Skip to main content

Regulation of color transition in purple tea (Camellia sinensis)

Abstract

Main conclusion

Comparative proteomics and metabolomics study of juvenile green, light purple and dark purple leaf to identify key proteins and metabolites that putatively govern color transition in Camellia sinensis.

Abstract

Color transition from juvenile green to dark purple leaf in Camellia sinensis is a complex process and thought to be regulated by an intricate balance of genes, proteins and metabolites expression. A molecular-level understanding of proteins and metabolites expression is needed to define metabolic process underpinning color transition in C. sinensis. Here, purple leaf growth of C. sinensis cultivar was divided into three developmental stages viz. juvenile green (JG), light purple (LP) and dark purple (DP) leaf. Scanning electron microscope (SEM) analysis revealed a clear morphological variation such as cell size, shape and texture as tea leaf undergoing color transition. Proteomic and metabolomic analyses displayed the temporal changes in proteins and metabolites that occur in color transition process. In total, 211 differentially expressed proteins (DEPs) were identified presumably involved in secondary metabolic processes particularly, flavonoids/anthocyanin biosynthesis, phytohormone regulation, carbon and nitrogen assimilation and photosynthesis, among others. Subcellular localization of three candidate proteins was further evaluated by their transient expression in planta. Interactome study revealed that proteins involved in primary metabolism, precursor metabolite, photosynthesis, phytohormones, transcription factor and anthocyanin biosynthesis were found to be interact directly or indirectly and thus, regulate color transition from JG to DP leaf. The present study not only corroborated earlier findings but also identified novel proteins and metabolites that putatively govern color transition in C. sinensis. These findings provide a platform for future studies that may be utilized for metabolic engineering/molecular breeding in an effort to develop more desirable traits.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

DEPs:

Differentially expressed proteins

DP:

Dark purple

JG:

Juvenile green

LP:

Light purple

PCA:

Principal component analysis

SEM:

Scanning electron microscope

References

  • Anoman AD, Munoz-Bertomeu J, Rosa-Tellez S, Flores-Tornero M, Serrano R, Bueso E, Fernie AR, Segura J, Ros R (2015) Plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase is an important determinant in the carbon and nitrogen metabolism of heterotrophic cells in Arabidopsis. Plant Physiol 169:1619–1637

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aza-Gonzalez C, Herrera-Isidron L, Nunez-Palenius HG, De La Vega OM, Ochoa-Alejo N (2013) Anthocyanin accumulation and expression analysis of biosynthesis-related genes during chili pepper fruit development. Biol Plantarum 57:49–55

    CAS  Google Scholar 

  • Bar-Peled M, O’Neill MA (2011) Plant nucleotide sugar formation, interconversion, and salvage by sugar recycling. Annu Rev Plant Biol 62:127–155

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Concha CM, Figueroa NE, Poblete LA, Onate FA, Schwab W, Figueroa CR (2013) Methyl jasmonate treatment induces changes in fruit ripening by modifying the expression of several ripening genes in Fragaria chiloensis fruit. Plant Physiol Biochem 70:433–444

    CAS  PubMed  Google Scholar 

  • Corea ORA, Ki C, Cardenas CL, Kim SJ, Brewer SE, Patten AM, Davin LB, Lewis NG (2012) Arogenate dehydratase isoenzymes profoundly and differentially modulate carbon flux into lignins. J Biol Chem 287:11446–11459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davies HV, Shepherd LV, Burrell MM, Carrari F, Urbanczyk-Wochniak E, Leisse A, Hancock RD, Taylor M, Viola R, Ross H, McRae D, Willmitzer L, Fernie AR (2005) Modulation of fructokinase activity of potato (Solanum tuberosum) results in substantial shifts in tuber metabolism. Plant Cell Physiol 46:1103–1115

    CAS  PubMed  Google Scholar 

  • Dwyer JT, Peterson J (2013) Tea and flavonoids: where we are, where to go next. Am J Clin Nutr 98:1611S–1618S

