Application of Trichoderma asperellum T34 on maize (Zea mays) seeds protects against drought stress

Main conclusion

Coating maize seeds with the microbial plant protection product Trichoderma asperellum strain T34 is an effective form of inoculation that enhances plant performance when faced with drought stress, and it improves nutrient and kernel parameters differently in drought and non-stressed conditions.

Abstract

Drought is currently one of the biggest threats to maize production. Trichoderma spp. is mainly used in agriculture as plant protection product with secondary beneficial effects on plants: improved growth, nutrient uptake and plant immunity. Here, we studied the physiological performance of maize plants under two different water regimes (fully irrigated and drought conditions) and three different seed treatments: application of Trichoderma asperellum strain T34, application of a chemical fungicide (CELEST XL) or the combination of both. Regardless of water regime, T34 treatment improved kernel P and C, kernel number and dry weight. Higher populations of T34 on the rhizosphere (T34 treatment) alleviated water stress better than lower T34 populations (T34+Q treatment). Under drought, T34 treatment improved leaf relative water content, water use efficiency, PSII maximum efficiency and photosynthesis. T34-treated maize seeds maintained sufficient T34 populations to alleviate drought throughout crop development suggesting an optimal dose of 104 and 105 colony forming units g−1 dry weight of rhizosphere under the studied conditions. This work helps to demonstrate the beneficial interaction between T. asperellum strain T34 and maize plants under drought.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

WW:

Well-watered conditions/plants

WS:

Water-stressed conditions/plants

RWC:

Relative water content

An:

Rate of photosynthesis

E :

Transpiration

Fvʹ/Fmʹ:

Maximum quantum efficiency of photosystem II (PSII)

δ13C:

Stable carbon isotopic composition

δ15N:

Stable nitrogen isotopic composition

References

  1. Ahanger MA, Morad-Talab N, Abd-Allah EF, Ahmad P, Hajiboland R (2016) Plant growth under drought stress. In: Ahmad P (ed) Water stress and crop plants, Wiley, New Jersey. pp 649–668. https://doi.org/10.1002/9781119054450.ch37

  2. Ahmad I, Basra SMA, Akram M, Wasaya A, Ansar M, Hussain S (2017) Improvement of antioxidant activities and yield of spring maize through seed priming and foliar application of plant growth regulators under heat stress conditions. Semina:Ciencias Agrarias 38:47–56. https://doi.org/10.5433/1679-0359.2017v38n1p47

  3. Alwhibi MS, Hashem A, AbdAllah EF, Alqarawi AA, Soliman DWK, Wirth S, Egamberdieva D (2017) Increased resistance of drought by Trichoderma harzianum fungal treatment correlates with increased secondary metabolites and proline content. J Integr Agric 16:1751–1757. https://doi.org/10.1016/S2095-3119(17)61695-2

    Article  Google Scholar 

  4. Anami S, De Block M, MacHuka J, Van Lijsebettens M (2009) Molecular improvement of tropical maize for drought stress tolerance in Sub-Saharan Africa. Crit Rev Plant Sci 28:16–35. https://doi.org/10.1080/07352680802665305

    CAS  Article  Google Scholar 

  5. Asada K, Allen J, Foyer CH, Matthijs HCP (2000) The water–water cycle as alternative photon and electron sinks. Philos Trans R Soc Lond B Biol Sci 355:1419–1431. https://doi.org/10.1098/rstb.2000.0703

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Aslam M, Zamir I, Afzal I, Yaseen M, Mubeen M, Shoaib A (2013) Drought tolerance in maize through potassium: drought stress, its effect on maize production and development of drought tolerance through potassium application. Agron Res Mold 46:99–144

    Google Scholar 

  7. Barrs HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15:413–428. https://doi.org/10.1071/BI9620413

    Article  Google Scholar 

  8. Bista DR, Heckathorn SA, Jayawardena DM, Mishra S, Boldt JK (2018) Effects of drought on nutrient uptake and the levels of nutrient-uptake proteins in roots of drought-sensitive and tolerant grasses. Plants 7:28. https://doi.org/10.3390/plants7020028

