Skip to main content
Log in

Comprehensive analysis of polygalacturonase gene family highlights candidate genes related to pollen development and male fertility in wheat (Triticum aestivum L.)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Four polygalacturonase gene family members were highlighted that contribute to elucidate the roles of polygalacturonase during the fertility conversion process in male-sterile wheat.

Abstract

Polygalacturonase (PG) belongs to a large family of hydrolases with important functions in cell separation during plant growth and development via the degradation of pectin. Specific expressed PGs in anthers may be significant for male sterility research and hybrid wheat breeding, but they have not been characterized in wheat (Triticum aestivum L.). In this study, we systematically studied the PG gene family using the latest published wheat reference genomic information. In total, 113 wheat PG genes were identified, which could be classified into six categories A–F according to their structure characteristics and phylogenetic comparisons with Arabidopsis and rice. Polyploidy and segmental duplications in wheat were proved to be mainly responsible for the expansion of the wheat PG gene family. RNA-seq showed that TaPGs have specific temporal and spatial expression characteristics, in which 12 TaPGs with spike-specific expression patterns were detected by qRT-PCR in different fertility anthers of KTM3315A, a thermo-sensitive cytoplasmic male-sterile wheat. Four of them specific upregulated (TaPG09, TaPG95, and TaPG93) or downregulated (TaPG87) at trinucleate stage of fertile anthers, and further aligning with the homologous in Arabidopsis revealed that they may undertake functions such as anther dehiscence, separation of pollen, pollen development, and pollen tube elongation, thereby inducing male fertility conversion in KTM3315A. These findings facilitate function investigations of the wheat PG gene family and provide new insights into the fertility conversion mechanism in male-sterile wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ADPG1(2):

Arabidopsis Dehiscence zone polygalacturonase 1(2)

PG:

Polygalacturonase

TaPG :

Triticum aestivum Polygalacturonase gene

References

  • Alaux M, Rogers J, Letellier T, Flores R, Alfama F, Pommier C, Mohellibi N, Durand S, Kimmel E, Michotey C (2018) Linking the international wheat genome sequencing consortium bread wheat reference genome sequence to wheat genetic and phenomic data. Genome Biol 19(1):111

    PubMed  PubMed Central  Google Scholar 

  • Albani D, Altosaar I, Arnison PG, Fabijanski SF (1991) A gene showing sequence similarity to pectin esterase is specifically expressed in developing pollen of Brassica napus. Sequences in its 5' flanking region are conserved in other pollen-specific promoters. Plant Mol Biol 16(4):501–513

    CAS  PubMed  Google Scholar 

  • Allen RL, Lonsdale DM (1992) Sequence analysis of three members of the maize polygalacturonase gene family expressed during pollen development. Plant Mol Biol 20(2):343–345

    CAS  PubMed  Google Scholar 

  • Aouali N, Laporte P, Clément C (2001) Pectin secretion and distribution in the anther during pollen development in Lilium. Planta 213(1):71–79. https://doi.org/10.1007/s004250000469

    Article  CAS  PubMed  Google Scholar 

  • Bailey TL, Boden M, Buske FA, Frith MC, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME suite: tools for motif discovery and searching. Nucleic Acids Res 37:202–208

    Google Scholar 

  • Bergey DR, Orozco-Cardenas ML, Moura DS, Ryan CA (1999) A wound- and systemin-inducible polygalacturonase in tomato leaves. Proc Natl Acad Sci USA 96(4):1756–1760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown SM, Crouch ML (1990) Characterization of a gene family abundantly expressed in Oenothera organensis pollen that shows sequence similarity to polygalacturonase. Plant Cell 2(3):263–274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bussink HJD, Buxton FP, Visser J (1991) Expression and sequence comparison of the Aspergillus niger and Aspergillus tubigensis genes encoding polygalacturonase II. Curr Genetics 19(6):467–474

    CAS  Google Scholar 

  • Cardarelli M, Cecchetti V (2014) Auxin polar transport in stamen formation and development: how many actors? Front Plant Sci 5:333. https://doi.org/10.3389/fpls.2014.00333

    Article  PubMed  PubMed Central  Google Scholar 

  • Castro AJ, Suarez C, Zienkiewicz K, Alche JDD, Zienkiewicz A, Rodriguezgarcia MI (2013) Electrophoretic profiling and immunocytochemical detection of pectins and arabinogalactan proteins in olive pollen during germination and pollen tube growth. Ann Bot 112(3):503–513

