Skip to main content
Log in

Kinase activity-dependent stability of calcium/calmodulin-dependent protein kinase of Lotus japonicus

  • Short Communication
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Accumulation of calcium/calmodulin-dependent protein kinase (CCaMK) in root cell nucleus depends on its kinase activity but not on nuclear symbiotic components crucial for nodulation.

Abstract

Plant calcium/calmodulin-dependent protein kinase (CCaMK) is a key regulator of symbioses with rhizobia and arbuscular mycorrhizal fungi as it decodes symbiotic calcium signals induced by microsymbionts. CCaMK is expressed mainly in root cells and localizes to the nucleus, where microsymbiont-triggered calcium oscillations occur. The molecular mechanisms that control CCaMK localization are unknown. Here, we analyzed the expression and subcellular localization of mutated CCaMK in the roots of Lotus japonicus and found a clear relation between CCaMK kinase activity and its stability. Kinase-defective CCaMK variants showed lower protein levels than the variants with kinase activity. The levels of transcripts driven by the CaMV 35S promoter were similar among the variants, indicating that stability of CCaMK is regulated post-translationally. We also demonstrated that CCaMK localized to the root cell nucleus in several symbiotic mutants, including cyclops, an interaction partner and phosphorylation target of CCaMK. Our results suggest that kinase activity of CCaMK is required not only for the activation of downstream symbiotic components but also for its stability in root cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

CaMBD:

CaM-binding domain

CCaMK:

Ca2+/calmodulin (CaM)-dependent protein kinase

RFP:

Red fluorescent protein

References

  • Ané JM, Kiss GB, Riely BK et al (2004) Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science 303:1364–1367

    Article  Google Scholar 

  • Banba M, Gutjahr C, Miyao A, Hirochika H, Paszkowski U, Kouchi H, Imaizumi-Anraku H (2008) Divergence of evolutionary ways among common sym genes: CASTOR and CCaMK show functional conservation between two symbiosis systems and constitute the root of a common signaling pathway. Plant Cell Physiol 49:1659–1671

    Article  CAS  Google Scholar 

  • Díaz CL, Grønlund M, Schlaman HRM, Spaink HP (2005) Induction of hairy roots for symbiotic gene expression studies. In: Márquez AJ, Stougaard J, Udvardi M et al (eds) Lotus japonicus handbook. Springer, Netherlands, pp 261–277

    Chapter  Google Scholar 

  • Endre G, Kereszt A, Kevei Z, Mihacea S, Kalo P, Kiss GB (2002) A receptor kinase gene regulating symbiotic nodule development. Nature 417:962–966

    Article  CAS  Google Scholar 

  • Genre A, Chabaud M, Balzergue C, Puech-Pagès V, Novero M, Rey T, Fournier J, Rochange S, Bécard G, Bonfante P, Barker DG (2013) Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone. New Phytol 198:190–202

    Article  Google Scholar 

  • Gleason C, Chaudhuri S, Yang T et al (2006) Nodulation independent of rhizobia induced by a calcium-activated kinase lacking autoinhibition. Nature 441:1149–1152

    Article  CAS  Google Scholar 

  • Groth M, Takeda N, Perry J et al (2010) NENA, a Lotus japonicus homolog of Sec13, is required for rhizodermal infection by arbuscular mycorrhiza fungi and rhizobia but dispensable for cortical endosymbiotic development. Plant Cell 22:2509–2526

    Article  CAS  Google Scholar 

  • Horváth B, Yeun LH, Domonkos A, Halász G, Gobbato E, Ayaydin F, Miró K, Hirsch S, Sun J, Tadege M, Ratet P, Mysore KS, Ané JM, Oldroyd GE, Kaló P (2011) Medicago truncatula IPD3 is a member of the common symbiotic signaling pathway required for rhizobial and mycorrhizal symbioses. Mol Plant Microbe Interact 24:1345–1358

    Article  Google Scholar 

  • Imaizumi-Anraku H, Takeda N, Charpentier M et al (2005) Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature 433:527–531

    Article  CAS  Google Scholar 

  • Jentsch S, Pyrowolakis G (2000) Ubiquitin and its kin: how close are the family ties? Trends Cell Biol 10:335–342

    Article  CAS  Google Scholar 

  • Jin Y, Chen Z, Yang J, Mysore KS, Wen J, Huang J, Yu N, Wang E (2018) IPD3 and IPD3L function redundantly in rhizobial and mycorrhizal symbioses. Front Plant Sci 9:267

