Abstract
The SCF complex is a widely studied multi-subunit ring E3 ubiquitin ligase that tags targeted proteins with ubiquitin for protein degradation by the ubiquitin 26S-proteasome system (UPS). The UPS is an important system that generally keeps cellular events tightly regulated by purging misfolded or damaged proteins and selectively degrading important regulatory proteins. The specificity of this post-translational regulation is controlled by F-box proteins (FBPs) via selective recognition of a protein–protein interaction motif at the C-terminal domain. Hence, FBPs are pivotal proteins in determining the plant response in multiple scenarios. It is not surprising that the FBP family is one of the largest protein families in the plant kingdom. In this review, the roles of FBPs, specifically in plants, are compiled to provide insights into their involvement in secondary metabolites, plant stresses, phytohormone signalling, plant developmental processes and miRNA biogenesis.
Similar content being viewed by others
References
Achkar NP, Cambiagno DA, Manavella PA (2016) miRNA Biogenesis: a Dynamic Pathway. Trends Plant Sci 21(12):1034–1044. https://doi.org/10.1016/j.tplants.2016.09.003
Andrade MA, González-Guzmán M, Serrano R, Rodríguez PL (2001) A combination of the F-box motif and kelch repeats defines a large Arabidopsis family of F-box proteins. Plant Mol Biol 46:603–614
Anushree N, Shivaprasad PV (2018) Regulation of Plant miRNA Biogenesis. Proc Indian Natn Sci Acad 84(2):439–453. https://doi.org/10.16943/ptinsa/2017/49237
Ariizumi T, Lawrence PK, Steber CM (2011) The role of two f-box proteins, SLEEPY1 and SNEEZY, in Arabidopsis gibberellin signaling. Plant Physiol 155(2):765–775. https://doi.org/10.1104/pp.110.166272
Axtell MJ, Westholm JO, Lai EC (2011) Vive la difference: biogenesis and evolution of microRNAs in plants and animals. Genome Biol 12(4):221. https://doi.org/10.1186/gb-2011-12-4-221
Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper JW, Elledge SJ (1996) SKP1 Connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-Box. Cell 86:263–274
Bai B, Bian H, Zeng Z, Hou N, Shi B, Wang J, Zhu M, Han N (2017) miR393-mediated auxin signaling regulation is involved in root elongation inhibition in response to toxic aluminum stress in barley. Plant Cell Physiol 58(3):426–439. https://doi.org/10.1093/pcp/pcw211
Bar M, Ori N (2014) Leaf development and morphogenesis. Development 141(22):4219. https://doi.org/10.1242/dev.106195
Baudry A, Ito S, Song YH, Strait AA, Kiba T, Lu S, Henriques R, Pruneda-Paz JL, Chua NH, Tobin EM, Kay SA, Imaizumi T (2010) F-box proteins FKF1 and LKP2 act in concert with ZEITLUPE to control Arabidopsis clock progression. Plant Cell 22(3):606–622. https://doi.org/10.1105/tpc.109.072843
Baumberger N, Tsai CH, Lie M, Havecker E, Baulcombe DC (2007) The Polerovirus silencing suppressor P0 targets ARGONAUTE proteins for degradation. Curr Biol 17(18):1609–1614. https://doi.org/10.1016/j.cub.2007.08.039
Baute J, Polyn S, De Block J, Blomme J, Van Lijsebettens M, Inze D (2017) F-Box protein FBX92 affects leaf size in Arabidopsis thaliana. Plant Cell Physiol 58(5):962–975. https://doi.org/10.1093/pcp/pcx035
Berleth M, Berleth N, Minges A, Hansch S, Burkart RC, Stork B, Stahl Y, Weidtkamp-Peters S, Simon R, Groth G (2019) Molecular analysis of protein-protein interactions in the ethylene pathway in the different ethylene receptor subfamilies. Front Plant Sci 10:726. https://doi.org/10.3389/fpls.2019.00726
Borges F, Martienssen RA (2015) The expanding world of small RNAs in plants. Nat Rev Mol Cell Biol 16(12):727–741. https://doi.org/10.1038/nrm4085
Bortolamiol D, Pazhouhandeh M, Marrocco K, Genschik P, Ziegler-Graff V (2007) The polerovirus F box protein P0 targets ARGONAUTE1 to suppress RNA silencing. Curr Biol 17(18):1615–1621. https://doi.org/10.1016/j.cub.2007.07.061
Boycheva I, Vassileva V, Revalska M, Zehirov G, Iantcheva A (2015) Cyclin-like F-box protein plays a role in growth and development of the three model species Medicago truncatula, Lotus japonicus, and Arabidopsis thaliana. Res Rep Biol 6:117–130. https://doi.org/10.2147/rrb.s84753
van den Burg HA, Tsitsigiannis DI, Rowland O, Lo J, Rallapalli G, Maclean D, Takken FL, Jones JD (2008) The F-box protein ACRE189/ACIF1 regulates cell death and defense responses activated during pathogen recognition in tobacco and tomato. Plant Cell 20(3):697–719. https://doi.org/10.1105/tpc.107.056978
Cai Z, Wang Y, Zhu L, Tian Y, Chen L, Sun Z, Ullah I, Li X (2017) GmTIR1/GmAFB3-based auxin perception regulated by miR393 modulates soybean nodulation. New Phytol 215(2):672–686. https://doi.org/10.1111/nph.14632
Calderon Villalobos LI, Lee S, De Oliveira C, Ivetac A, Brandt W, Armitage L, Sheard LB, Tan X, Parry G, Mao H, Zheng N, Napier R, Kepinski S, Estelle M (2012) A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin. Nat Chem Biol 8(5):477–485. https://doi.org/10.1038/nchembio.926
Cao Y, Yang Y, Zhang H, Li D, Zheng Z, Song F (2008) Overexpression of a rice defense-related F-box protein gene OsDRF1 in tobacco improves disease resistance through potentiation of defense gene expression. Physiol Plant 134(3):440–452. https://doi.org/10.1111/j.1399-3054.2008.01149.x
Chae E, Tan QKG, Hill TA, Irish VF (2008) An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development. Development 135(7):1235. https://doi.org/10.1242/dev.015842
Chen X (2005) MicroRNA biogenesis and function in plants. FEBS Lett 579(26):5923–5931. https://doi.org/10.1016/j.febslet.2005.07.071
Chen Z-H, Yang Y-J, Han N, Bao M-L, Xu X-H, Bian H-W, Sun Y-Z, Wang J-H, Zhu M-Y (2011) Regulation of auxin response by miR393-targeted transport inhibitor response protein 1 is involved in normal development in Arabidopsis. Plant Mol Biol 77:619–629. https://doi.org/10.1007/s11103-011-9838-1)
Chen H, Li Z, Xiong L (2012) A plant microRNA regulates the adaptation of roots to drought stress. FEBS Lett 586(12):1742–1747. https://doi.org/10.1016/j.febslet.2012.05.013
Chen Y, Xu Y, Luo W, Li W, Chen N, Zhang D, Chong K (2013) The F-box protein OsFBK12 targets OsSAMS1 for degradation and affects pleiotropic phenotypes, including leaf senescence, in rice. Plant Physiol 163(4):1673–1685. https://doi.org/10.1104/pp.113.224527
Chen R, Guo W, Yin Y, Gong ZH (2014) A novel F-box protein CaF-box is involved in responses to plant hormones and abiotic stress in pepper (Capsicum annuum L.). Int J Mol Sci 15(2):2413–2430. https://doi.org/10.3390/ijms15022413
Cheng H, Qin L, Lee S, Fu X, Richards DE, Cao D, Luo D, Harberd NP, Peng J (2003) Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development 131:1055–1064. https://doi.org/10.1242/dev.00992
Cheng YT, Li Y, Huang S, Huang Y, Dong X, Zhang Y, Li X (2011) Stability of plant immune-receptor resistance proteins is controlled by SKP1-CULLIN1-F-box (SCF)-mediated protein degradation. Proc Natl Acad Sci 108(35):14694–14699. https://doi.org/10.1073/pnas.1105685108
Cheng C, Wang Z, Ren Z, Zhi L, Yao B, Su C, Liu L, Li X (2017) SCFAtPP2-B11 modulates ABA signaling by facilitating SnRK2.3 degradation in Arabidopsis thaliana. PLoS Genet 13(8):e1006947. https://doi.org/10.1371/journal.pgen.1006947