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cecchetti V, Altamura M, Falasca G, Costantino P, Cardarelli M (2008) Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell 20:1760–1774. https://doi.org/10.1105/tpc.107.057570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Shao H, Fan S, Ma J, Zhang D, Han M (2016) Identification and phylogenetic analysis of the polygalacturonase gene family in apple. Horticult Plant J 2(5):241–252. https://doi.org/10.1016/j.hpj.2017.01.004

    Article  Google Scholar 

  • Chen C, Xia R, Chen H, He Y (2018) TBtools, a toolkit for biologists integrating various HTS-data handling tools with a user-friendly interface. bioRxiv:289660. doi: https://doi.org/10.1101/289660

  • Choulet F, Alberti A, Theil S, Glover N, Barbe V, Daron J, Pingault L, Sourdille P, Couloux A, Paux E (2014) Structural and functional partitioning of bread wheat chromosome 3B. Science 345(6194):1249721–1249721

    PubMed  Google Scholar 

  • Coimbra S, Costa MRPFN, Jones B, Mendes MA, Pereira LG (2009) Pollen grain development is compromised in Arabidopsis agp6 agp11 null mutants. J Exp Bot 60(11):3133–3142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dardelle F, Lehner A, Ramdani Y, Bardor M, Lerouge P, Driouich A, Mollet J (2010) Biochemical and immunocytological characterizations of Arabidopsis pollen tube cell wall. Plant Physiol 153(4):1563–1576

    CAS  PubMed  PubMed Central  Google Scholar 

  • El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A, EL Sonnhammer L, Hirsh L, Paladin L, Piovesan D, Tosatto SCE, Finn RD (2018) The Pfam protein families database in 2019. Nucleic Acids Res 47(D1):D427–D432. https://doi.org/10.1093/nar/gky995

    Article  CAS  PubMed Central  Google Scholar 

  • Feng X, Dickinson H (2010) Tapetal cell fate, lineage and proliferation in the Arabidopsis anther. Development (Cambridge, England) 137:2409–2416. https://doi.org/10.1242/dev.049320

    Article  CAS  Google Scholar 

  • Goldberg RB, Beals TP, Sanders PM (1993) Anther development: basic principles and practical applications. Plant Cell 5(10):1217–1229. https://doi.org/10.1105/tpc.5.10.1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Jain R, Yang P, Fan R, Kwoh CK, Zheng J (2014) Reliable and fast estimation of recombination rates by convergence diagnosis and parallel Markov Chain Monte Carlo. IEEE/ACM Trans Comput Biol Bioinform 11(1):63–72. https://doi.org/10.1109/TCBB.2013.133

    Article  PubMed  Google Scholar 

  • Hadfield KA, Rose JKC, Yaver DS, Berka R, Bennett AB (1998) Polygalacturonase gene expression in ripe melon fruit supports a role for polygalacturonase in pipening-associated pectin disassembly. Plant Physiol 117(2):363–373

    CAS  PubMed  PubMed Central  Google Scholar 

  • He H, Bai M, Tong P, Hu Y, Yang M, Wu H (2018) CELLULASE6 and MANNANASE7 affect cell differentiation and silique dehiscence. Plant Physiol 176(3):2186–2201. https://doi.org/10.1104/pp.17.01494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hruba P, Honys D, Twell D, Capkova V, Tupy J (2005) Expression of beta-galactosidase and beta-xylosidase genes during microspore and pollen development. Planta 220(6):931–940. https://doi.org/10.1007/s00425-004-1409-0

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Cao J, Zhang A, Ye Y, Zhang Y, Liu T (2009a) The polygalacturonase gene BcMF2 from Brassica campestris is associated with intine development. J Exp Bot 60(1):301–313

    CAS  PubMed  Google Scholar 

  • Huang L, Ye Y, Zhang Y, Zhang A, Liu T, Cao J (2009b) BcMF9, a novel polygalacturonase gene, is required for both Brassica campestris intine and exine formation. Ann Bot 104(7):1339–1351

    CAS  PubMed  PubMed Central  Google Scholar 

  • International Wheat Genome Sequencing Consortium (IWGSC) (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191. https://doi.org/10.1126/science.aar7191

