Skip to main content
Log in

Distribution of cell-wall polysaccharides and proteins during growth of the hemp hypocotyl

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The immuno-ultrastructural investigation localized cell-wall polysaccharides of bast fibers during hemp hypocotyl growth. Moreover, for the first time, the localization of a peroxidase and laccase is provided in textile hemp.

Abstract

In the hypocotyl of textile hemp, elongation and girth increase are separated in time. This organ is therefore ideal for time-course analyses. Here, we follow the ultrastructural rearrangement of cell-wall components during the development of the hemp hypocotyl. An expression analysis of genes involved in the biosynthesis of cellulose, the chief polysaccharide of bast fiber cell walls and xylan, the main hemicellulose of secondary cell walls, is also provided. The analysis shows a higher expression of cellulose and xylan-related genes at 15 and 20 days after sowing, as compared to 9 days. In the young hypocotyl, the cell walls of bast fibers show cellulose microfibrils that are not yet compacted to form a mature G-layer. Crystalline cellulose is detected abundantly in the S1-layer, together with unsubstituted/low-substituted xylan and, to a lesser extent, in the G-layer. The LM5 galactan epitope is confined to the walls of parenchymatic cells. LM6-specific arabinans are detected at the interface between the cytoplasm and the gelatinous cell wall of bast fibers. The class III peroxidase antibody shows localization in the G-layer only at older developmental stages. The laccase antibody shows a distinctive labelling of the G-layer region closest to the S1-layer; the signal becomes more homogeneous as the hypocotyl matures. The data provide important insights on the cell wall distribution of polysaccharide and protein components in bast fibers during the hypocotyl growth of textile hemp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Andeme-Onzighi C, Douchiche O, Driouich A, Morvan C (2005) Composition of flax hypocotyl fibres. J Nat Fibers 2:1–14. https://doi.org/10.1300/J395v02n03_01

    Article  CAS  Google Scholar 

  • Andersen MCF, Boos I, Marcus SE, Kračun SK, Rydahl MG, Willats WGT, Knox JP, Clausen MH (2016) Characterization of the LM5 pectic galactan epitope with synthetic analogues of β-1,4-d-galactotetraose. Carbohydr Res 436:36–40. https://doi.org/10.1016/J.CARRES.2016.10.012

    Article  CAS  PubMed  Google Scholar 

  • Andre CM, Hausman JF, Guerriero G (2016) Cannabis sativa: the plant of the thousand and one molecules. Front Plant Sci 7:19

    Article  Google Scholar 

  • Balasubramanian VK, Rai KM, Thu SW, Hii MM, Mendu V (2016) Genome-wide identification of multifunctional laccase gene family in cotton (Gossypium spp.); expression and biochemical analysis during fiber development. Sci Rep 6:34309

    Article  CAS  Google Scholar 

  • Behr M, Legay S, Zizkova E, Motyka V, Dobrev PI, Hausman JF, Lutts S, Guerriero G (2016) Studying secondary growth and bast fiber development: the hemp hypocotyl peeks behind the wall. Front Plant Sci 7:1733

    Article  Google Scholar 

  • Behr M, Lutts S, Hausman J-F, Guerriero G (2018a) Expression analysis of cell wall-related genes in Cannabis sativa: the “ins and outs” of hemp stem tissue development. Fibers 6:27. https://doi.org/10.3390/fib6020027

    Article  CAS  Google Scholar 

  • Behr M, Sergeant K, Leclercq CC, Planchon S, Guignard C, Lenouvel A, Renaut J, Hausman JF, Lutts S, Guerriero G (2018b) Insights into the molecular regulation of monolignol-derived product biosynthesis in the growing hemp hypocotyl. BMC Plant Biol 18:1. https://doi.org/10.1186/s12870-017-1213-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berni R, Luyckx M, Xu X, Legay S, Sergeant K, Hausman J-F, Lutts S, Cai G, Guerriero G (2019) Reactive oxygen species and heavy metal stress in plants: impact on the cell wall and secondary metabolism. Environ Exp Bot 161:98–106. https://doi.org/10.1016/j.envexpbot.2018.10.017

    Article  CAS  Google Scholar 

  • Bhandari S, Fujino T, Thammanagowda S, Zhang D, Xu F, Joshi CP (2006) Xylem-specific and tension stress-responsive coexpression of KORRIGAN endoglucanase and three secondary wall-associated cellulose synthase genes in aspen trees. Planta 224:828–837

    Article  CAS  Google Scholar 

  • Blake AW, McCartney L, Flint JE, Bolam DN, Boraston AB, Gilbert HJ, Knox JP (2006) Understanding the biological rationale for the diversity of cellulose-directed carbohydrate-binding modules in prokaryotic enzymes. J Biol Chem 281:29321–29329. https://doi.org/10.1074/jbc.M605903200