    CAS  PubMed  PubMed Central  Google Scholar 

  • El-Azaz J, de la Torre F, Avila C, Canovas FM (2016) Identification of a small protein domain present in all plant lineages that confers high prephenate dehydratase activity. Plant J 87:215–229

    CAS  PubMed  Google Scholar 

  • Fatland B, Anderson M, Nikolau BJ, Wurtele ES (2000) Molecular biology od cytosolic acetyl-CoA generation. Biochem Soc Trans 28:593–595

    CAS  PubMed  Google Scholar 

  • Ghawana S, Paul A, Kumar H, Kumar A, Singh H, Bhardwaj PK, Rani A, Singh RS, Raizada J, Singh K, Kumar S (2011) An RNA isolation system for plant tissues rich in secondary metabolites. BMC Res Notes 4:85

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh D (2005) Anthocyanins and anthocyanin-rich extracts in biology and medicine: biochemical, cellular, and medicinal properties. Curr Top Nutraceutical Res 3:113–124

    CAS  Google Scholar 

  • Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53:814–827

    CAS  PubMed  Google Scholar 

  • Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talon M, Dopazo J, Conesa A (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36:3420–3435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griffith RB, Jeffrey RN (1944) Determining chlorophyll, carotene, and xanthophyll in plants. Ind Eng Chem Anal Ed 16:438–440

    CAS  Google Scholar 

  • Herbert SK (2002) A new regulatory role for the chloroplast ATP synthase. Proc Natl Acad Sci 99:12518–12519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgson JM, Croft KD (2010) Tea flavonoids and cardiovascular health. Mol Aspects Med 31:495–502

    CAS  PubMed  Google Scholar 

  • Hohner R, Marques JV, Ito T, Amakura Y, Budgeon AD, Weitz K, Hixson KK, Davin LB, Kirchhoff H, Lewis NG (2018) Reduced arogenate dehydratase expression: ramifications for photosynthesis and metabolism. Plant Physiol 177:115–131

    PubMed  PubMed Central  Google Scholar 

  • Holton TA, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071–1083

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hubbard NL, Pharr DM, Huber SC (1991) Sucrose phosphate synthase and other sucrose metabolizing enzymes in fruits of various species. Physiol Plant 82:191–196

    CAS  Google Scholar 

  • Imsande J, Berkemeyer M, Scheibe R, Schumann U, Gietl C, Palmer RG (2001) A soybean plastid-targeted NADH-malate dehydrogenase: cloning and expression analyses. Am J Bot 88:2136–2142

    CAS  PubMed  Google Scholar 

  • Jander G, Joshi V (2009) Aspartate-derived amino acid biosynthesis in Arabidopsis thaliana. Arab. book/American Soc. Plant Biol 7

    PubMed  PubMed Central  Google Scholar 

  • Jeong ST, Goto-Yamamoto N, Kobayashi S, Esaka M (2004) Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. Plant Sci 167:247–252

    CAS  Google Scholar 

  • Jeong SW, Das PK, Jeoung SC, Song JY, Lee HK, Kim YK, Kim WJ, Park YI, Yoo SD, Choi SB, Choi G, Park YI (2010) Ethylene suppression of sugar-induced anthocyanin pigmentation in Arabidopsis. Plant Physiol 154:1514–1531

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ji H, Zhu Y, Tian S, Xu M, Li L, Wang H, Hu L, Ji Y, Ge J, Wen W, Dong H (2014) Downregulation of leaf flavin content induces early flowering and photoperiod gene expression in Arabidopsis. BMC Plant Biol 14:237

    PubMed  PubMed Central  Google Scholar 

  • Jin L, Hwang S, Yoo G, Choi J (2006) A mass spectrometry compatible silver staining method for protein incorporating a new silver sensitizer in sodium dodecyl sulfate-polyacrylamide electrophoresis gels. Proteomics 6:2334–2337

    CAS  PubMed  Google Scholar 

  • Joshi R, Rana A, Gulati A (2015) Studies on quality of orthodox teas made from anthocyanin-rich tea clones growing in Kangra valley, India. Food Chem 176:357–366

