Skip to main content
Log in

Expression of stilbene synthase VqSTS6 from wild Chinese Vitis quinquangularis in grapevine enhances resveratrol production and powdery mildew resistance

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

In grape ( Vitis ), stilbene phytoalexins can either be in situ synthesized or transported to the site of response during powdery mildew infection, enhancing disease resistance.

Abstract

Resveratrol is a phytoprotective stilbenoid compound that is synthesized by stilbene synthase (STS) in response to biotic and abiotic stresses, and is also known to have health benefits in the human diet. We have previously shown that transgenic Vitis vinifera cv. Thompson Seedless plants overexpressing a stilbene synthase gene, VqSTS6, from wild Chinese Vitis quinquangularis had a higher stilbenoid content, leading to an enhanced resistance to powdery mildew (Uncinula necator (Schw.) Burr). However, the biosynthesis and transportation in the plant tissue under powdery mildew infection are still unclear. Here, inhibitor and micro-grafting technologies were used to study the accumulation of resveratrol following powdery mildew infection. We observed that the levels of STS expression and stilbenoids increased in response to powdery mildew infection. Powdery mildew and inhibitor treatment on detached grape branches showed that resveratrol was in situ synthesized. Experiments with grafted plantlets showed that the abundance of stilbenoid compounds increased in the shoot during VqSTS6 overexpression in the root, while VqSTS6-Flag fusion was not tranported to the scions and only expressed in the transgenic rootstocks. Compared with wild-type Thompson Seedless plants, the non-transgenic/VqSTS6 transgenic (scion/rootstock) grafted Thompson Seedless plantlets exhibited increased resistance to powdery mildew. In addition, overexpression of VqSTS6 in roots led to increased levels of stilbenoid compounds in five other European grape varieties (V. vinifera cvs. Chardonnay, Perlette, Cabernet Sauvignon, Riesling and Muscat Hamburg). In conclusion, stilbenoid compounds can be either in situ synthesized or transported to the site of powdery mildew infection, and overexpression of VqSTS6 in the root promotes stilbenoids accumulation and disease resistance in European grapevine varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

STS:

Stilbene synthase

HPLC:

High-performance liquid chromatography

MDCA:

3,4-Methylenedioxycinnamic acid

4CL:

Hydroxycinnamate CoA-ligase

dpi:

Days post-inoculation

DW:

Dry weight

References

  • Adie BA, Pérezpérez J, Pérezpérez MM, Godoy M, Sánchezserrano JJ, Schmelz EA, Solano R (2007) ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 19(5):1665–1681

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alleweldt G, Possingham JV (1988) Progress in grapevine breeding. Theor Appl Genet 75(5):669–673

    Google Scholar 

  • Ayuso P, Pena IA (1978) Shoot apex (meristem) grafting: A new and promising technique for the regeneration of virus infected grapevines, vol 18. The National Institute for Agricultural and Food Research and Technology (INIA), Madrid, pp 319–324  

    Google Scholar 

  • Brown MV, Moore JN, Fenn P, Mcnew RW (1999) Evaluation of grape germplasm for downy mildew resistance. Fruit Var J 53(1):22–29

    Google Scholar 

  • Chen A, Komives EA, Schroeder JI (2006) An improved grafting technique for mature Arabidopsis plants demonstrates long-distance shoot-to-root transport of phytochelatins in Arabidopsis. Plant Physiol 141(1):108–120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng S, Xie X, Xu Y, Zhang C, Wang X, Zhang J, Wang Y (2016) Genetic transformation of a fruit-specific, highly expressed stilbene synthase gene from Chinese wild Vitis quinquangularis. Planta 243(4):1041–1053

    CAS  PubMed  Google Scholar 

  • Christine KY, Lam CN, Springob K, Schmidt J, Chu IK, Lo C (2006) Constitutive accumulation of cis-piceid in transgenic arabidopsis overexpressing a sorghum stilbene synthase gene. Plant Cell Physiol 47(7):1017–1021

    Google Scholar 

  • Coutos-Thévenot P, Poinssot B, Bonomelli A, Yean H, Breda C, Buffard D, Esnault R, Hain R, Boulay M (2001) In vitro tolerance to Botrytis cinerea of grapevine 41B rootstock in transgenic plants expressing the stilbene synthase Vst1 gene under the control of a pathogen-inducible PR10 promoter. J Exp Bot 52(358):901

    PubMed  Google Scholar 

  • Dai L, Zhou Q, Li R, Du Y, He J, Wang D, Cheng S, Zhang J, Wang Y (2015) Establishment of a picloram-induced somatic embryogenesis system in Vitis vinifera cv. chardonnay and genetic transformation of a stilbene synthase gene from wild-growing Vitis species. Plant Cell Tissue Organ Cult 121(2):397–412