    Article  CAS  PubMed  Google Scholar 

  • Blake AW, Marcus SE, Copeland JE, Blackburn RS, Knox JP (2008) In situ analysis of cell wall polymers associated with phloem fibre cells in stems of hemp, Cannabis sativa L. Planta 228:1–13

    Article  CAS  Google Scholar 

  • Chernova TE, Gur’yanov OP, Brach NB, Pavlov AV, Porokhovinova EA, Kutuzova SN, Chemikosova SB, Gorshkova TA (2007) Variability in the composition of tissue-specific galactan from flax fibers. Russ J Plant Physiol 54:782–789

    Article  CAS  Google Scholar 

  • Chernova TE, Mikshina PV, Salnikov VV, Ibragimova NN, Sautkina OV, Gorshkova TA (2018) Development of distinct cell wall layers both in primary and secondary phloem fibers of hemp (Cannabis sativa L.). Ind Crops Prod 117:97–109

    Article  CAS  Google Scholar 

  • Christiernin M, Ohlsson AB, Berglund T, Henriksson G (2005) Lignin isolated from primary walls of hybrid aspen cell cultures indicates significant differences in lignin structure between primary and secondary cell wall. Plant Physiol Biochem 43:777–785

    Article  CAS  Google Scholar 

  • Crônier D, Monties B, Chabbert B (2005) Structure and chemical composition of bast fibers isolated from developing hemp stem. J Agric Food Chem 53:8279–8289. https://doi.org/10.1021/jf051253k

    Article  CAS  PubMed  Google Scholar 

  • El-Tantawy A-A, Solís M-T, Da Costa ML, Coimbra S, Risueño M-C, Testillano PS (2013) Arabinogalactan protein profiles and distribution patterns during microspore embryogenesis and pollen development in Brassica napus. Plant Reprod 26:231–243. https://doi.org/10.1007/s00497-013-0217-8

    Article  CAS  PubMed  Google Scholar 

  • Fike J (2016) Industrial hemp: renewed opportunities for an ancient crop. CRC Crit Rev Plant Sci 35:406–424

    Article  Google Scholar 

  • Francoz E, Ranocha P, Nguyen-Kim H, Jamet E, Burlat V, Dunand C (2015) Roles of cell wall peroxidases in plant development. Phytochemistry 112:15–21. https://doi.org/10.1016/j.phytochem.2014.07.020

    Article  CAS  PubMed  Google Scholar 

  • Gorshkova T, Morvan C (2006) Secondary cell-wall assembly in flax phloem fibres: role of galactans. Planta 223:149–158

    Article  CAS  Google Scholar 

  • Gorshkova TA, Chemikosova SB, Sal’nikov VV, Pavlencheva NV, Gur’janov OP, Stolle-Smits T, van Dam JEG (2004) Occurrence of cell-specific galactan is coinciding with bast fiber developmental transition in flax. Ind Crops Prod 19:217–224

    Article  CAS  Google Scholar 

  • Gorshkova T, Chernova T, Mokshina N, Ageeva M, Mikshina P (2018) Plant “muscles”: fibers with a tertiary cell wall. New Phytol 218:66–72

    Article  CAS  Google Scholar 

  • Goudenhooft C, Siniscalco D, Arnould O, Bourmaud A, Sire O, Gorshkova T, Baley C, Goudenhooft C, Siniscalco D, Arnould O, Bourmaud A, Sire O, Gorshkova T, Baley C (2018) Investigation of the mechanical properties of flax cell walls during plant development: the relation between performance and cell wall structure. Fibers 6:6. https://doi.org/10.3390/fib6010006

    Article  CAS  Google Scholar 

  • Guerriero G, Sergeant K, Hausman JF (2013) Integrated-omics: a powerful approach to understanding the heterogeneous lignification of fibre crops. Int J Mol Sci 14:10958–10978. https://doi.org/10.3390/ijms140610958

    Article  CAS  PubMed  Google Scholar 

  • Guerriero G, Behr M, Backes A, Faleri C, Hausman JF, Lutts S, Cai G (2017) Bast fibre formation: insights from next-generation sequencing. Procedia Eng 200:229–235. https://doi.org/10.1016/j.proeng.2017.07.033

    Article  Google Scholar 

  • Guo K, Du X, Tu L, Tang W, Wang P, Wang M, Liu Z, Zhang X (2016) Fibre elongation requires normal redox homeostasis modulated by cytosolic ascorbate peroxidase in cotton (Gossypium hirsutum). J ExpBot 67:3289–3301