    CAS  Article  PubMed Central  Google Scholar 

  9. Borrero C, Trillas MI, Delgado A, Avilés M (2012) Effect of ammonium/nitrate ratio in nutrient solution on control of Fusarium wilt of tomato by Trichoderma asperellum T34. Plant Pathol 61:132–139. https://doi.org/10.1111/j.1365-3059.2011.02490.x

    CAS  Article  Google Scholar 

  10. Brotman Y, Landau U, Cuadros-Inostroza Á, Takayuki T, Fernie AR, Chet I, Viterbo A, Willmitzer L (2013) Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathog 9:e1003221. https://doi.org/10.1371/annotation/8b818c15-3fe0-4e56-9be2-e44fd1ed3fae

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Chung YR, Hoitink HAJ (1990) Interactions between thermophilic fungi and Trichoderma hamatum in suppression of rhizoctonia damping-off in a bark compost-amended container medium. Phytopathology 80:73–77

    Article  Google Scholar 

  12. Cotxarrera L, Trillas-Gay MI, Steinberg C, Alabouvette C (2002) Use of sewage sludge compost and Trichoderma asperullum isolates to suppress fusarium wilt of tomato. Soil Biol Biochem 34:467–476. https://doi.org/10.1016/S0038-0717(01)00205-X

    CAS  Article  Google Scholar 

  13. de Santiago A, García-López AM, Quintero JM, Avilés M, Delgado A (2013) Effect of Trichoderma asperellum strain T34 and glucose addition on iron nutrition in cucumber grown on calcareous soils. Soil Biol Biochem 57:598–605. https://doi.org/10.1016/j.soilbio.2012.06.020

    CAS  Article  Google Scholar 

  14. de Santiago A, Quintero JM, Avilés M, Delgado A (2011) Effect of Trichoderma asperellum strain T34 on iron, copper, manganese, and zinc uptake by wheat grown on a calcareous medium. Plant Soil 342:97–104. https://doi.org/10.1007/s11104-010-0670-1

    CAS  Article  Google Scholar 

  15. Dercon G, Clymans E, Diels J, Merckx R, Deckers J (2006) Differential δ13C isotopic discrimination in maize at varying water stress and at low to high nitrogen availability. Plant Soil 282:313–326. https://doi.org/10.1007/s11104-006-0001-8

    CAS  Article  Google Scholar 

  16. Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212. https://doi.org/10.1051/agro:2008021

    Article  Google Scholar 

  17. Fernández E, Segarra G, Trillas MI (2014) Physiological effects of the induction of resistance by compost or Trichoderma asperellum strain T34 against Botrytis cinerea in tomato. Biol Control 78:77–85. https://doi.org/10.1016/j.biocontrol.2014.06.012

    Article  Google Scholar 

  18. Fu J, Liu Z, Li Z, Wang Y, Yang K (2017) Alleviation of the effects of saline–alkaline stress on maize seedlings by regulation of active oxygen metabolism by Trichoderma asperellum. PLoS ONE 12:e0179617. https://doi.org/10.1371/journal.pone.0179617

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. García-López AM, Avilés M, Delgado A (2015) Plant uptake of phosphorus from sparingly available P-sources as affected by Trichoderma asperellum T34. Agr Food Sci 24:249–260. https://doi.org/10.23986/afsci.49532

  20. Gholami A, Shahsavani S, Nezarat S (2009) The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. Int J Agr Biol Eng 1:35–40

    Google Scholar 

  21. Hanway JJ, Ritchie SW (1986) How a corn plant develops. Special Report 48, Iowa State University Extension, Ames

  22. Harman GE (1991) Seed treatments for biological control of plant disease. Crop Prot 10:166–171. https://doi.org/10.1016/0261-2194(91)90038-S

    Article  Google Scholar 

  23. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56. https://doi.org/10.1038/nrmicro797

    CAS  Article  PubMed  Google Scholar 

  24. Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10. https://doi.org/10.1094/PDIS.2003.87.1.4

    CAS  Article  PubMed  Google Scholar 

  25. Hu X, Roberts DP, Maul JE, Emche SE, Liao X, Guo X, Liu S (2011) Formulations of the endophytic bacterium Bacillus subtilis Tu-100 suppress Sclerotinia sclerotiorum on oilseed rape and improve plant vigor in field trials conducted at separate locations. Can J Microbiol 57:539–546. https://doi.org/10.1139/w11-041