Coates JC, Laplaze L, Haseloff J (2006) Armadillo-related proteins promote lateral root development in Arabidopsis. Proc Natl Acad Sci USA 103(5):1621–1626. https://doi.org/10.1073/pnas.0507575103
Cope GA, Suh GSB, Aravind L, Schwarz SE, Zipursky SL, Koonin EV, Deshaies RJ (2002) Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science 298(5593):608–611. https://doi.org/10.1126/science.1075901
Csorba T, Lozsa R, Hutvagner G, Burgyan J (2010) Polerovirus protein P0 prevents the assembly of small RNA-containing RISC complexes and leads to degradation of ARGONAUTE1. Plant J 62(3):463–472. https://doi.org/10.1111/j.1365-313X.2010.04163.x
Cui J, Fan S, Shao T, Huang Z, Zheng D, Tang D, Li M, Qian Q, Cheng Z (2007) Characterization and fine mapping of the ibf mutant in rice. J Integr Plant Biol 49(5):678–685. https://doi.org/10.1111/j.1672-9072.2007.00467.x
Cui H-R, Zhang Z-R, lv W, Xu J-N, Wang X-Y (2015) Genome-wide characterization and analysis of F-box protein-encoding genes in the Malus domestica genome. Mol Genet Genomics 290(4):1435–1446. https://doi.org/10.1007/s00438-015-1004-z)
Cui X, Xu X, He Y, Du X, Zhu J (2016) Overexpression of an F-box protein gene disrupts cotyledon vein patterning in Arabidopsis. Plant Physiol Biochem 102:43–52. https://doi.org/10.1016/j.plaphy.2016.02.012
Curtis RHC, Pankaj PSJ, Napier J, Matthes MC (2013) The Arabidopsis F-box/Kelch-repeat protein At2g44130 is upregulated in giant cells and promotes nematode susceptibility. MPMI 26(1):36–43
Dayan J, Voronin N, Gong F, Sun TP, Hedden P, Fromm H, Aloni R (2012) Leaf-induced gibberellin signaling is essential for internode elongation, cambial activity, and fiber differentiation in tobacco stems. Plant Cell 24(1):66–79. https://doi.org/10.1105/tpc.111.093096
Dharmasiri S, Dharmasiri N, Hellmann H, Estelle M (2003) The RUB/Nedd8 conjugation pathway is required for early development in Arabidopsis. EMBO J 22(8):1762–1770. https://doi.org/10.1093/emboj/cdg190
Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jurgens G, Estelle M (2005) Plant development is regulated by a family of auxin receptor F box proteins. Dev Cell 9(1):109–119. https://doi.org/10.1016/j.devcel.2005.05.014
Dieterle M, Zhou Y-C, Schäfer E, Funk M, Kretsch T (2001) EID1, an F-box protein involved in phytochrome A-specific light signaling. Genes Dev 15(8):939–944
Dill A, Thomas SG, Hu J, Steber CM, Sun TP (2004) The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation. Plant Cell 16(6):1392–1405. https://doi.org/10.1105/tpc.020958
Dolgikh VA, Pukhovaya EM, Zemlyanskaya EV (2019) Shaping ethylene response: the role of EIN3/EIL1 transcription factors. Front Plant Sci. https://doi.org/10.3389/fpls.2019.01030
Dong L, Wang L, Zhang Y, Zhang Y, Deng X, Xue Y (2006) An auxin-inducible F-box protein CEGENDUO negatively regulates auxin-mediated lateral root formation in Arabidopsis. Plant Mol Biol 60(4):599–615. https://doi.org/10.1007/s11103-005-5257-5
Du Y, Scheres B (2018) Lateral root formation and the multiple roles of auxin. J Exp Bot 69(2):155–167. https://doi.org/10.1093/jxb/erx223
Duan Y, Li S, Chen Z, Zheng L, Diao Z, Zhou Y, Lan T, Guan H, Pan R, Xue Y, Wu W (2012) Dwarf and deformed flower 1, encoding an F-box protein, is critical for vegetative and floral development in rice (Oryza sativa L.). Plant J 72(5):829–842. https://doi.org/10.1111/j.1365-313X.2012.05126.x
Dugas DV, Bartel B (2004) MicroRNA regulation of gene expression in plants. Curr Opin Plant Biol 7(5):512–520. https://doi.org/10.1016/j.pbi.2004.07.011
Earley K, Smith MR, Weber R, Gregory BD, Poethig RS (2010) An endogenous F-box protein regulates ARGONAUTE1 in Arabidopsis thaliana. Silence 1(1):15. https://doi.org/10.1186/1758-907X-1-15
Farrás R, Ferrando A, Jásik J, Kleinow T, Ökrész L, Tiburcio A, Salchert K, del Pozo C, Schell J, Koncz C (2001) SKP1–SnRK protein kinase interactions mediate proteasomal binding of a plant SCF ubiquitin ligase. EMBO J 20(11):2742–2756. https://doi.org/10.1093/emboj/20.11.2742
Feder A, Burger J, Gao S, Lewinsohn E, Katzir N, Schaffer AA, Meir A, Davidovich-Rikanati R, Portnoy V, Gal-On A, Fei Z, Kashi Y, Tadmor Y (2015) A kelch domain-containing F-Box coding gene negatively regulates flavonoid accumulation in muskmelon. Plant Physiol 169(3):1714–1726. https://doi.org/10.1104/pp.15.01008
Gagne JM, Downes BP, Shiu SH, Durski AM, Vierstra RD (2002) The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc Natl Acad Sci USA 99(17):11519–11524. https://doi.org/10.1073/pnas.162339999
Gagne JM, Smalle J, Gingerich DJ, Walker JM, Yoo SD, Yanagisawa S, Vierstra RD (2004) Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proc Natl Acad Sci USA 101(17):6803–6808. https://doi.org/10.1073/pnas.0401698101
Galan JM, Wiederkehr A, Seol JH, Haguenauer-Tsapis R, Deshaies RJ, Riezman H, Peter M (2001) Skp1p and the F-box protein Rcy1p form a non-SCF complex involved in recycling of the SNARE Snc1p in yeast. Mol Cell Biol 21(9):3105–3117. https://doi.org/10.1128/MCB.21.9.3105-3117.2001
Gazara RK, Moharana KC, Bellieny-Rabelo D, Venancio TM (2018) Expansion and diversification of the gibberellin receptor GIBBERELLIN INSENSITIVE DWARF1 (GID1) family in land plants. Plant Mol Biol 97(4–5):435–449. https://doi.org/10.1007/s11103-018-0750-9
Gendron JM, Pruneda-Paz JL, Doherty CJ, Gross AM, Kang SE, Kay SA (2012) Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor. Proc Natl Acad Sci USA 109(8):3167–3172. https://doi.org/10.1073/pnas.1200355109
Gomi K, Sasaki A, Itoh H, Ueguchi-Tanaka M, Ashikari M, Kitano H, Matsuoka M (2004) GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phsphorylated SLR1 proteins and regulates the gibberellin-dependent degradation of SLR1 in rice. Plant J 37:626–634
González-Carranza ZH, Rompa U, Peters JL, Bhatt AM, Wagstaff C, Stead AD, Roberts JA (2007) HAWAIIAN SKIRT: an F-Box gene that regulates organ fusion and growth in Arabidopsis. Plant Physiol 144(3):1370. https://doi.org/10.1104/pp.106.092288
Gonzalez-Carranza ZH, Zhang X, Peters JL, Boltz V, Szecsi J, Bendahmane M, Roberts JA (2017) HAWAIIAN SKIRT controls size and floral organ number by modulating CUC1 and CUC2 expression. PLoS ONE 12(9):e0185106. https://doi.org/10.1371/journal.pone.0185106
Gou M, Shi Z, Zhu Y, Bao Z, Wang G, Hua J (2012) The F-box protein CPR1/CPR30 negatively regulates R protein SNC1 accumulation. Plant J 69(3):411–420. https://doi.org/10.1111/j.1365-313X.2011.04799.x
Gray WM (2002) Role of the Arabidopsis RING-H2 protein RBX1 in RUB modification and SCF function. Plant Cell Online 14(9):2137–2144. https://doi.org/10.1105/tpc.003178
Guleria P, Mahajan M, Bhardwaj J, Yadav SK (2011) Plant small RNAs: biogenesis, mode of action and their roles in abiotic stresses. Genom Proteom Bioinform 9(6):183–199. https://doi.org/10.1016/s1672-0229(11)60022-3
Guo H, Ecker JR (2003) Plant responses to ethylene gas are mediated by SCFEBF1/EBF2-dependent proteolysis of EIN3 transcription factor. Cell 115:667–677
Gupta S, Garg V, Kant C, Bhatia S (2015) Genome-wide survey and expression analysis of F-box genes in chickpea. BMC Genom 16:67. https://doi.org/10.1186/s12864-015-1293-y