    Article  CAS  Google Scholar 

  • Irish VF (2010) The flowering of Arabidopsis flower development. Plant J 61(6):1014–1028. https://doi.org/10.1111/j.1365-313X.2009.04065.x

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Zhang Z, Cao J (2013) Pollen wall development: the associated enzymes and metabolic pathways. Plant Biol 15(2):249–263. https://doi.org/10.1111/j.1438-8677.2012.00706.x

    Article  CAS  PubMed  Google Scholar 

  • John ME, Petersen MW (1994) Cotton (Gossypium hirsutum L.) pollen-specific polygalacturonase mRNA: tissue and temporal specificity of its promoter in transgenic tobacco. Plant Mol Biol 26(6):1989–1993. https://doi.org/10.1007/bf00019509

    Article  CAS  PubMed  Google Scholar 

  • Kersey P, Allen JE, Allot A, Barba M, Boddu S, Bolt BJ, Carvalho-Silva D, Christensen MB, Davis P, Grabmueller C et al (2018) Ensembl genomes 2018: an integrated omics infrastructure for non-vertebrate species. Nucleic Acids Res 46:D802–D808. https://doi.org/10.1093/nar/gkx1011

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Patterson SE (2006) Expression divergence and functional redundancy of polygalacturonases in floral organ abscission. Plant Signal Behav 1(6):281–283. https://doi.org/10.4161/psb.1.6.3541

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim J, Shiu SH, Thoma S, Li W, Patterson SE (2006) Patterns of expansion and expression divergence in the plant polygalacturonase gene family. Genome Biol 7(9):R87. https://doi.org/10.1186/gb-2006-7-9-r87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lalanne E, Honys D, Johnson A, Borner GHH, Lilley KS, Dupree P, Grossniklaus U, Twell D (2004) SETH1 and SETH2, two components of the glycosylphosphatidylinositol anchor biosynthetic pathway, are required for pollen germination and tube growth in Arabidopsis. Plant Cell 16(1):229–240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, De Peer YV, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(1):325–327

    CAS  PubMed  PubMed Central  Google Scholar 

  • Letunic I, Bork P (2018) 20 years of the SMART protein domain annotation resource. Nucleic Acids Res 46:D493–D496. https://doi.org/10.1093/nar/gkx922

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Yu Y, Shen X, Dong H, Lyu M, Xu L, Ma Z, Liu T, Cao J (2015) Dissecting the complex molecular evolution and expression of polygalacturonase gene family in Brassica rapa ssp Chinensis. Plant Mol Biol 89(6):629–646

    CAS  PubMed  Google Scholar 

  • Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, Deweese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR et al (2011) CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res 39:225–229

    Google Scholar 

  • Mollet J-C, Leroux C, Dardelle F, Lehner A (2013) Cell wall composition, biosynthesis and remodeling during pollen tube growth. Plants (Basel) 2(1):107–147. https://doi.org/10.3390/plants2010107

    Article  CAS  Google Scholar 

  • Neelam A, Sexton R (1995) Cellulase (endo β-1,4 glucanase) and cell wall breakdown during anther development in the sweet pea (Lathyrus odoratus L.): isolation and characterization of partial cDNA clones. J Plant Physiol 146:622–628

    CAS  Google Scholar 

  • Nguyen TD, Moon S, Oo MM, Tayade R, Soh M, Song JT, Oh SA, Jung K, Park SK (2016) Application of rice microspore-preferred promoters to manipulate early pollen development in Arabidopsis: a heterologous system. Sex Plant Reprod 29(4):291–300

    CAS  Google Scholar 

  • Ogawa M, Kay P, Wilson SM, Swain SM (2009) Arabidopsis dehiscence zone polygalacturonase1 (ADPG1), ADPG2, and QUARTET2 are polygalacturonases required for cell separation during reproductive development in Arabidopsis. Plant Cell 21(1):216–233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orozco-Cardenas ML, Narvaez-Vasquez J, Ryan CA (2001) Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13(1):179–191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park KCPC, Kwon SJKJ, Kim PHKH, Bureau TB, Kim NSKS (2008) Gene structure dynamics and divergence of the polygalacturonase gene family of plants and fungus. Genome 51(1):30–40

    CAS  PubMed  Google Scholar 

  • Park K, Kwon S, Kim N (2010) Intron loss mediated structural dynamics and functional differentiation of the polygalacturonase gene family in land plants. Genes Genom 32(6):570–577