    CAS  Google Scholar 

  • Duan D, Halter D, Baltenweck R, Tisch C, Tröster V, Kortekamp A, Hugueney P, Nick P (2015) Genetic diversity of stilbene metabolism in Vitis sylvestris. J Exp Bot 66(11):3243–3257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dubrovina AS, Kiselev KV (2017) Regulation of stilbene biosynthesis in plants. Planta 246(4):597–623

    CAS  PubMed  Google Scholar 

  • Flamini R, Zanzotto A, Rosso M, Lucchetta G, Vedova A, Bavaresco L (2016) Stilbene oligomer phytoalexins in grape as a response to A. carbonarius infection. Physiol Mol Plant Pathol 93:112–118

    CAS  Google Scholar 

  • Funk C, Brodelius PE (1990) Phenylpropanoid metabolism in suspension cultures of Vanilla planifolia Andr.: II. Effects of precursor feeding and metabolic inhibitors. Plant Physiol 94(1):102

    CAS  PubMed  PubMed Central  Google Scholar 

  • García-Andrade J, Ramírez V, Flors V, Vera P (2011) Arabidopsis ocp3 mutant reveals a mechanism linking ABA and JA to pathogen-induced callose deposition. Plant J 67(5):783–794

    PubMed  Google Scholar 

  • Hain R, Bieseler B, Kindl H, Schröder G, Stöcker R (1990) Expression of a stilbene synthase gene in Nicotiana tabacum results in synthesis of the phytoalexin resveratrol. Plant Mol Biol 15(2):325

    CAS  PubMed  Google Scholar 

  • Hain R, Reif HJ, Krause E, Langebartels R, Kindl H, Vornam B, Wiese W, Schmelzer E, Schreier PH, Stöcker RH (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361(6408):153–156

    CAS  PubMed  Google Scholar 

  • Hall D, Luca VD (2007) Mesocarp localization of a bifunctional resveratrol/hydrocinnamic acid glucosyltransferase of Concord grape (Vitis labrusca). Plant J 49(4):579–591

    CAS  PubMed  Google Scholar 

  • Hamiduzzaman MM, Jakab G, Barnavon L, Neuhaus JM, Mauch-Mani B (2005) Beta-Aminobutyric acid-induced resistance against downy mildew in grapevine acts through the potentiation of callose formation and jasmonic acid signaling. Mol Plant Microbe Interact 18(8):819–829

    CAS  PubMed  Google Scholar 

  • Hao Y, Bo Y, Jing S, Jia P, Zhang Z, Yan X, Chai J, Ren Z, Zheng G, Liu H (2012) Graft-union development: a delicate process that involves cell–cell communication between scion and stock for local auxin accumulation. J Exp Bot 63(11):4219

    Google Scholar 

  • Hao XY, Bi WL, Cui ZH, Pan C, Xu Y, Wang QC (2017) Development, histological observations and Grapevine leafroll-associated virus-3 localisation in in vitro grapevine micrografts. Ann Appl Biol 170(3):379–390

    CAS  Google Scholar 

  • He PC (1991) The study on the disease—resistance of Vitis wild species originated in China. Sci Agric Sin 24(3):50–56

    Google Scholar 

  • Höll J, Vannozzi A, Czemmel S, D’Onofrio C, Walker AR, Rausch T, Lucchin M, Boss PK, Dry IB, Bogs J (2013) The R2R3-MYB transcription factors MYB14 and MYB15 regulate stilbene biosynthesis in Vitis vinifera. Plant Cell 25(10):4135

    PubMed  PubMed Central  Google Scholar 

  • Huang SC, Millikan DF (1980) In vitro micrografting of apple shoot tips. HortScience 15(6):741–743

    Google Scholar 

  • Isabella N, Antonella DR, Giovanna G, Danilo C (2007) Identification and quantification of stilbenes in fruits of transgenic tomato plants (Lycopersicon esculentum Mill.) by reversed phase HPLC with photodiode array and mass spectrometry detection. J Agric Food Chem 55(9):3304–3311

    Google Scholar 

  • Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CWW, Fong HHS, Farnsworth NR, Kinghorn AD, Mehta RG (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275(5297):218–220

    CAS  PubMed  Google Scholar 

  • Jing H, Dan W, Zhang J, Wang Y (2016) Functional analysis of the fruit-specific promoter of VqSTS6 from the Chinese wild grape, Vitis quinquangularis. Agric Gene 1:38–45

    Google Scholar 

  • Jonard R, Hugard J, Macheix JJ, Martinez J, Mosella-Chancel L, Poessel JL, Villemur P (1983) In vitro micrografting and its applications to fruit science. Sci Hortic 20(2):147–159