    CAS  PubMed  Google Scholar 

  • Joshi R, Sharma A, Thakur K, Kumar D, Nadda G (2018) Metabolite analysis and nucleoside determination using reproducible UHPLC-Q-ToF-IMS in Ophiocordyceps sinensis. J Liq Chrom Rel Tech 41:927–936

    CAS  Google Scholar 

  • Kao Y, Chang H, Lee M, Chen C (2006) Tea, obesity, and diabetes. Mol Nutr Food Res 50:188–210

    CAS  PubMed  Google Scholar 

  • Kassim A, Poette J, Paterson A, Zait D, McCallum S, Woodhead M, Smith K, Hackett C, Graham J (2009) Environmental and seasonal influences on red raspberry anthocyanin antioxidant contents and identification of quantitative traits loci (QTL). Mol Nutr Food Res 53:625–634

    CAS  PubMed  Google Scholar 

  • Kerio LC, Wachira FN, Wanyoko JK, Rotich MK (2012) Characterization of anthocyanins in Kenyan teas: extraction and identification. Food Chem 131:31–38

    CAS  Google Scholar 

  • Kim YJ, Joo SC, Shi J, Quan S, Hu J, Sukweenadi J, Mohanan P, Yang DC, Zhang D (2018) Metabolic dynamics and physiological adaptation of Panax ginseng during development. Plant Cell Rep 37:393–410

    CAS  PubMed  Google Scholar 

  • Landi M, Tattini M, Gould KS (2015) Multiple functional roles of anthocyanins in plant–environment interactions. Environ Exp Bot 119:4–17

    CAS  Google Scholar 

  • Li Q, Huang J, Liu S, Li J, Yang X, Liu Y, Liu Z (2011) Proteomic analysis of young leaves at three developmental stages in an albino tea cultivar. Proteome Sci 9:44

    PubMed  PubMed Central  Google Scholar 

  • Li Q, Li J, Liu S, Huang J, Lin H, Wang K, Cheng X, Liu Z (2015) A comparative proteomic analysis of the buds and the young expanding leaves of the tea plant (Camellia sinensis L.). Int J Mol Sci 16:14007–14038

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    CAS  Google Scholar 

  • Liu S, Gao J, Chen Z, Qiao X, Huang H, Cui B, Zhu Q, Dai Z, Wu H, Pan Y, Yang C, Liu Z (2017) Comparative proteomics reveals the physiological differences between winter tender shoots and spring tender shoots of a novel tea (Camellia sinensis L.) cultivar evergrowing in winter. BMC Plant Biol 17:206

    PubMed  PubMed Central  Google Scholar 

  • Liu C, Figueroa NE, Poblete LA, Onate FA, Schwab W, Figueroa CR (2018) ENO2 promotes cell proliferation, glycolysis, and glucocorticoid-resistance in acute lymphoblastic leukemia. Cell Physiol Biochem 46:1525–1535

    CAS  PubMed  Google Scholar 

  • Loreti E, Poviro G, Novi G, Solfanelli C, Alpi A, Perata P (2008) Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis. New Phytol 179:1004–1016

    CAS  PubMed  Google Scholar 

  • Ma L, Tian T, Lin R, Deng XW, Wang H, Li G (2016) Arabidopsis FHY3 and FAR1 regulate light-induced myo-inositol biosynthesis and oxidative stress responses by transcriptional activation of MIPS1. Mol Plant 9:541–557

    CAS  PubMed  Google Scholar 

  • Maeo K, Tomiya T, Hayashi K, Akaike M, Morikami A, Ishiguro S, Nakamura K (2001) Sugar-responsible elements in the promoter of a gene for β-amylase of sweet potato. Plant Mol Biol 46:627–637

    CAS  PubMed  Google Scholar 

  • Mukhopadhyay M, Mondal TK, Chand PK (2016) Biotechnological advances in tea (Camellia sinensis [L.] O. Kuntze): a review. Plant Cell Rep 35:255–287