Han L, Mason M, Risseeuw EP, Crosby WL, Somers DE (2004) Formation of an SCF(ZTL) complex is required for proper regulation of circadian timing. Plant J 40(2):291–301. https://doi.org/10.1111/j.1365-313X.2004.02207.x
Harmon FG, Kay SA (2003) The F Box protein AFR is a positive regulator of phytochrome A—mediated light signaling. Curr Biol 13(23):2091–2096. https://doi.org/10.1016/j.cub.2003.11.019
ul Hassan MN, Zainal Z, Ismail I (2015) Plant kelch containing F-box proteins: structure, evolution and functions. RSC Adv 5(53):42808–42814. https://doi.org/10.1039/c5ra01875g
He Y, Fukushige H, Hildebrand DF, Gan S (2002) Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol 128(3):876–884. https://doi.org/10.1104/pp.010843
He R, Yu D, Li X, Duan G, Zhang Y, Tang D, Zhao X, Liu X (2016) F-box gene FOA2 regulates GA- and ABA—mediated seed germination in Arabidopsis. Sci China Life Sci. https://doi.org/10.1007/s11427-016-0098-3
Heintz U, Schlichting I (2016) Blue light-induced LOV domain dimerization enhances the affinity of Aureochrome 1a for its target DNA sequence. Elife 5:e11860. https://doi.org/10.7554/eLife.11860
Hermand D (2006) F-box proteins: more than baits for the SCF? Cell Div 1:30. https://doi.org/10.1186/1747-1028-1-30
Hotton SK, Eigenheer RA, Castro MF, Bostick M, Callis J (2011) AXR1-ECR1 and AXL1-ECR1 heterodimeric RUB-activating enzymes diverge in function in Arabidopsis thaliana. Plant Mol Biol 75(4–5):515–526. https://doi.org/10.1007/s11103-011-9750-8
Hua Z, Zou C, Shiu SH, Vierstra RD (2011) Phylogenetic comparison of F-Box (FBX) gene superfamily within the plant kingdom reveals divergent evolutionary histories indicative of genomic drift. PLoS ONE 6(1):e16219. https://doi.org/10.1371/journal.pone.0016219
Huang S, Chen X, Zhong X, Li M, Ao K, Huang J, Li X (2016) Plant TRAF proteins regulate NLR immune receptor turnover. Cell Host Microbe 19(2):204–215. https://doi.org/10.1016/j.chom.2016.01.005
Huang J, Zhu C, Li X (2018) SCFSNIPER4 controls the turnover of two redundant TRAF proteins in plant immunity. Plant J 95(3):504–515. https://doi.org/10.1111/tpj.13965
Ikeda K, Ito M, Nagasawa N, Kyozuka J, Nagato Y (2007) Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate. Plant J 51(6):1030–1040. https://doi.org/10.1111/j.1365-313X.2007.03200.x
Illouz-Eliaz N, Ramon U, Shohat H, Blum S, Livne S, Mendelson D, Weiss D (2019) Multiple gibberellin receptors contribute to phenotypic stability under changing environments. Plant Cell 31(7):1506–1519. https://doi.org/10.1105/tpc.19.00235
Imaizumi T, Schultz TF, Harmon FG, Ho LA, Kay SA (2005) FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309(5732):293–297. https://doi.org/10.1126/science.1110586
Ingram GC, Doyle S, Carpenter R, Schultz EA, Simon R, Coen ES (1997) Dual role for fimbriata in regulating floral homeotic genes and cell division in Antirrhinum. EMBO J 16(21):6521–6534. https://doi.org/10.1093/emboj/16.21.6521
Iwakawa HO, Tomari Y (2013) Molecular insights into microRNA-mediated translational repression in plants. Mol Cell 52(4):591–601. https://doi.org/10.1016/j.molcel.2013.10.033
Jain M, Nijhawan A, Arora R, Agarwal P, Ray S, Sharma P, Kapoor S, Tyagi AK, Khurana JP (2007) F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol 143(4):1467–1483. https://doi.org/10.1104/pp.106.091900
Jia F, Wu B, Huang J, Li H, Zheng C (2013) Genome-wide identification and characterisation of F-box family in maize. Mol Genet Genom 288:559–577. https://doi.org/10.1007/s00438-013-0769-1)
Jiang L, Liu X, Xiong G, Liu H, Chen F, Wang L, Meng X, Liu G, Yu H, Yuan Y, Yi W, Zhao L, Ma H, He Y, Wu Z, Melcher K, Qian Q, Xu HE, Wang Y, Li J (2013) DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 504(7480):401–405. https://doi.org/10.1038/nature12870
Jin J, Cardozo T, Lovering RC, Elledge SJ, Pagano M, Harper JW (2004) Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev 18(21):2573–2580. https://doi.org/10.1101/gad.1255304
Jones JDG, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329. https://doi.org/10.1038/nature05286
Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53. https://doi.org/10.1146/annurev.arplant.57.032905.105218
Ju C, Yoon GM, Shemansky JM, Lin DY, Ying ZI, Chang J, Garrett WM, Kessenbrock M, Groth G, Tucker ML, Cooper B, Kieber JJ, Chang C (2012) CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc Nat Acad Sci 109(47):19486
Kalve S, De Vos D, Beemster GT (2014) Leaf development: a cellular perspective. Front Plant Sci 5:362. https://doi.org/10.3389/fpls.2014.00362
Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819(2):137–148. https://doi.org/10.1016/j.bbagrm.2011.05.001
Kiba T, Henriques R, Sakakibara H, Chua NH (2007) Targeted degradation of PSEUDO-RESPONSE REGULATOR5 by an SCFZTL complex regulates clock function and photomorphogenesis in Arabidopsis thaliana. Plant Cell 19(8):2516–2530. https://doi.org/10.1105/tpc.107.053033
Kieber JJ, Schaller GE (2018) Cytokinin signaling in plant development. Development. https://doi.org/10.1242/dev.149344
Kim HS, Delaney TP (2002) Arabidopsis SON1 is an F-box protein that regulates a novel induced defense response independent of both salicylic acid and systemic acquired resistance. Plant Cell 14(7):1469–1482. https://doi.org/10.1105/tpc.001867
Kim JH, Woo HR, Kim J, Lim PO, Lee IC, Choi SH, Hwang D, Nam HG (2009) Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 323(5917):1053
Kim HJ, Chiang Y-H, Kieber JJ, Schallera GE (2013a) SCFKMD controls cytokinin signaling by regulating the degradation of type-B response regulators. Proc Natl Acad Sci 111(19):7161–7161. https://doi.org/10.1073/pnas.1406935111
Kim HJ, Kieber JJ, Schaller GE (2013b) The rice F-box protein KISS ME DEADLY2 functions as a negative regulator of cytokinin signalling. Plant Signal Behav 8(12):e26434. https://doi.org/10.4161/psb.26434
Kim J, Geng R, Gallenstein RA, Somers DE (2013c) The F-box protein ZEITLUPE controls stability and nucleocytoplasmic partitioning of GIGANTEA. Development 140(19):4060–4069. https://doi.org/10.1242/dev.096651
Kim J, Chang C, Tucker ML (2015) To grow old: regulatory role of ethylene and jasmonic acid in senescence. Front Plant Sci 6:20. https://doi.org/10.3389/fpls.2015.00020
Kim ES, Choe G, Sebastian J, Ryu KH, Mao L, Fei Z, Lee JY (2016) HAWAIIAN SKIRT regulates the quiescent center-independent meristem activity in Arabidopsis roots. Physiol Plant 157(2):221–233. https://doi.org/10.1111/ppl.12443
Kim YY, Cui MH, Noh MS, Jung KW, Shin JS (2017) The FBA motif-containing protein AFBA1 acts as a novel positive regulator of ABA response in Arabidopsis. Plant Cell Physiol 58(3):574–586. https://doi.org/10.1093/pcp/pcx003
Kipreos ET, Pagano M (2000) The F-box protein family. Genome Biol 1(5):reviews/3002.3001
Kitagawa K, Skowyra D, Elledge SJ, Harper JW, Hieter P (1999) SGT1 Encodes an essential component of the yeast kinetochore assembly pathway and a novel subunit of the SCF ubiquitin ligase complex. Mol Cell 4(1):21–33. https://doi.org/10.1016/S1097-2765(00)80184-7