    Article  Google Scholar 

  • Kanamori N, Madsen LH, Radutoiu S et al (2006) A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proc Natl Acad Sci USA 103:359–364

    Article  CAS  Google Scholar 

  • Kang BS, French OG, Sando JJ, Hahn CS (2000) Activation-dependent degradation of protein kinase C eta. Oncogene 19:4263–4272

    Article  CAS  Google Scholar 

  • Kang H, Zhu H, Chu X, Yang Z, Yuan S, Yu D, Wang C, Hong Z, Zhang Z (2011) A novel interaction between CCaMK and a protein containing the Scythe_N ubiquitin-like domain in Lotus japonicus. Plant Physiol 155:1312–1324

    Article  CAS  Google Scholar 

  • Karimi M, Inzé D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    Article  CAS  Google Scholar 

  • Lévy J, Bres C, Geurts R et al (2004) A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303:1361–1364

    Article  Google Scholar 

  • Liao J, Singh S, Hossain MS et al (2012) Negative regulation of CCaMK is essential for symbiotic infection. Plant J 72:572–584

    Article  CAS  Google Scholar 

  • Limpens E, van Zeijl, Geurts R (2015) Lipochitooligosaccharides modulate plant host immunity to enable endosymbioses. Annu Rev Phytopathol 53:311–334

    Article  CAS  Google Scholar 

  • Maillet F, Poinsot V, André O et al (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–63

    Article  CAS  Google Scholar 

  • Messinese E, Mun JH, Yeun LH et al (2007) A novel nuclear protein interacts with the symbiotic DMI3 calcium- and calmodulin-dependent protein kinase of Medicago truncatula. Mol Plant Microbe Interact 20:912–921

    Article  CAS  Google Scholar 

  • Miller JB, Pratap A, Miyahara A, Zhou L, Bornemann S, Morris RJ, Oldroyd GE (2013) Calcium/calmodulin-dependent protein kinase is negatively and positively regulated by calcium, providing a mechanism for decoding calcium responses during symbiosis signaling. Plant Cell 25:5053–5066

    Article  CAS  Google Scholar 

  • Miwa H, Sun J, Oldroyd GE, Downie JA (2006) Analysis of Nod-factor-induced calcium signaling in root hairs of symbiotically defective mutants of Lotus japonicus. Mol Plant Microbe Interact 19:914–923

    Article  CAS  Google Scholar 

  • Murray J, Karas B, Ross L et al (2006) Genetic suppressors of the Lotus japonicus har1-1 hypernodulation phenotype. Mol Plant Microbe Interact 19:1082–1091

    Article  CAS  Google Scholar 

  • Ovchinnikova E, Journet EP, Chabaud M, Cosson V, Ratet P, Duc G, Fedorova E, Liu W, den Camp RO, Zhukov V, Tikhonovich I, Borisov A, Bisseling T, Limpens E (2011) IPD3 controls the formation of nitrogen-fixing symbiosomes in pea and Medicago Spp. Mol Plant Microbe Interact 24:1333–1344

    Article  CAS  Google Scholar 

  • Pfeiffer A, Nagel MK, Popp C et al (2012) Interaction with plant transcription factors can mediate nuclear import of phytochrome B. Proc Natl Acad Sci USA 109:5892–5897

    Article  CAS  Google Scholar 

  • Saito K, Yoshikawa M, Yano K et al (2007) NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus. Plant Cell 19:610–624

    Article  CAS  Google Scholar 

  • Sakagami H, Kamata A, Nishimura H et al (2005) Prominent expression and activity-dependent nuclear translocation of Ca2+/calmodulin-dependent protein kinase I delta in hippocampal neurons. Eur J Neurosci 22:2697–2707

    Article  Google Scholar 

  • Shimoda Y, Shinpo S, Kohara M, Nakamura Y, Tabata S, Sato S (2008) A large scale analysis of protein-protein interactions in the nitrogen-fixing bacterium Mesorhizobium loti. DNA Res 15:13–23

    Article  CAS  Google Scholar 

  • Shimoda Y, Han L, Yamazaki T, Suzuki R, Hayashi M, Imaizumi-Anraku H (2012) Rhizobial and fungal symbioses show different requirements for calmodulin binding to calcium calmodulin-dependent protein kinase in Lotus japonicus. Plant Cell 24:304–321