    CAS  Google Scholar 

  • Preuss D, Rhee SY, Davis RW (1994) Tetrad analysis possible in Arabidopsis with mutation of the QUARTET (QRT) genes. Science 264(5164):1458–1460

    CAS  PubMed  Google Scholar 

  • Ramirez-Gonzalez RH, Borrill P, Lang D, Harrington SA, Brinton J, Venturini L, Davey MW, Jacobs J, Van Ex F, Pasha A et al (2018) The transcriptional landscape of polyploid wheat. Science 361(6403):eaar6089. https://doi.org/10.1126/science.aar6089

    Article  CAS  PubMed  Google Scholar 

  • Rao MN, Kembhavi AA, Pant A (1996) Implication of tryptophan and histidine in the active site of endo-polygalacturonase from Aspergillus ustus: elucidation of the reaction mechanism. Biochim Biophys Acta 1296(2):167–173

    PubMed  Google Scholar 

  • Rexovabenkova L (1990) Evidence for the role of carboxyl groups in activity of endopolygalacturonase of Aspergillus niger. Chemical modification by carbodiimide reagent. Collect Czech Chem Commun 55(5):1389–1395

    CAS  Google Scholar 

  • Rhee SY, Somerville CR (1998) Tetrad pollen formation in quartet mutants of Arabidopsis thaliana is associated with persistence of pectic polysaccharides of the pollen mother cell wall. Plant J 15(1):79–88. https://doi.org/10.1046/j.1365-313X.1998.00183.x

    Article  CAS  PubMed  Google Scholar 

  • Rhee SY, Osborne E, Poindexter P, Somerville C (2003) Microspore separation in the quartet 3 mutants of Arabidopsis is impaired by a defect in a developmentally regulated polygalacturonase required for pollen mother cell wall degradation. Plant Physiol 133(3):1170–1180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robert LS, Allard S, Gerster JL, Cass L, Simmonds J (1993) Isolation and characterization of a polygalacturonase gene highly expressed in Brassica napus pollen. Plant Mol Biol 23(6):1273–1278

    CAS  PubMed  Google Scholar 

  • Roongsattham P, Morcillo F, Jantasuriyarat C, Pizot M, Moussu S, Jayaweera D, Collin M, Gonzalez-Carranza ZH, Amblard P, Tregear J et al (2012) Temporal and spatial expression of polygalacturonase gene family members reveals divergent regulation during fleshy fruit ripening and abscission in the monocot species oil palm. BMC Plant Biol 12(1):150–150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rose JKC, Hadfield KA, Labavitch JM, Bennett AB (1998) Temporal sequence of cell wall disassembly in rapidly ripening melon fruit. Plant Physiol 117(2):345–361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sander L, Child R, Ulvskov P, Albrechtsen M, Borkhardt B (2001) Analysis of a dehiscence zone endo-polygalacturonase in oilseed rape (Brassica napus) and Arabidopsis thaliana: evidence for roles in cell separation in dehiscence and abscission zones, and in stylar tissues during pollen tube growth. Plant Mol Biol 46(4):469

    CAS  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3(6):1101–1108. https://doi.org/10.1038/nprot.2008.73

    Article  CAS  PubMed  Google Scholar 

  • Senechal F, Wattier C, Rusterucci C, Pelloux J (2014) Homogalacturonan-modifying enzymes: structure, expression, and roles in plants. J Exp Bot 65(18):5125–5160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sexton R, Campillo ED, Duncan D, Lewis LN (1990) The purification of an anther cellulase (β(1:4)4-glucan hydrolase) from Lathyrus odoratus L. and its relationship to the similar enzyme found in abscission zones. Plant Sci 67(2):169–176

    CAS  Google Scholar 

  • Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2(8):755–767. https://doi.org/10.1105/tpc.2.8.755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor LP, Hepler PK (1997) Pollen germination and tube growth. Annu Rev Plant Biol 48(1):461–491

    CAS  Google Scholar 

  • Tebbutt SJ, Rogers HJ, Lonsdale DM (1994) Characterization of a tobacco gene encoding a pollen-specific polygalacturonase. Plant Mol Biol 25(2):283–297

    CAS  PubMed  Google Scholar 

  • Von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P (2004) STRING: known and predicted protein–protein associations, integrated and transferred across organisms. Nucleic Acids Res 33:433–437