Kitagawa K, Abdulle R, Bansal PK, Cagney G, Fields S, Hieter P (2003) Requirement of Skp1-Bub1 interaction for kinetochore-mediated activation of the spindle checkpoint. Mol Cell 11(5):1201–1213. https://doi.org/10.1016/S1097-2765(03)00145-X
Kline KG, Sussman MR, Jones AM (2010) Abscisic acid receptors. Plant Physiol 154(2):479–482. https://doi.org/10.1104/pp.110.160846
Kong SG, Okajima K (2016) Diverse photoreceptors and light responses in plants. J Plant Res 129(2):111–114. https://doi.org/10.1007/s10265-016-0792-5
Kong X, Zhou S, Yin S, Zhao Z, Han Y, Wang W (2016) Stress-inducible expression of an F-box gene TaFBA1 from wheat enhanced the drought tolerance in transgenic tobacco plants without impacting growth and development. Front Plant Sci 7:1295. https://doi.org/10.3389/fpls.2016.01295
Koops P, Pelser S, Ignatz M, Klose C, Marrocco-Selden K, Kretsch T (2011) EDL3 is an F-box protein involved in the regulation of abscisic acid signalling in Arabidopsis thaliana. J Exp Bot 62(15):5547–5560. https://doi.org/10.1093/jxb/err236
Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11(9):597–610. https://doi.org/10.1038/nrg2843
Kubo K, Entani T, Takara A, Wang N, Fields AM, Hua Z, Toyoda M, Kawashima S, Ando T, Isogai A, Kao TH, Takayama S (2010) Collaborative non-self recognition system in S-RNase-based self-incompatibility. Science 330(6005):796–799. https://doi.org/10.1126/science.1195243
Kumar A, Paietta JV (1998) An additional role for the F-box motif: gene regulation within the Neurospora crassa sulfur control network. Proc Natl Acad Sci USA 95(5):2417–2422. https://doi.org/10.1073/pnas.95.5.2417
Kurepa J, Li Y, Smalle JA (2014) Cytokinin signaling stabilizes the response activator ARR1. Plant J 78(1):157–168. https://doi.org/10.1111/tpj.12458
Kurepa J, Shull TE, Karunadasa SS, Smalle JA (2018) Modulation of auxin and cytokinin responses by early steps of the phenylpropanoid pathway. BMC Plant Biol 18(1):278. https://doi.org/10.1186/s12870-018-1477-0
Kuroda H, Takahashi N, Shimada H, Seki M, Shinozaki K, Matsui M (2002) Classification and expression analysis of Arabidopsis F-box-containing protein genes. Plant Cell Physiol 43(10):1073–1085
Kuroda H, Yanagawa Y, Takahashi N, Horii Y, Matsui M (2012) A comprehensive analysis of interaction and localization of Arabidopsis SKP1-like (ASK) and F-box (FBX) proteins. PLoS ONE 7(11):e50009. https://doi.org/10.1371/journal.pone.0050009
Kwon CT, Paek NC (2016) Gibberellic Acid: A Key Phytohormone for Spikelet Fertility in Rice Grain Production. Int J Mol Sci. https://doi.org/10.3390/ijms17050794
Lai CP, Lee CL, Chen PH, Wu SH, Yang CC, Shaw JF (2004) Molecular analyses of the Arabidopsis TUBBY-like protein gene family. Plant Physiol 134(4):1586–1597. https://doi.org/10.1104/pp.103.037820
Lang PLM, Christie MD, Dogan ES, Schwab R, Hagmann J, van de Weyer A-L, Scacchi E, Weigel D (2018) A role for the F-box protein HAWAIIAN SKIRT in plant microRNA function. Plant Physiol 176(1):730. https://doi.org/10.1104/pp.17.01313
Lechner E, Achard P, Vansiri A, Potuschak T, Genschik P (2006) F-box proteins everywhere. Curr Opin Plant Biol 9(6):631–638. https://doi.org/10.1016/j.pbi.2006.09.003
Lee CM, Feke A, Li MW, Adamchek C, Webb K, Pruneda-Paz J, Bennett EJ, Kay SA, Gendron JM (2018) Decoys untangle complicated redundancy and reveal targets of circadian clock F-box proteins. Plant Physiol 177(3):1170–1186. https://doi.org/10.1104/pp.18.00331
Li Z, Peng J, Wen X, Guo H (2013) ETHYLENE-INSENSITIVE3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. Plant Cell 25(9):3311–3328. https://doi.org/10.1105/tpc.113.113340
Li S, Williams JS, Sun P, Kao TH (2016a) All 17 S-locus F-box proteins of the S2 - and S3 -haplotypes of Petunia inflata are assembled into similar SCF complexes with a specific function in self-incompatibility. Plant J 87(6):606–616. https://doi.org/10.1111/tpj.13222
Li Y, Liu Z, Wang J, Li X, Yang Y (2016b) The Arabidopsis kelch repeat F-box E3 LIgase ARKP1 plays a positive role for the regulation of abscisic acid signaling. Plant Mol Biol Rep 34(3):582–591. https://doi.org/10.1007/s11105-015-0942-2
Li Y, Zhang L, Li D, Liu Z, Wang J, Li X, Yang Y (2016c) The Arabidopsis F-box E3 ligase RIFP1 plays a negative role in abscisic acid signalling by facilitating ABA receptor RCAR3 degradation. Plant Cell Environ 39(3):571–582. https://doi.org/10.1111/pce.12639
Li Q, Wang W, Wang W, Zhang G, Liu Y, Wang Y, Wang W (2018) Wheat F-box protein gene TaFBA1 is involved in plant tolerance to heat stress. Front Plant Sci 9:521. https://doi.org/10.3389/fpls.2018.00521
Li X, Sun Y, Liu N, Wang P, Pei Y, Liu D, Ma X, Ge X, Li F, Hou Y (2019) Enhanced resistance to Verticillium dahliae mediated by an F-box protein GhACIF1 from Gossypium hirsutum. Plant Sci 284:127–134. https://doi.org/10.1016/j.plantsci.2019.04.013
Liu Q, Chen Y-Q (2009) Insights into the mechanism of plant development: interactions of miRNAs pathway with phytohormone response. Biochem Biophys Res Commun 384(1):1–5. https://doi.org/10.1016/j.bbrc.2009.04.028
Liu H, Stone SL (2011) E3 ubiquitin ligases and abscisic acid signaling. Plant Signal Behav 6(3):344–348. https://doi.org/10.4161/psb.6.3.13914
Liu Q, Zhou Y, Tang R, Wang X, Hu Q, Wang Y, He Q (2017) Increasing the unneddylated cullin1 portion rescues the csn phenotypes by stabilizing adaptor modules to drive SCF assembly. Mol Cell Biol. https://doi.org/10.1128/MCB.00109-17
Magori S, Citovsky V (2011) Hijacking of the host SCF ubiquitin ligase machinery by plant pathogens. Front Plant Sci 2:87. https://doi.org/10.3389/fpls.2011.00087
Majee M, Kumar S, Kathare PK, Wu S, Gingerich D, Nayak NR, Salaita L, Dinkins R, Martin K, Goodin M, Dirk LMA, Lloyd TD, Zhu L, Chappell J, Hunt AG, Vierstra R, Huq E, Downie AB (2018) KELCH F-BOX protein positively influences Arabidopsis seed germination by targeting PHYTOCHROME-INTERACTING FACTOR1. Proc Natl Acad Sci 115(17):E4120–E4129. https://doi.org/10.1073/pnas.1711919115
Manzano C, Ramirez-Parra E, Casimiro I, Otero S, Desvoyes B, De Rybel B, Beeckman T, Casero P, Gutierrez C, CDP J (2012) Auxin and epigenetic regulation of SKP2B, an F-box that represses lateral root formation. Plant Physiol 160(2):749–762. https://doi.org/10.1104/pp.112.198341
Marino D, Peeters N, Rivas S (2012) Ubiquitination during plant immune signaling. Plant Physiol 160(1):15–27. https://doi.org/10.1104/pp.112.199281
Marrocco K, Zhou Y, Bury E, Dieterle M, Funk M, Genschik P, Krenz M, Stolpe T, Kretsch T (2006) Functional analysis of EID1, an F-box protein involved in phytochrome A—dependent light signal transduction. Plant J 45(3):423–438. https://doi.org/10.1111/j.1365-313X.2005.02635.x
Más P, Kim W-Y, Somers DE, Kay SA (2003) Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature 426(6966):567–570. https://doi.org/10.1038/nature02163
Matsumoto D, Tao R (2019) Recognition of S-RNases by an S locus F-box like protein and an S haplotype-specific F-box like protein in the Prunus-specific self-incompatibility system. Plant Mol Biol 100(4–5):367–378. https://doi.org/10.1007/s11103-019-00860-8
