, Wang ZW, Li BL, Zhang JF (2018) Factors influencing direct shoot regeneration from leaves, petioles, and plantlet roots of triploid hybrid Populus sect. Tacamahaca J Forest Res 29:1533–1545

    CAS  Google Scholar 

  • Zhang Y, Wang BB, Qi SZ, Dong ML, Wang ZW, Li YX, Chen SY, Li BL, Zhang JF (2019) Ploidy and hybridity effects on leaf size, cell size and related genes expression in triploids, diploids and their parents in Populus. Planta 249:635–646

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Postdoctoral fund of Beijing Academy of Agriculture and Forestry Sciences (2018-ZZ-022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanbin Hao or Jianxun Qi.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 13 kb)

Supplementary file2 (JPG 781 kb)

Supplementary file3 (JPG 8045 kb)

Supplementary file4 (JPG 2020 kb)

Supplementary file5 (JPG 1133 kb)

Supplementary file6 (JPG 13056 kb)

Supplementary file7 (JPG 5604 kb)

Supplementary file8 (JPG 4168 kb)

Supplementary file9 (JPG 10421 kb)

Supplementary file10 (JPG 5421 kb)

Supplementary file11 (JPG 3266 kb)

Supplementary file12 (JPG 4194 kb)

Supplementary file13 (JPG 6216 kb)

Supplementary file14 (DOCX 24 kb)

Supplementary file15 (XLSX 13 kb)

Supplementary file16 (XLSX 11 kb)

Supplementary file17 (XLSX 9 kb)

Supplementary file18 (XLSX 16 kb)

Supplementary file19 (XLSX 37 kb)

Supplementary file20 (XLSX 22 kb)

Supplementary file21 (XLSX 41 kb)

Supplementary file22 (XLSX 15 kb)

Supplementary file23 (XLSX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Zhang, Y., Dong, N. et al. Comparative transcriptome analyses provide novel insights into etiolated shoot development of walnut (Juglans regia L.). Planta 252, 74 (2020). https://doi.org/10.1007/s00425-020-03455-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-020-03455-6

Keywords

Navigation