    CAS  PubMed  Google Scholar 

  • Nel AP (2018) Tannins and anthocyanins: From their origin to wine analysis—a review. South African J Enol Vitic 39:1–20

    CAS  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han Y (2012) Glutathione in plants: an integrated overview. Plant, Cell Environ 35:454–484

    CAS  Google Scholar 

  • Povero G, Gonzali S, Bassolino L, Mazzucato A, Perata P (2011) Transcriptional analysis in high-anthocyanin tomatoes reveals synergistic effect of Aft and atv genes. J Plant Physiol 168:270–279

    CAS  PubMed  Google Scholar 

  • Reinhold H, Soyk S, Simkova K, Hostettler C, Marafino J, Mainiero S, Vaughan CK, Monroe JD, Zeeman SC (2011) β-Amylase–Like proteins function as transcription factors in Arabidopsis, controlling shoot growth and development. Plant Cell 23:1391–1403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sapir M, Oren-Shamir M, Ovadia R, Reuveni M, Evenor D, Tadmor Y, Nahon S, Shlomo H, Chen L, Meir A, Levin I (2008) Molecular aspects of Anthocyanin fruit tomato in relation to high pigment-1. J Hered 99:292–303

    CAS  PubMed  Google Scholar 

  • Schreier TB, Clery A, Schlafli M, Galbier F, Stadler M, Demarsy E, Albertini D, Maier BA, Kessler F, Hortensteiner S, Zeeman SC, Kotting O (2018) Plastidial NAD-dependent malate dehydrogenase: a moonlighting protein involved in early chloroplast development through its interaction with an FtsH12-FtsHi protease complex. Plant Cell 30:1745–1769

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shannon JC, Pien FM, Cao H, Liu KC (1998) Brittle-1, an adenylate translocator, facilitates transfer of extraplastidial synthesized ADP-glucose into amyloplasts of maize endosperms. Plant Physiol 117:1235–1252

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Ray S, Moiyadi A, Sridhar E, Srivastava S (2014) Quantitative proteomic analysis of meningiomas for the identification of surrogate protein markers. Sci Rep 4:7140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen J, Zou Z, Zhang X, Zhou L, Wang Y, Fang W, Zhu X (2018) Metabolic analyses reveal different mechanisms of leaf color change in two purple-leaf tea plant (Camellia sinensis L.) cultivars. Hortic Res 5:7

    PubMed  PubMed Central  Google Scholar 

  • Shevchenko A, Jensen ON, Podtelejnikov AV, Sagliocco F, Wilm M, Vorm O, Mortensen P, Shevchenko A, Boucherie H, Mann M (1996) Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci 93:14440–14445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shimoda H, Hitoe S, Nakamura S, Matsuda H (2015) Purple tea and its extract suppress diet-induced fat accumulation in mice and human subjects by inhibiting fat absorption and enhancing hepatic carnitine palmitoyltransferase expression. Int J Biomed Sci IJBS 11:67

    PubMed  Google Scholar 

  • Subba P, Barua P, Kumar R, Datta A, Soni KK, Chakraborty S, Chakraborty N (2013) Phosphoproteomic dynamics of chickpea (Cicer arietinum L.) reveals shared and distinct components of dehydration response. J Proteome Res 12:5025–5047

    CAS  PubMed  Google Scholar 

  • Sun W, Cao Z, Li Y, Zhao Y, Zhang H (2007) A simple and effective method for protein subcellular localization using Agrobacterium-mediated transformation of onion epidermal cells. Biologia (Bratisl) 62:529–532

    CAS  Google Scholar 

  • Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M (2014) STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452

    PubMed  PubMed Central  Google Scholar 

  • Takac T, Pechan T, Samaj J (2011) Differential proteomics of plant development. J Proteomics 74:577–588