    Google Scholar 

  • Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, Lee TH, Jin H, Marler B, Guo H, Kissinger JC, Paterson AH (2012) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40(7):e49. https://doi.org/10.1093/nar/gkr1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Sun X, Shi X, Zhai H, Tian C, Kong F, Liu B, Yuan X (2016) A global analysis of the polygalacturonase gene family in soybean (Glycine max). PLoS ONE 11(9):e0163012. https://doi.org/10.1371/journal.pone.0163012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worrall D, Hird DL, Hodge R, Paul W, Draper J, Scott R (1992) Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco. Plant Cell 4(7):759–771. https://doi.org/10.1105/tpc.4.7.759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Liu H, Wang X, Zeng Q (2013) Molecular evolution and expression divergence of the Populus polygalacturonase supergene family shed light on the evolution of increasingly complex organs in plants. New Phytol 197(4):1353–1365

    CAS  PubMed  Google Scholar 

  • Ye J, Duan Y, Hu G, Geng X, Zhang G, Yan P, Liu Z, Zhang L, Song X (2017) Identification of candidate genes and biosynthesis pathways related to fertility conversion by wheat KTM3315A transcriptome profiling. Front Plant Sci 8:449. https://doi.org/10.3389/fpls.2017.00449

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Liang Y, Lv M, Wu J, Lu G, Cao J (2014) Genome-wide identification and characterization of polygalacturonase genes in Cucumis sativus and Citrullus lanatus. Plant Physiol Biochem 74:263–275

    CAS  PubMed  Google Scholar 

  • Zhang Q, Huang L, Liu T, Yu X, Cao J (2008) Functional analysis of a pollen-expressed polygalacturonase gene BcMF6 in Chinese cabbage (Brassica campestris L. ssp. chinensis Makino). Plant Cell Rep 27(7):1207–1215

    CAS  PubMed  Google Scholar 

  • Zhang A, Chen Q, Huang L, Qiu L, Cao J (2011) Cloning and expression of an anther-abundant polygalacturonase gene BcMF17 from Brassica campestris ssp Chinensis. Plant Mol Biol Reporter 29(4):943–951

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant number 31771874]; the Program in Science and Technology of Yangling State Demonstration Zone of Agricultural High-Tech Industries [Grant number 2018NY-19].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lingli Zhang or Xiyue Song.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 384 kb)

425_2020_3435_MOESM2_ESM.rar

Supplementary file2 Fig. S1 The flow chart of identification of wheat PG gene family members. Bold fonts represent files used in the identification process, the red fonts represent the softwares (version) used in the identification process, and the e-values represent the threshold used in the corresponding step. Fig. S2 Chromosome locations of 113 TaPGs. Fig. S3 Rectangular layout of the PG gene family members in 13 plant species in the phylogenetic tree. Fig. S4 Numbers of PGs in each PG gene family class in wheat, Arabidopsis, and rice. The three bars in each category represent wheat, Arabidopsis, and rice from the top to the bottom. Fig. S5 Ten motif sequences in wheat PGs. Fig. S6 GO annotations obtained for TaPGs. The red, yellow, and green bars represent the cellular component, molecular function, and biological process annotations for the TaPGs, respectively. The numbers at the end of the bars represent the number of wheat PG genes enriched for the corresponding annotation. Fig. S7 Distribution of cis-elements for TaPGs. The cis-elements are explained by the different colored symbols at the bottom. Fig. S8 RT-PCR verification results. The annotation on the left represents the gene name, and the annotation on the bottom represents different tissues. AS represents anthers from sterile KTM3315A plants, AF represents anthers from fertile KTM3315A plants; 1, 2, and 3 represent the three anther development periods comprising the uninucleate, binucleate, and trinucleate stages, respectively; AFs and AFl represent the stems and leaves from fertile plants in the trinucleate stage, respectively; and AFg represents the grains from fertile plants three days after pollination. Actin as internal control. (RAR 1747 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, J., Yang, X., Yang, Z. et al. Comprehensive analysis of polygalacturonase gene family highlights candidate genes related to pollen development and male fertility in wheat (Triticum aestivum L.). Planta 252, 31 (2020). https://doi.org/10.1007/s00425-020-03435-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-020-03435-w

Keywords

Navigation