Matsumoto D, Yamane H, Abe K, Tao R (2012) Identification of a Skp1-like protein interacting with SFB, the pollen S determinant of the gametophytic self-incompatibility in Prunus. Plant Physiol 159(3):1252–1262. https://doi.org/10.1104/pp.112.197343
Mergner J, Schwechheimer C (2014) The NEDD8 modification pathway in plants. Front Plant Sci 5:103. https://doi.org/10.3389/fpls.2014.00103
Miao C, Xiao L, Hua K, Zou C, Zhao Y, Bressan RA, Zhu J-K (2018) Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity. Proc Natl Acad Sci 115(23):6058–6063
Micol JL, Hake S (2003) The development of plant leaves. Plant Physiol 131(2):389. https://doi.org/10.1104/pp.015347
Mierziak J, Kostyn K, Kulma A (2014) Flavonoids as important molecules of plant interactions with the environment. Molecules 19(10):16240–16265. https://doi.org/10.3390/molecules191016240
Murase K, Hirano Y, Sun TP, Hakoshima T (2008) Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456(7221):459–463. https://doi.org/10.1038/nature07519
Nakajima M, Shimada A, Takashi Y, Kim YC, Park SH, Ueguchi-Tanaka M, Suzuki H, Katoh E, Iuchi S, Kobayashi M, Maeda T, Matsuoka M, Yamaguchi I (2006) Identification and characterization of Arabidopsis gibberellin receptors. Plant J 46(5):880–889. https://doi.org/10.1111/j.1365-313X.2006.02748.x
Nelson DC, Scaffidi A, Dun EA, Waters MT, Flematti GR, Dixon KW, Beveridge CA, Ghisalberti EL, Smith SM (2011) F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proc Natl Acad Sci USA 108(21):8897–8902. https://doi.org/10.1073/pnas.1100987108
Ng LM (2016) Abscisic acid signalling as a target for enhancing drought tolerance. In: Shanker AK, Shanker C (ed) Abiotic and biotic stress in plants–recent advances and future perspectives. IntechOpen. https://doi.org/10.5772/61317
Ni W, Xie D, Hobbie L, Feng B, Zhao D, Akkara J, Ma H (2004) Regulation of flower development in Arabidopsis by SCF complexes. Plant Physiol 134(4):1574. https://doi.org/10.1104/pp.103.031971
Oh E, Yamaguchi S, Hu J, Yusuke J, Jung B, Paik I, Lee HS, Sun TP, Kamiya Y, Choi G (2007) PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds. Plant Cell 19(4):1192–1208. https://doi.org/10.1105/tpc.107.050153
Othman MHC, Hadi NA, Zainal Z, Kiat CJ, Naeem-ul-Hassan M, Zain CRCM, Ismail I (2017) Expression profile of gene encoding Kelch repeat containing F-box protein (PmF-box1) in relation to the production of green leaf volatiles. Aust J Crop Sci 11(04):406–418. https://doi.org/10.21475/ajcs.17.11.04.pne290
Ou C-Y, Pi H, Chien C-T (2003) Control of protein degradation by E3 ubiquitin ligases in Drosophila eye development. Trends Genet 19(7):382–389. https://doi.org/10.1016/s0168-9525(03)00146-x
Oughtred R, Stark C, Breitkreutz BJ, Rust J, Boucher L, Chang C, Kolas N, O'Donnell L, Leung G, McAdam R, Zhang F, Dolma S, Willems A, Coulombe-Huntington J, Chatr-Aryamontri A, Dolinski K, Tyers M (2019) The BioGRID interaction database: 2019 update. Nucleic Acids Res 47(D1):D529–D541. https://doi.org/10.1093/nar/gky1079
Pazhouhandeh M, Dieterle M, Marrocco K, Lechner E, Berry B, Brault V, Hemmer O, Kretsch T, Richards KE, Genschik P, Ziegler-Graff V (2006) F-box-like domain in the polerovirus protein P0 is required for silencing suppressor function. Proc Natl Acad Sci USA 103(6):1994. https://doi.org/10.1073/pnas.0510784103
Péret B, De Rybel B, Casimiro I, Benková E, Swarup R, Laplaze L, Beeckman T, Bennett MJ (2009) Arabidopsis lateral root development: an emerging story. Trends Plant Sci 14(7):399–408. https://doi.org/10.1016/j.tplants.2009.05.002
Pierce NW, Lee JE, Liu X, Sweredoski MJ, Graham RL, Larimore EA, Rome M, Zheng N, Clurman BE, Hess S, Shan SO, Deshaies RJ (2013) Cand1 promotes assembly of new SCF complexes through dynamic exchange of F box proteins. Cell 153(1):206–215. https://doi.org/10.1016/j.cell.2013.02.024
Plackett AR, Thomas SG, Wilson ZA, Hedden P (2011) Gibberellin control of stamen development: a fertile field. Trends Plant Sci 16(10):568–578. https://doi.org/10.1016/j.tplants.2011.06.007
Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MA (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12(3):98–105. https://doi.org/10.1016/j.tplants.2007.01.004
Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, Koncz C, Genschik P (2003) EIN3-dependent regulation of plant ethylene hormone signaling by two arabidopsis F box proteins: EBF1 and EBF2. Cell 115(6):679–689
Pozo JCd, Estelle M (2000) F-box proteins and protein degradation: an emerging theme in cellular regulation. Plant Mol Biol 44:123–128
del Pozo JC, Dharmasiri S, Hellmann H, Walker L, Gray WM, Estelle M (2002) AXR1-ECR1-dependent conjugation of RUB1 to the Arabidopsis Cullin AtCUL1 is required for auxin response. Plant Cell 14(2):421–433. https://doi.org/10.1105/tpc.010282
Prag S, Adams JC (2003) Molecular phylogeny of the kelch-repeat superfamily reveals an expansion of BTB/kelch proteins in animals. BMC Bioinform 4:42
Price CT, Kwaik YA (2010) Exploitation of host polyubiquitination machinery through molecular mimicry by eukaryotic-like bacterial F-box effectors. Front Microbiol 1:122. https://doi.org/10.3389/fmicb.2010.00122
Qi T, Wang J, Huang H, Liu B, Gao H, Liu Y, Song S, Xie D (2015) Regulation of jasmonate-induced leaf senescence by antagonism between bHLH subgroup IIIe and IIId factors in Arabidopsis. Plant Cell 27(6):1634–1649. https://doi.org/10.1105/tpc.15.00110
Qiao H, Wang H, Zhao L, Zhou J, Huang J, Zhang Y, Xue Y (2004) The F-box protein AhSLF-S2 physically interacts with S-RNases that may be inhibited by the ubiquitin/26S proteasome pathway of protein degradation during compatible pollination in Antirrhinum. Plant Cell 16(3):582–595. https://doi.org/10.1105/tpc.017673
Qiao H, Chang KN, Yazaki J, Ecker JR (2009) Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Genes Dev 23(4):512–521. https://doi.org/10.1101/gad.1765709
Rogers K, Chen X (2013) Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25(7):2383–2399. https://doi.org/10.1105/tpc.113.113159
Sadanandom A, Bailey M, Ewan R, Lee J, Nelis S (2012) The ubiquitin-proteasome system: central modifier of plant signalling. New Phytol 196(1):13–28. https://doi.org/10.1111/j.1469-8137.2012.04266.x
Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7:571. https://doi.org/10.3389/fpls.2016.00571
Salehin M, Bagchi R, Estelle M (2015) SCFTIR1/AFB-based auxin perception: mechanism and role in plant growth and development. Plant Cell 27(1):9–19. https://doi.org/10.1105/tpc.114.133744
Samach A, Klenz JE, Kohalmi SE, Risseeuw E, Haughn GW, Crosby WL (1999) The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem. Plant J 20(4):433–445
Samad AFA, Sajad M, Nazaruddin N, Fauzi IA, Murad AMA, Zainal Z, Ismail I (2017) MicroRNA and transcription factor: key players in plant regulatory network. Front Plant Sci 8:565. https://doi.org/10.3389/fpls.2017.00565
Sasaki A, Itoh H, Gomi K, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Jeong D-H, An G, Kitano H, Ashikari M, Matsuoka M (2003) Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science 299:1896–1898
Sassa H, Kakui H, Minamikawa M (2010) Pollen-expressed F-box gene family and mechanism of S-RNase-based gametophytic self-incompatibility (GSI) in Rosaceae. Sex Plant Reprod 23(1):39–43. https://doi.org/10.1007/s00497-009-0111-6