    Google Scholar 

  • Katoh N, Yui M, Sato S, Shirai T, Yuasa H, Hagimori M (2004) Production of virus-free plants from virus-infected sweet pepper by in vitro grafting. Sci Hortic 100(1–4):1–6

    Google Scholar 

  • Ke S, Cai Q, Skirvin RM (1993) Micrografting speeds growth and fruiting of protoplast-derived clones of kiwifruit (Actinidia deliciosa). J Pomol Hortic Sci 68(6):837–840

    Google Scholar 

  • Ke T, Zhan JC, Yang HR, Huang WD (2010) Changes of resveratrol and antioxidant enzymes during UV-induced plant defense response in peanut seedlings. J Plant Physiol 167(2):95–102

    Google Scholar 

  • Kim CS, Lee CH, Park HS, Lee GP (2015) In vitro grafting of grape with phylloxera resistant rootstock cultivars. Vitis Geilweilerhof 44(4):195–196

    Google Scholar 

  • Kiselev KV, Aleynova OA, Grigorchuk VP, Dubrovina AS (2016) Stilbene accumulation and expression of stilbene biosynthesis pathway genes in wild grapevine Vitis amurensis Rupr. Planta 245(1):1–9

    Google Scholar 

  • Lambert C, Richard T, Renouf E, Bisson J, Waffo Téguo P, Bordenave L, Ollat N, Mérillon J-M, Cluzet S (2013) Comparative analyses of stilbenoids in canes of major Vitis vinifera L. cultivars. J Agric Food Chem 61(47):11392–11399

    CAS  PubMed  Google Scholar 

  • Langcake P, Mccarthy WV (1979) The relationship between resveratrol production to infection of grapevine leaves by Botrytis cinerea. Vitis 18:244–253

    CAS  Google Scholar 

  • Langcake P, Pryce RJ (1977) The production of resveratrol and the viniferins by grapevines in response to ultraviolet irradiation. Phytochemistry 16(8):1193–1196

    CAS  Google Scholar 

  • Li SH, Nagy NE, Hammerbacher A, Krokene P, Niu XM, Gershenzon J, Schneider B (2012) Localization of phenolics in phloem parenchyma cells of Norway spruce (Picea abies). ChemBioChem 13(18):2707–2713

    CAS  PubMed  Google Scholar 

  • Ma F, Wang L, Wang Y (2018) Ectopic expression of VpSTS29, a stilbene synthase gene from Vitis pseudoreticulata, indicates STS presence in cytosolic oil bodies. Planta 248(11):89

    CAS  PubMed  Google Scholar 

  • Ma F, Yao W, Wang L, Wang Y (2019) Dynamic translocation of stilbene synthase VpSTS29 from a Chinese wild Vitis species upon UV irradiation. Phytochemistry 159:137–147

    CAS  PubMed  Google Scholar 

  • Micali C, Göllner K, Humphry M, Consonni C, Panstruga R (2008) The powdery mildew disease of arabidopsis: a paradigm for the interaction between plants and biotrophic fungi. Arabidopsis Book 6:e0115

    PubMed  PubMed Central  Google Scholar 

  • Moussa C, Hebron M, Huang X, Ahn J, Rissman RA, Aisen PS, Turner RS (2017) Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J Neuroinflammation 14(1):1

    PubMed  PubMed Central  Google Scholar 

  • Mullins MG, Bouquet A, Williams LE (1992) Biology of the grapevine. Cambridge University Press, Cambridge

    Google Scholar 

  • Murashige T, Skoog F (1972) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Google Scholar 

  • Murashige T, Bitters WP, Rangan TS, Nauer EM, Roistachek CN, Holliday PB (1972) Atechnique of shoot apex grafting and its utilization towards recovering virus-free citrus clones. HortScience 7:118–119

    Google Scholar 

  • Pezet R, Gindro K, Viret O, Spring JL (2004) Glycosylation and oxidative dimerization of resveratrol are respectively associated to sensitivity and resistance of grapevine cultivars to downy mildew. Physiol Mol Plant Pathol 65(6):297–303

    CAS  Google Scholar 

  • Regev-Shoshani G, Shoseyov O, Bilkis I, Kerem Z (2003) Glycosylation of resveratrol protects it from enzymic oxidation. Biochem J 374(Pt 1):157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rivière C, Pawlus AD, Mérillon JM (2012) Natural stilbenoids: distribution in the plant kingdom and chemotaxonomic interest in Vitaceae. Nat Prod Rep 29(11):1317–1333

    PubMed  Google Scholar 

  • Romeropérez AI, Lamuelaraventós RM, Andréslacueva C, Mc TB (2001) Method for the quantitative extraction of resveratrol and piceid isomers in grape berry skins. Effect of powdery mildew on the stilbene content. J Agric Food Chem 49(1):210–215