    Article  CAS  Google Scholar 

  • Sinharoy S, DasGupta M (2009) RNA interference highlights the role of CCaMK in dissemination of endosymbionts in the Aeschynomeneae legume Arachis. Mol Plant Microbe Interact 22:1466–1475

    Article  CAS  Google Scholar 

  • Smit P, Raedts J, Portyanko V, Debellé F, Gough C, Bisseling T, Geurts R (2005) NSP1 of the GRAS protein family is essential for rhizobial Nod factor-induced transcription. Science 308:1789–1791

    Article  CAS  Google Scholar 

  • Stracke S, Kistner C, Yoshida S et al (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417:959–962

    Article  CAS  Google Scholar 

  • Sun J, Miller JB, Granqvist E, Wiley-Kalil A, Gobbato E, Maillet F, Cottaz S, Samain E, Venkateshwaran M, Fort S, Morris RJ, Ané JM, Dénarié J, Oldroyd GE (2015) Activation of symbiosis signaling by arbuscular mycorrhizal fungi in legumes and rice. Plant Cell 27:823–838

    Article  CAS  Google Scholar 

  • Takeda N, Maekawa T, Hayashi M (2012) Nuclear-localized and deregulated calcium- and calmodulin-dependent protein kinase activates rhizobial and mycorrhizal responses in Lotus japonicus. Plant Cell 24:810–822

    Article  CAS  Google Scholar 

  • Tirichine L, Imaizumi-Anraku H, Yoshida S et al (2006) Deregulation of a Ca2+/calmodulin-dependent kinase leads to spontaneous nodule development. Nature 441:1153–1156

    Article  CAS  Google Scholar 

  • Withers J, Yao J, Mecey C, Howe GA, Melotto M, He SY (2012) Transcription factor-dependent nuclear localization of a transcriptional repressor in jasmonate hormone signaling. Proc Natl Acad Sci USA 109:20148–20153

    Article  CAS  Google Scholar 

  • Yano K, Yoshida S, Müller J et al (2008) CYCLOPS, a mediator of symbiotic intracellular accommodation. Proc Natl Acad Sci USA 105:20540–20545

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Agriculture and Food Research Organization of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshikazu Shimoda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2019_3264_MOESM1_ESM.pdf

Supplementary material 1 Subcellular localization of kinase-defective and EF-hand deletion CCaMKs. a Images of CCaMK localization taken under longer exposure time than that in Figs. 1 and 3. Merge, merged images of RFP fluorescence and bright field. Scale bars = 50 μm. b Ratio of signal intensity in the nucleus and cytosol in WT, kinase-defective, and EF-hand deletion CCaMKs. Signal intensity was measured under the short (black bar) and long exposure time (white bar) because the signal intensity of WT CCaMK in the nucleus was saturated under the long exposure. The inset is an image of signal intensity measurement by ZEN software. Circular and square dashed lines represent the central area of the nucleus and cytosol where the signal intensity was measured, respectively. Bars represent the means with standard error. Different letters indicate significant difference (Tukey–Kramer multiple comparison test, P < 0.05). n indicates the number of cells analyzed (PDF 651 kb)

425_2019_3264_MOESM2_ESM.pdf

Supplementary material 2 Nuclear localization of CCaMK in the symbiotic mutants and its interaction with CYCLOPS. a Nuclear localization of red fluorescent protein (RFP)-fused wild-type CCaMK in the roots of symbiotic mutants. Merge, merged images of RFP fluorescence and bright field. Nuclear localization of wild-type CCaMK was observed in all analyzed symbiotic mutants. Scale bars = 50 μm. b Yeast two-hybrid analysis showing the interaction between CCaMK and CYCLOPS. CYCLOPS Q107stop and W371stop are the truncated CYCLOPS which correspond the cyclops-4 and cyclops-3 mutations, respectively. Yeast growths on the selection mediums (SD-LWH and SD-ALWH) are shown. Growth on non-selective medium (SD-LW) is shown for successful yeast mating of bait and prey clones. pAS2-1 and pACT2 are the empty vectors for bait and prey clones, respectively (PDF 367 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimoda, Y., Imaizumi-Anraku, H. & Hayashi, M. Kinase activity-dependent stability of calcium/calmodulin-dependent protein kinase of Lotus japonicus. Planta 250, 1773–1779 (2019). https://doi.org/10.1007/s00425-019-03264-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-019-03264-6

Keywords

Navigation