    CAS  Article  PubMed  Google Scholar 

  26. Javed N, Ashraf M, Akram NA, Al-Qurainy F (2011) Alleviation of adverse effects of drought stress on growth and some potential physiological attributes in maize (Zea mays L.) by seed electromagnetic treatment. Photochem Photobiol 87:1354–1362. https://doi.org/10.1111/j.1751-1097.2011.00990.x

    CAS  Article  PubMed  Google Scholar 

  27. Krzyzinska B, Glazek M, Maczynska A (2005) Seed treatment for control leaf spot diseases of spring wheat. Acta Agrobotanica 58:37–43. https://doi.org/10.5586/aa.2005.006

    Article  Google Scholar 

  28. Lifshitz R, Windham M, Baker R (1986) Mechanism of biological control of preemergence damping-off of pea by seed treatment with Trichoderma spp. Phytopathology 76:720–725

    Article  Google Scholar 

  29. Longa CMO, Savazzini F, Tosi S, Elad Y, Pertot I (2009) Evaluating the survival and environmental fate of the biocontrol agent trichoderma atroviride SC1 in vineyards in northern Italy. J Appl Microbiol 106:1549–1557. https://doi.org/10.1111/j.1365-2672.2008.04117.x

    CAS  Article  PubMed  Google Scholar 

  30. Lorito M, Woo SL, Harman GE, Monte E (2010) Translational research on Trichoderma: from omics to the field. Ann Rev Phytopathol 48:395–417. https://doi.org/10.1146/annurev-phyto-073009-114314

    CAS  Article  Google Scholar 

  31. Mastouri F, Björkman T, Harman GE (2010) Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology 100:1213–1221. https://doi.org/10.1094/phyto-03-10-0091

    Article  PubMed  Google Scholar 

  32. Medina S, Vicente R, Amador A, Araus JL (2016) Interactive effects of elevated [CO2] and water stress on physiological traits and gene expression during vegetative growth in four durum wheat genotypes. Front Plant Sci 7:1738. https://doi.org/10.3389/fpls.2016.01738

    Article  PubMed  PubMed Central  Google Scholar 

  33. Moya-Elizondo EA, Jacobsen BJ (2016) Integrated management of Fusarium crown rot of wheat using fungicide seed treatment, cultivar resistance, and induction of systemic acquired resistance (SAR). Biol Control 92:153–163. https://doi.org/10.1016/j.biocontrol.2015.10.006

    CAS  Article  Google Scholar 

  34. Ortiz N, Armada E, Duque E, Roldán A, Azcón R (2015) Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthonous strains. J Plant Physiol 174:87–96. https://doi.org/10.1016/j.jplph.2014.08.019

    CAS  Article  PubMed  Google Scholar 

  35. Pandey V, Ansari MW, Tula S, Yadav S, Sahoo RK, Shukla N, Tuteja N (2016) Dose-dependent response of Trichoderma harzianum in improving drought tolerance in rice genotypes. Planta 243:1251–1264. https://doi.org/10.1007/s00425-016-2482-x

    CAS  Article  PubMed  Google Scholar 

  36. Prasad RD, Rangeshwaran R, Hegde SV, Anuroop CP (2002) Effect of soil and seed application of Trichoderma harzianum on pigeonpea wilt caused by Fusarium udum under field conditions. Crop Prot 21:293–297. https://doi.org/10.1016/S0261-2194(01)00100-4

    Article  Google Scholar 

  37. Sant D, Casanova E, Segarra G, Avilés M, Reis M, Trillas MI (2010) Effect of Trichoderma asperellum strain T34 on Fusarium wilt and water usage in carnation grown on compost-based growth medium. Biol Control 53:291–296. https://doi.org/10.1016/j.biocontrol.2010.01.012

    Article  Google Scholar 

  38. Segarra G, Aviles M, Casanova E, Borrero C, Trillas I (2013) Effectiveness of biological control of Phytophthora capsici in pepper by Trichoderma asperellum strain T34. Phytopathol Mediterr 52:77–83. https://doi.org/10.14601/Phytopathol_Mediterr-11242