    CAS  PubMed  Google Scholar 

  • Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54:733–749

    CAS  PubMed  Google Scholar 

  • Tianjiao L, Shuai W, Xiansheng M, Yongrui B, Shanshan G, Bo L, Lu C, Lei W, Xiaorong R (2014) Metabolomics coupled with multivariate data and pathway analysis on potential biomarkers in gastric ulcer and intervention effects of Corydalis yanhusuo alkaloid. PLoS One 9:e82499

    PubMed  PubMed Central  Google Scholar 

  • Tomaz T, Bagard M, Pracharoenwattana I, Linden P, Lee CP, Carroll AJ, Stroher E, Smith SM, Gardestrom P, Millar AH (2010) Mitochondrial malate dehydrogenase lowers leaf respiration and alters photorespiration and plant growth in Arabidopsis. Plant Physiol 154:1143–1157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SM, Lue WL, Eimert K, Chen J (1996) Phytohormone-regulated β-amylase gene expression in rice. Plant Mol Biol 31:975–982

    CAS  PubMed  Google Scholar 

  • Wang X, Li W, Li M, Welti R (2006) Profiling lipid changes in plant response to low temperatures. Physiol Plant 126:90–96

    CAS  Google Scholar 

  • Wang H, Fan W, Li H, Yang J, Huang J, Zhang P (2013) Functional characterization of dihydroflavonol-4-reductase in anthocyanin biosynthesis of purple sweet potato underlies the direct evidence of anthocyanins function against abiotic stresses. PLoS One 8:e78484

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Xu M, Wang W, Galili G (2017a) Fortifying horticultural crops with essential amino acids: a review. Int J Mol Sci 18:1306

    PubMed Central  Google Scholar 

  • Wang L, Pan D, Liang M, Abubakar YS, Li J, Lin J, Chen S, Chen W (2017b) Regulation of anthocyanin biosynthesis in purple leaves of zijuan tea (Camellia sinensis var. kitamura). Int J Mol Sci 18:833

    PubMed Central  Google Scholar 

  • Wang Y, Fan K, Wang J, Ding ZT, Wang H, Bi CH, Zhang WY, Sun HW (2017c) Proteomic analysis of Camellia sinensis (L.) reveals a synergistic network in the response to drought stress and recovery. J Plant Physiol 219:91–99

    CAS  PubMed  Google Scholar 

  • Weiss D, van Blokland R, Kooter JM, Mol JN, van Tunen AJ (1992) Gibberellic acid regulates chalcone synthase gene transcription in the corolla of Petunia hybrida. Plant Physiol 98:191–197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu ZG, Jiang W, Chen SL, Mantri N, Tao ZM, Jiang CX (2016) Insights from the cold transcriptome and metabolome of Dendrobium officinale: global reprogramming of metabolic and gene regulation networks during cold acclimation. Front Plant Sci 7:1653

    PubMed  PubMed Central  Google Scholar 

  • Xiang C, Werner BL, E’Lise MC, Oliver DJ (2001) The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126:564–574

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YJ, Gan RY, Li S, Zhou Y, Li AN, Xu DP, Li HB (2015) Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 20:21138–21156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Abrahan C, Colquhoun TA, Liu CJ (2017) A proteolytic regulator controlling chalcone synthase stability and flavonoid biosynthesis in Arabidopsis. Plant Cell 29:1157–1174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Chen Z, Lee J, Li X, Sun W (2017) Proteomic analysis of tea plants (Camellia sinensis) with purple young shoots during leaf development. PLoS One 12:e0177816

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Council of Scientific and Industrial Research project (MLP0201—Biotechnological interventions for sustainable bio-economy generation through characterization, conservation, prospection, and utilization of Himalayan bioresources). We thanks to the Director of CSIR-IHBT for providing the research infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajiv Kumar.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumari, M., Thakur, S., Kumar, A. et al. Regulation of color transition in purple tea (Camellia sinensis). Planta 251, 35 (2020). https://doi.org/10.1007/s00425-019-03328-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-019-03328-7

Keywords

  • Leaf
  • Proteomics
  • Metabolomics
  • Secondary metabolism