Scheitz K, Luthen H, Schenck D (2013) Rapid auxin-induced root growth inhibition requires the TIR and AFB auxin receptors. Planta 238(6):1171–1176. https://doi.org/10.1007/s00425-013-1941-x
Schumann N, Navarro-Quezada A, Ullrich K, Kuhl C, Quint M (2011) Molecular evolution and selection patterns of plant F-box proteins with C-terminal kelch repeats. Plant Physiol 155(2):835–850. https://doi.org/10.1104/pp.110.166579
Schwager KM, Calderon-Villalobos LI, Dohmann EM, Willige BC, Knierer S, Nill C, Schwechheimer C (2007) Characterization of the VIER F-BOX PROTEINE genes from Arabidopsis reveals their importance for plant growth and development. Plant Cell 19(4):1163–1178. https://doi.org/10.1105/tpc.105.040675
Serrani JC, Sanjuan R, Ruiz-Rivero O, Fos M, Garcia-Martinez JL (2007) Gibberellin regulation of fruit set and growth in tomato. Plant Physiol 145(1):246–257. https://doi.org/10.1104/pp.107.098335
Shan X, Wang J, Chua L, Jiang D, Peng W, Xie D (2011) The role of Arabidopsis Rubisco activase in jasmonate-induced leaf senescence. Plant Physiol 155(2):751–764. https://doi.org/10.1104/pp.110.166595
Shao T, Qian Q, Tang D, Chen J, Li M, Cheng Z, Luo Q (2012) A novel gene IBF1 is required for the inhibition of brown pigment deposition in rice hull furrows. Theor Appl Genet 125(2):381–390. https://doi.org/10.1007/s00122-012-1840-8
Sharma B, Joshi D, Yadav PK, Gupta AK, Bhatt TK (2016) Role of ubiquitin-mediated degradation system in plant biology. Front Plant Sci 7:806. https://doi.org/10.3389/fpls.2016.00806
Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu FF, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N (2010) Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468(7322):400–405. https://doi.org/10.1038/nature09430
Sheikh MO, Schafer CM, Powell JT, Rodgers KK, Mooers BH, West CM (2014) Glycosylation of Skp1 affects its conformation and promotes binding to a model f-box protein. Biochemistry 53(10):1657–1669. https://doi.org/10.1021/bi401707y
Sheikh MO, Xu Y, van der Wel H, Walden P, Hartson SD, West CM (2015) Glycosylation of Skp1 promotes formation of Skp1-cullin-1-F-box protein complexes in dictyostelium. Mol Cell Proteom 14(1):66–80. https://doi.org/10.1074/mcp.M114.044560
Shen H, Luong P, Huq E (2007) The F-box protein MAX2 functions as a positive regulator of photomorphogenesis in Arabidopsis. Plant Physiol 145(4):1471–1483. https://doi.org/10.1104/pp.107.107227
Shimada A, Ueguchi-Tanaka M, Nakatsu T, Nakajima M, Naoe Y, Ohmiya H, Kato H, Matsuoka M (2008) Structural basis for gibberellin recognition by its receptor GID1. Nature 456(7221):520–523. https://doi.org/10.1038/nature07546
Silva NF, Goring DR (2001) Mechanisms of self-incompatibility in flowering plants. Cell Mol Life Sci 58:1988–2007
Skaar JR, Pagan JK, Pagano M (2013) Mechanisms and function of substrate recruitment by F-box proteins. Nat Rev Mol Cell Biol 14(6):369–381. https://doi.org/10.1038/nrm3582
Skaar JR, Pagan JK, Pagano M (2014) SCF ubiquitin ligase-targeted therapies. Nat Rev Drug Discov 13:889. https://doi.org/10.1038/nrd4432
Smardon AM, Tarsio M, Kane PM (2002) The RAVE complex is essential for stable assembly of the yeast V-ATPase. J Biol Chem 277(16):13831–13839. https://doi.org/10.1074/jbc.M200682200
Song YH, Ito S, Imaizumi T (2010) Similarities in the circadian clock and photoperiodism in plants. Curr Opin Plant Biol 13(5):594–603. https://doi.org/10.1016/j.pbi.2010.05.004
Song YH, Estrada DA, Johnson RS, Kim SK, Lee SY, MacCoss MJ, Imaizumi T (2014) Distinct roles of FKF1, GIGANTEA, and ZEITLUPE proteins in the regulation of CONSTANS stability in Arabidopsis photoperiodic flowering. Proc Natl Acad Sci 111(49):17672–17677. https://doi.org/10.1073/pnas.1415375111
Song JB, Wang YX, Li HB, Li BW, Zhou ZS, Gao S, Yang ZM (2015) The F-box family genes as key elements in response to salt, heavy mental, and drought stresses in Medicago truncatula. Funct Integr Genom 15(4):495–507. https://doi.org/10.1007/s10142-015-0438-z)
Sonneveld T, Tobutt KR, Vaughan SP, Robbins TP (2005) Loss of pollen-S function in two self-compatible selections of Prunus avium is associated with deletion/mutation of an S haplotype-specific F-box gene. Plant Cell 17(1):37–51. https://doi.org/10.1105/tpc.104.026963
Souer E, Rebocho AB, Bliek M, Kusters E, de Bruin RAM, Koes R (2008) Patterning of inflorescences and flowers by the F-box protein DOUBLE TOP and the LEAFY homolog ABERRANT LEAF AND FLOWER of petunia. Plant Cell 20(8):2033. https://doi.org/10.1105/tpc.108.060871
Soundappan I, Bennett T, Morffy N, Liang Y, Stanga JP, Abbas A, Leyser O, Nelson DC (2015) SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to strigolactones and karrikins in Arabidopsis. Plant Cell 27(11):3143–3159. https://doi.org/10.1105/tpc.15.00562
Stanga JP, Smith SM, Briggs WR, Nelson DC (2013) SUPPRESSOR OF MORE AXILLARY GROWTH2 1 controls seed germination and seedling development in Arabidopsis. Plant Physiol 163(1):318–330. https://doi.org/10.1104/pp.113.221259
Stefanowicz K, Lannoo N, Van Damme EJM (2015) Plant F-box proteins—judges between life and death. Crit Rev Plant Sci 34(6):523–552. https://doi.org/10.1080/07352689.2015.1024566
Stirnberg P, Kvd S, Leyser HMO (2002) MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129:1131–1141
Stirnberg P, Furner IJ, Ottoline Leyser HM (2007) MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant J 50(1):80–94. https://doi.org/10.1111/j.1365-313X.2007.03032.x
Sun T-p (2010) Gibberellin signal transduction in stem elongation & leaf growth. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action! Springer, Dordrecht, pp 308–328. https://doi.org/10.1007/978-1-4020-2686-7_15
Sun P, Li S, Lu D, Williams JS, Kao TH (2015) Pollen S-locus F-box proteins of Petunia involved in S-RNase-based self-incompatibility are themselves subject to ubiquitin-mediated degradation. Plant J 83(2):213–223. https://doi.org/10.1111/tpj.12880
Sun L, Williams JS, Li S, Wu L, Khatri WA, Stone PG, Keebaugh MD, Kao TH (2018a) S-Locus F-box proteins are solely responsible for S-RNase-based self-incompatibility of Petunia Pollen. Plant Cell 30(12):2959–2972. https://doi.org/10.1105/tpc.18.00615
Sun X, Lin L, Sui N (2018b) Regulation mechanism of microRNA in plant response to abiotic stress and breeding. Mol Biol Rep. https://doi.org/10.1007/s11033-018-4511-2
Sunkar R, Li YF, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17(4):196–203. https://doi.org/10.1016/j.tplants.2012.01.010
Swarbreck SM, Guerringue Y, Matthus E, Jamieson FJC, Davies JM (2019) Impairment in karrikin but not strigolactone sensing enhances root skewing in Arabidopsis thaliana. Plant J 98(4):607–621. https://doi.org/10.1111/tpj.14233
Szemenyei H, Hannon M, Long JA (2008) TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science 319(5868):1384–1386. https://doi.org/10.1126/science.1151461
Takase T, Nishiyama Y, Tanihigashi H, Ogura Y, Miyazaki Y, Yamada Y, Kiyosue T (2011) LOV KELCH PROTEIN2 and ZEITLUPE repress Arabidopsis photoperiodic flowering under non-inductive conditions, dependent on FLAVIN-BINDING KELCH REPEAT F-BOX1. Plant J 67(4):608–621. https://doi.org/10.1111/j.1365-313X.2011.04618.x