    Article  Google Scholar 

  39. Segarra G, Casanova E, Avilés M, Trillas I (2010) Trichoderma asperellum strain T34 controls Fusarium wilt disease in tomato plants in soilless culture through competition for iron. Microb Ecol 59:141–149. https://doi.org/10.1007/s00248-009-9545-5

    Article  PubMed  Google Scholar 

  40. Segarra G, Casanova E, Bellido D, Odena MA, Oliveira E, Trillas I (2007) Proteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics 7:3943–3952. https://doi.org/10.1002/pmic.200700173

    CAS  Article  PubMed  Google Scholar 

  41. Serret MD, Yousfi S, Vicente R, Piñero MC, Otálora-Alcón G, del Amor FM, Araus JL (2018) Interactive effects of CO2 concentration and water regime on stable isotope signatures, nitrogen assimilation and growth in sweet pepper. Front Plant Sci 8:2180. https://doi.org/10.3389/fpls.2017.02180

    Article  PubMed  PubMed Central  Google Scholar 

  42. Shoresh M, Harman GE (2008) The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approach. Plant Physiol 147:2147–2163. https://doi.org/10.1104/pp.108.123810

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43. https://doi.org/10.1146/annurev-phyto-073009-114450

    CAS  Article  PubMed  Google Scholar 

  44. Singh A, Parmar N, Kuhad RC, Ward OP (2011) Bioaugmentation. biostimulation and biocontrol, Springer, Heidelberg

    Google Scholar 

  45. Taylor AG, Min TG, Harman GE, Jin X (1991) Liquid coating formulation for the application of biological seed treatments of Trichoderma harzianum. Biol Control 1:16–22. https://doi.org/10.1016/1049-9644(91)90096-I

    Article  Google Scholar 

  46. Trillas MI, Casanova E, Cotxarrera L, Ordovás J, Borrero C, Avilés M (2006) Composts from agricultural waste and the Trichoderma asperellum strain T-34 suppress Rhizoctonia solani in cucumber seedlings. Biol Control 39:32–38. https://doi.org/10.1016/j.biocontrol.2006.05.007

    Article  Google Scholar 

  47. Verma M, Brar SK, Tyagi RD, Surampalli RY, Valéro JR (2007) Antagonistic fungi, Trichoderma spp: panoply of biological control. Biochem Eng J 37:1–20. https://doi.org/10.1016/j.bej.2007.05.012

    Article  Google Scholar 

  48. Vitale L, Arena C, Carillo P, di Tommasi P, Mesolella B, Nacca F, Magliulo V (2011) Gas exchange and leaf metabolism of irrigated maize at different growth stages. Plant Biosyst 145:485–494. https://doi.org/10.1080/11263504.2011.562373

    Article  Google Scholar 

  49. Zeun R, Scalliet G, Oostendorp M (2013) Biological activity of sedaxane—a novel broad-spectrum fungicide for seed treatment. Pest Manag Sci 69:527–534. https://doi.org/10.1002/ps.3405

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was promoted by the Generalitat de Catalunya regional authorities via the Faculty of Biology of the University of Barcelona (UB) through the graduate “Industrial Ph.D.” scholarship (Doctorat Industrial) (Project no. 042-2015). Our special thanks go to Semillas Fitó S.A.U. for providing the maize hybrid and to Biocontrol Technologies S.A. (UB spin-off) for the T34 strain. We also thank the Camps Experimentals de la UB (experimental growth facilities), and the CCiT-UB (Centre Científic i Tecnològic de la UB) for performing electron microscopy observations and mineral nutrient and isotope determinations.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Virginia Estévez-Geffriaud.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Anastasios Melis.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Estévez-Geffriaud, V., Vicente, R., Vergara-Díaz, O. et al. Application of Trichoderma asperellum T34 on maize (Zea mays) seeds protects against drought stress. Planta 252, 8 (2020). https://doi.org/10.1007/s00425-020-03404-3

Download citation

Keywords

  • Drought stress
  • Elemental nutrient concentration
  • Photosynthesis
  • Gas exchange
  • Kernel parameters
  • Leaf relative water content