    Google Scholar 

  • Schnee S, Viret O, Gindro K (2008) Role of stilbenes in the resistance of grapevine to powdery mildew. Physiol Mol Plant Pathol 72:128–133

    CAS  Google Scholar 

  • Shi J, He M, Cao J, Wang H, Ding J, Jiao Y, Li R, He J, Wang D, Wang Y (2013) The comparative analysis of the potential relationship between resveratrol and stilbene synthase gene family in the development stages of grapes (Vitis quinquangularis and Vitis vinifera). Plant Physiol Biochem 74:24–32

    PubMed  Google Scholar 

  • Sircar D, Mitra A (2009) Accumulation of p-hydroxybenzoic acid in hairy roots of Daucus carota 2: confirming biosynthetic steps through feeding of inhibitors and precursors. J Plant Physiol 166(13):1370–1380

    CAS  PubMed  Google Scholar 

  • Starklorenzen P, Nelke B, Hänßler G, Mühlbach HP, Thomzik JE (1997) Transfer of a grapevine stilbene synthase gene to rice (Oryza sativa L.). Plant Cell Rep 16(10):668–673

    CAS  Google Scholar 

  • Susanne R, Dieter T, Steffi F, Karlis BA, Szankowski I (2006) Piceid (resveratrol glucoside) synthesis in stilbene synthase transgenic apple fruit. J Agric Food Chem 54(13):4633–4640

    Google Scholar 

  • Tanne E, Shlamovitz N, Spiegelroy P (1993) Rapidly diagnosing grapevine corky-bark by in vitro micrografting. Hortscience Publ Am Soc Hortic Sci 28(6):667–668

    Google Scholar 

  • Turnbull CGN, Booker JP, Leyser HMO (2002) Micrografting techniques for testing long-distance signalling in Arabidopsis. Plant J 32(2):255–262

    CAS  PubMed  Google Scholar 

  • Wang Y, Liu Y, He P, Chen J, Lamikanra O, Lu J (1995) Evaluation of foliar resistance to Uncinula necator in Chinese wild Vitis species. Vitis 34:159–164

    Google Scholar 

  • Wang W, Tang K, Yang HR, Wen PF, Zhang P, Wang HL, Huang WD (2010) Distribution of resveratrol and stilbene synthase in young grape plants (Vitis vinifera L. cv. Cabernet Sauvignon) and the effect of UV-C on its accumulation. Plant Physiol Biochem 48(2):142–152

    CAS  PubMed  Google Scholar 

  • Xu W, Ma F, Li R, Zhou Q, Yao W, Jiao Y, Zhang C, Zhang J, Wang X (2019) VpSTS29/STS2 enhances fungal tolerance in grapevine through a positive feedback loop. Plant Cell Environ. https://doi.org/10.1111/pce.13600

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang L, Qin L, Liu G, Peremyslov VV, Dolja VV, Wei Y (2014) Myosins XI modulate host cellular responses and penetration resistance to fungal pathogens. Proc Natl Acad Sci USA 111(38):13996–14001

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Mao L, Jittayasothorn Y, Kang Y, Jiao C, Fei Z, Zhong GY (2015) Messenger RNA exchange between scions and rootstocks in grafted grapevines. BMC Plant Biol 15(1):251

    PubMed  PubMed Central  Google Scholar 

  • Zhang H, Yu P, Zhao J, Jiang H, Wang H, Zhu Y, Botella MA, Šamaj J, Li C, Lin J (2018) Expression of tomato prosystemin gene in Arabidopsis reveals systemic translocation of its mRNA and confers necrotrophic fungal resistance. New Phytol 217(2):799–812

    CAS  PubMed  Google Scholar 

  • Zhou Q, Du Y, Cheng S, Li R, Zhang J, Wang Y (2015) Resveratrol derivatives in four tissues of six wild Chinese grapevine species. N Z J Crop Hortic Sci 43(3):204–213

    CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out in the State Key Laboratory of Crop Stress Biology in Arid Areas at Northwest A&F University and the Key Laboratory of Horticultural Plant Germplasm Resource Utilization in Northwest China. The research was performed with Grants from the National Natural Science Foundation of China (Grant No. 31672129). We specifically thank Professor Jocelyn Rose of Plant Scribe (www.plantscribe.com) for careful editing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuejin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 12489 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Ma, F., Wu, F. et al. Expression of stilbene synthase VqSTS6 from wild Chinese Vitis quinquangularis in grapevine enhances resveratrol production and powdery mildew resistance. Planta 250, 1997–2007 (2019). https://doi.org/10.1007/s00425-019-03276-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-019-03276-2

Keywords

Navigation