Takayama S, Isogai A (2005) Self-Incompatibility in plants. Annu Rev Plant Biol 56:467–489
Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446(7136):640–645. https://doi.org/10.1038/nature05731
Taylor S, Hofer J, Murfet I (2001) Stamina pistilloida, the Pea ortholog of Fim and UFO, is required for normal development of flowers, inflorescences, and leaves. Plant Cell 13(1):31. https://doi.org/10.1105/tpc.13.1.31
Teng-umnuay P, van der Wel H, West CM (1999) Identification of a UDP-GlcNAc:Skp1-hydroxyproline GlcNAc-transferase in the cytoplasm of dictyostelium. J Biol Chem 274(51):36392–36402. https://doi.org/10.1074/jbc.274.51.36392
Terrile MC, Paris R, Calderon-Villalobos LI, Iglesias MJ, Lamattina L, Estelle M, Casalongue CA (2012) Nitric oxide influences auxin signaling through S-nitrosylation of the Arabidopsis TRANSPORT INHIBITOR RESPONSE 1 auxin receptor. Plant J 70(3):492–500. https://doi.org/10.1111/j.1365-313X.2011.04885.x
Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448(7154):661–665. https://doi.org/10.1038/nature05960
Thomas JH (2006) Adaptive evolution in two large families of ubiquitin-ligase adapters in nematodes and plants. Genome Res 16(8):1017–1030. https://doi.org/10.1101/gr.5089806
Trenner J, Poeschl Y, Grau J, Gogol-Doring A, Quint M, Delker C (2017) Auxin-induced expression divergence between Arabidopsis species may originate within the TIR1/AFB-AUX/IAA-ARF module. J Exp Bot 68(3):539–552. https://doi.org/10.1093/jxb/erw457
Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signal Behav 2(3):135–138
Tyler L, Thomas SG, Hu J, Dill A, Alonso JM, Ecker JR, Sun T-p (2004) DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiol 135:1008–1019. https://doi.org/10.1104/pp.104.039578
Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow TY, Hsing YI, Kitano H, Yamaguchi I, Matsuoka M (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437(7059):693–698. https://doi.org/10.1038/nature04028
Urbanova T, Leubner-Metzger G (2016) Gibberellins and seed germination. Ann Plant Rev 49:253–284. https://doi.org/10.1002/9781119210436.ch9
Wang H, Huang J, Lai Z, Xue Y (2002) F-box proteins in flowering plants. Chin Sci Bull 47(18):1497–1501. https://doi.org/10.1360/02tb9330
Wang L, Dong L, Ye Z, Zhang Y, Wu W, Deng X, Xue Y (2004) Genome-wide analysis of S-Locus F-box-like genes in Arabidopsis thaliana. Plant Mol Biol 56(6):929–945
Wang Z, Dai L, Jiang Z, Peng W, Zhang L, Wang G, Xie D (2005) GmCOI1, a soybean F-box protein gene, shows ability to mediate jasmonate-regulated plant defense and fertility in Arabidopsis. MPMI 18(12):1285–1295. https://doi.org/10.1094/MPMI
Wang W, Liu G, Niu H, Timko MP, Zhang H (2014) The F-box protein COI1 functions upstream of MYB305 to regulate primary carbohydrate metabolism in tobacco (Nicotiana tabacum L. cv. TN90). J Exp Bot 65(8):2147–2160. https://doi.org/10.1093/jxb/eru084
Wang L, Wang B, Jiang L, Liu X, Li X, Lu Z, Meng X, Wang Y, Smith SM, Li J (2015) Strigolactone signaling in Arabidopsis regulates shoot development by targeting D53-like SMXL repressor proteins for ubiquitination and degradation. Plant Cell 27(11):3128–3142. https://doi.org/10.1105/tpc.15.00605
Wang Z, Li N, Jiang S, Gonzalez N, Huang X, Wang Y, Inze D, Li Y (2016) SCF(SAP) controls organ size by targeting PPD proteins for degradation in Arabidopsis thaliana. Nat Commun 7:11192. https://doi.org/10.1038/ncomms11192
Waters MT, Scaffidi A, Flematti GR, Smith SM (2013) The origins and mechanisms of karrikin signalling. Curr Opin Plant Biol 16(5):667–673. https://doi.org/10.1016/j.pbi.2013.07.005
Waters MT, Scaffidi A, Sun YK, Flematti GR, Smith SM (2014) The karrikin response system of Arabidopsis. Plant J 79(4):623–631. https://doi.org/10.1111/tpj.12430
Waters MT, Gutjahr C, Bennett T, Nelson DC (2017) Strigolactone signaling and evolution. Annu Rev Plant Biol 68:291–322. https://doi.org/10.1146/annurev-arplant-042916-040925
Williams JS, Wu L, Li S, Sun P, Kao TH (2015) Insight into S-RNase-based self-incompatibility in Petunia: recent findings and future directions. Front Plant Sci 6:41. https://doi.org/10.3389/fpls.2015.00041
Windels D, Bielewicz D, Ebneter M, Jarmolowski A, Szweykowska-Kulinska Z, Vazquez F (2014) miR393 is required for production of proper auxin signalling outputs. PLoS ONE 9(4):e95972. https://doi.org/10.1371/journal.pone.0095972
Wojcik AM, Gaj MD (2016) miR393 contributes to the embryogenic transition induced in vitro in Arabidopsis via the modification of the tissue sensitivity to auxin treatment. Planta 244(1):231–243. https://doi.org/10.1007/s00425-016-2505-7
Woo HR, Chung KM, Park J-H, Oh SA, Ahn T, Hong SH, Jang SK, Nam HG (2001) ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell 13:1779–1790
Wright RC, Zahler ML, Gerben SR, Nemhauser JL (2017) Insights into the evolution and function of auxin signaling F-box proteins in Arabidopsis thaliana through synthetic analysis of natural variants. Genetics 207(2):583. https://doi.org/10.1534/genetics.117.300092
Wuyts N, Swennen R, Waele Dd (2006) Effects of plant phenylpropanoid pathway products and selected terpenoids and alkaloids on the behaviour of the plant-parasitic nematodes Radopholus similisPratylenchus penetrans and Meloidogyne incognita. Nematology 8(1):89–101
Xia X, Xiao-bo Z, Yong-feng S, Hui-mei W, Bao-hua F, Xiao-hong L, Qi-na H, Li-xin S, Dan G, Yan H, Jian-li W (2016) A point mutation in an F-box domain-containing protein is responsible for brown hull phenotype in rice. Rice Sci 23(1):1–8. https://doi.org/10.1016/j.rsci.2016.01.001
Xu L (2002) The SCFCOI1 ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell Online 14(8):1919–1935. https://doi.org/10.1105/tpc.003368
Xu L, Liu F, Lechner E, Genschik P, Crosby WL, Ma H, Peng W, Huang D, Xie D (2002) The SCF(COI1) ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14(8):1919–1935. https://doi.org/10.1105/tpc.003368
Xu G, Ma H, Nei M, Kong H (2009) Evolution of F-box genes in plants: different modes of sequence divergence and their relationships with functional diversification. Proc Natl Acad Sci USA 106(3):835–840. https://doi.org/10.1073/pnas.0812043106
Xu G, Li M, Cui Y, Yin X, Wang M, Xia X (2014) OsMsr9, a novel putative rice F-box containing protein, confers enhanced salt tolerance in transgenic rice and Arabidopsis. Mol Breed 34(3):1055–1064. https://doi.org/10.1007/s11032-014-0096-1)
Yamada Y, Furusawa S, Nagasaka S, Shimomura K, Yamaguchi S, Umehara M (2014) Strigolactone signaling regulates rice leaf senescence in response to a phosphate deficienc. Planta 40(2):399–408. https://doi.org/10.1007/s00425-014-2096-0)
Yamashita S, Miyagi C, Fukada T, Kagara N, Che YS, Hirano T (2004) Zinc transporter LIVI controls epithelial-mesenchymal transition in zebrafish gastrula organizer. Nature 429(6989):298–302. https://doi.org/10.1038/nature02545
Yan J, Zhang C, Gu M, Bai Z, Zhang W, Qi T, Cheng Z, Peng W, Luo H, Nan F, Wang Z, Xie D (2009) The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell 21(8):2220–2236. https://doi.org/10.1105/tpc.109.065730
Yan YS, Chen XY, Yang K, Sun ZX, Fu YP, Zhang YM, Fang RX (2011) Overexpression of an F-box protein gene reduces abiotic stress tolerance and promotes root growth in rice. Mol Plant 4(1):190–197. https://doi.org/10.1093/mp/ssq066
Yan J, Yao R, Chen L, Li S, Gu M, Nan F, Xie D (2018) Dynamic perception of jasmonates by the F-box protein COI1. Mol Plant 11(10):1237–1247. https://doi.org/10.1016/j.molp.2018.07.007
Yang X, Kalluri UC, Jawdy S, Gunter LE, Yin T, Tschaplinski TJ, Weston DJ, Ranjan P, Tuskan GA (2008) The F-box gene family is expanded in herbaceous annual plants relative to woody perennial plants. Plant Physiol 148(3):1189–1200. https://doi.org/10.1104/pp.108.121921
Yao R, Ming Z, Yan L, Li S, Wang F, Ma S, Yu C, Yang M, Chen L, Chen L, Li Y, Yan C, Miao D, Sun Z, Yan J, Sun Y, Wang L, Chu J, Fan S, He W, Deng H, Nan F, Li J, Rao Z, Lou Z, Xie D (2016) DWARF14 is a non-canonical hormone receptor for strigolactone. Nature 536(7617):469–473. https://doi.org/10.1038/nature19073
Yao M, Rahman SU, Wang A, Ma T, Raza SHA, Mehmood R, Liu Y, Tao S (2019) Evolutionary analysis of the F-box gene family in Saccharomycetaceae. DNA Cell Biol 38(4):333–340. https://doi.org/10.1089/dna.2018.4271
Yasuhara M, Mitsui S, Hirano H, Takanabe R, Tokioka Y, Ihara N, Komatsu A, Seki M, Shinozaki K, Kiyosue T (2004) Identification of ASK and clock-associated proteins as molecular partners of LKP2 (LOV kelch protein 2) in Arabidopsis. J Exp Bot 55(405):2015–2027. https://doi.org/10.1093/jxb/erh226
Yoshida H, Tanimoto E, Hirai T, Miyanoiri Y, Mitani R, Kawamura M, Takeda M, Takehara S, Hirano K, Kainosho M, Akagi T, Matsuoka M, Ueguchi-Tanaka M (2018) Evolution and diversification of the plant gibberellin receptor GID1. Proc Natl Acad Sci 115(33):E7844–E7853
Yoshida T, Christmann A, Yamaguchi-Shinozaki K, Grill E, Fernie AR (2019) Revisiting the basal role of ABA—roles outside of stress. Trends Plant Sci 24(7):625–635. https://doi.org/10.1016/j.tplants.2019.04.008
Yu H, Wu J, Xu N, Peng M (2007) Roles of F-box proteins in plant hormone responses. Acta Biochim Biophys Sin 39(12):915–922
Yu H, Murchie EH, Gonzalez-Carranza ZH, Pyke KA, Roberts JA (2015) Decreased photosynthesis in the erect panicle 3 (ep3) mutant of rice is associated with reduced stomatal conductance and attenuated guard cell development. J Exp Bot 66(5):1543–1552. https://doi.org/10.1093/jxb/eru525
Yu F, Wu Y, Xie Q (2016) Ubiquitin-proteasome system in ABA signaling: from perception to action. Mol Plant 9(1):21–33. https://doi.org/10.1016/j.molp.2015.09.015
Yu S-i, Kim H, Yun D-J, Suh MC, Lee B-h (2018) Post-translational and transcriptional regulation of phenylpropanoid biosynthesis pathway by Kelch repeat F-box protein SAGL1. Plant Mol Biol 99(1–2):135–148. https://doi.org/10.1007/s11103-018-0808-8
Zhang S, Sandal N, Polowick PL, Stiller J, Stougaard J, Fobert PR (2003) Proliferating Floral Organs (Pfo), a Lotus japonicus gene required for specifying floral meristem determinacy and organ identity, encodes an F-box protein. Plant J 33(4):607–619. https://doi.org/10.1046/j.1365-313X.2003.01660.x
Zhang Y, Xu W, Li Z, Deng XW, Wu W, Xue Y (2008) F-box protein DOR functions as a novel inhibitory factor for abscisic acid-induced stomatal closure under drought stress in Arabidopsis. Plant Physiol 148(4):2121–2133. https://doi.org/10.1104/pp.108.126912
Zhang X, Gou M, Liu CJ (2013) Arabidopsis Kelch repeat F-box proteins regulate phenylpropanoid biosynthesis via controlling the turnover of phenylalanine ammonia-lyase. Plant Cell 25(12):4994–5010. https://doi.org/10.1105/tpc.113.119644
Zhang F, Yao J, Ke J, Zhang L, Lam VQ, Xin XF, Zhou XE, Chen J, Brunzelle J, Griffin PR, Zhou M, Xu HE, Melcher K, He SY (2015a) Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling. Nature 525(7568):269–273. https://doi.org/10.1038/nature14661
Zhang X, Gou M, Guo C, Yang H, Liu CJ (2015b) Down-regulation of Kelch domain-containing F-box protein in Arabidopsis enhances the production of (poly)phenols and tolerance to ultraviolet radiation. Plant Physiol 167(2):337–350. https://doi.org/10.1104/pp.114.249136
Zhang X, Abrahan C, Colquhoun TA, Liu CJ (2017a) A proteolytic regulator controlling chalcone synthase stability and flavonoid biosynthesis in Arabidopsis. Plant Cell 29(5):1157–1174. https://doi.org/10.1105/tpc.16.00855
Zhang X, Jayaweera D, Peters JL, Szecsi J, Bendahmane M, Roberts JA, González-Carranza ZH (2017b) The Arabidopsis thaliana F-box gene HAWAIIAN SKIRT is a new player in the microRNA pathway. PLoS ONE 12(12):e0189788. https://doi.org/10.1371/journal.pone.0189788
Zhao LH, Zhou XE, Wu ZS, Yi W, Xu Y, Li S, Xu TH, Liu Y, Chen RZ, Kovach A, Kang Y, Hou L, He Y, Xie C, Song W, Zhong D, Xu Y, Wang Y, Li J, Zhang C, Melcher K, Xu HE (2013) Crystal structures of two phytohormone signal-transducing alpha/beta hydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14. Cell Res 23(3):436–439. https://doi.org/10.1038/cr.2013.19
Zhao Z, Zhang G, Zhou S, Ren Y, Wang W (2017) The improvement of salt tolerance in transgenic tobacco by overexpression of wheat F-box gene TaFBA1. Plant Sci 259:71–85. https://doi.org/10.1016/j.plantsci.2017.03.010
Zheng X, Miller ND, Lewis DR, Christians MJ, Lee K-H, Muday GK, Spalding EP, Vierstra RD (2011) AUXIN UP-REGULATED F-BOX PROTEIN1 regulates the cross talk between auxin transport and cytokinin signaling during plant root growth. Plant Physiol 156(4):1878. https://doi.org/10.1104/pp.111.179812
Zhou F, Lin Q, Zhu L, Ren Y, Zhou K, Shabek N, Wu F, Mao H, Dong W, Gan L, Ma W, Gao H, Chen J, Yang C, Wang D, Tan J, Zhang X, Guo X, Wang J, Jiang L, Liu X, Chen W, Chu J, Yan C, Ueno K, Ito S, Asami T, Cheng Z, Wang J, Lei C, Zhai H, Wu C, Wang H, Zheng N, Wan J (2013) D14-SCF(D3)-dependent degradation of D53 regulates strigolactone signalling. Nature 504(7480):406–410. https://doi.org/10.1038/nature12878
Zhou S, Sun X, Yin S, Kong X, Zhou S, Xu Y, Luo Y, Wang W (2014) The role of the F-box gene TaFBA1 from wheat (Triticum aestivum L.) in drought tolerance. Plant Physiol Biochem 84:213–223. https://doi.org/10.1016/j.plaphy.2014.09.017
Zhou SM, Kong XZ, Kang HH, Sun XD, Wang W (2015) The involvement of wheat F-box protein gene TaFBA1 in the oxidative stress tolerance of plants. PLoS ONE 10(4):e0122117. https://doi.org/10.1371/journal.pone.0122117
Zoltowski BD, Imaizumi T (2014) Structure and function of the ZTL/FKF1/LKP2 group proteins in Arabidopsis. Enzymes 35:213–239. https://doi.org/10.1016/B978-0-12-801922-1.00009-9
Zwack PJ, Rashotte AM (2015) Interactions between cytokinin signalling and abiotic stress responses. J Exp Bot 66(16):4863–4871. https://doi.org/10.1093/jxb/erv172
Acknowledgement
This work was supported by the DIP-2018-003 grant.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Communicated by Gerhard Leubner.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Abd-Hamid, NA., Ahmad-Fauzi, MI., Zainal, Z. et al. Diverse and dynamic roles of F-box proteins in plant biology. Planta 251, 68 (2020). https://doi.org/10.1007/s00425-020-03356-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00425-020-03356-8