    CAS  Google Scholar 

  • Gur’janov OP, Gorshkova TA, Kabel M, Schols HA, van Dam JEG (2007) MALDI-TOF MS evidence for the linking of flax bast fibre galactan to rhamnogalacturonan backbone. Carbohydr Polym 67:86–96

    Article  Google Scholar 

  • Hao Z, Mohnen D (2014) A review of xylan and lignin biosynthesis: foundation for studying Arabidopsis irregular xylem mutants with pleiotropic phenotypes. Crit Rev Biochem Mol Biol 49:212–241

    Article  CAS  Google Scholar 

  • Hernandez-Gomez MC, Rydahl MG, Rogowski A, Morland C, Cartmell A, Crouch L, Labourel A, Fontes CMGA, Willats WGT, Gilbert HJ, Knox JP (2015) Recognition of xyloglucan by the crystalline cellulose-binding site of a family 3a carbohydrate-binding module. FEBS Lett 589:2297–2303. https://doi.org/10.1016/j.febslet.2015.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez-Gomez MC, Runavot JL, Meulewaeter F, Knox JP (2017) Developmental features of cotton fibre middle lamellae in relation to cell adhesion and cell detachment in cultivars with distinct fibre qualities. BMC Plant Biol 17:69

    Article  Google Scholar 

  • His I, Andème-Onzighi C, Morvan C, Driouich A (2001) Microscopic studies on mature flax fibers embedded in LR white. J Histochem Cytochem 49:1525–1535. https://doi.org/10.1177/002215540104901206

    Article  CAS  PubMed  Google Scholar 

  • Hobson N, Deyholos MK (2013) Genomic and expression analysis of the flax (Linum usitatissimum) family of glycosyl hydrolase 35 genes. BMC Genom 14:344. https://doi.org/10.1186/1471-2164-14-344

    Article  CAS  Google Scholar 

  • Iwai H, Terao A, Satoh S (2013) Changes in distribution of cell wall polysaccharides in floral and fruit abscission zones during fruit development in tomato (Solanum lycopersicum). J Plant Res 126:427–437

    Article  CAS  Google Scholar 

  • Jones L, Seymour GB, Knox JP (1997) Localization of pectic galactan in tomato cell walls using a monoclonal antibody specific to (1[→]4)-[beta]-d-galactan. Plant Physiol 113:1405–1412. https://doi.org/10.1104/pp.113.4.1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiyoto S, Yoshinaga A, Fernandez-Tendero E, Day A, Chabbert B, Takabe K (2018) Distribution of lignin, hemicellulose, and arabinogalactan protein in hemp phloem fibers. Microsc Microanal 24:442–452. https://doi.org/10.1017/S1431927618012448

    Article  CAS  PubMed  Google Scholar 

  • Le Roy J, Blervacq A-S, Créach A, Huss B, Hawkins S, Neutelings G (2017) Spatial regulation of monolignol biosynthesis and laccase genes control developmental and stress-related lignin in flax. BMC Plant Biol 17:124. https://doi.org/10.1186/s12870-017-1072-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KJD, Sakata Y, Mau S-L, Pettolino F, Bacic A, Quatrano RS, Knight CD, Knox JP (2005) Arabinogalactan proteins are required for apical cell extension in the moss Physcomitrella patens. Plant Cell 17:3051–3065. https://doi.org/10.1105/tpc.105.034413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee C, Teng Q, Zhong R, Ye ZH (2011) The four Arabidopsis REDUCED WALL ACETYLATION genes are expressed in secondary wall-containing cells and required for the acetylation of xylan. Plant Cell Physiol 52:1289–1301

    Article  CAS  Google Scholar 

  • MacMillan CP, Mansfield SD, Stachurski ZH, Evans R, Southerton SG (2010) Fasciclin-like arabinogalactan proteins: specialization for stem biomechanics and cell wall architecture in Arabidopsis and Eucalyptus. Plant J 62:689–703. https://doi.org/10.1111/j.1365-313X.2010.04181.x

    Article  CAS  PubMed  Google Scholar 

  • McCartney L, Marcus SE, Knox JP (2005) Monoclonal antibodies to plant cell wall xylans and arabinoxylans. J Histochem 53:543–546

    CAS  Google Scholar 

  • Mellerowicz EJ, Gorshkova TA (2012) Tensional stress generation in gelatinous fibres: a review and possible mechanism based on cell-wall structure and composition. J Exp Bot 63:551–565. https://doi.org/10.1093/jxb/err339

    Article  CAS  PubMed  Google Scholar 

  • Mikshina P, Chernova T, Chemikosova S, Ibragimova N, Mokshina N, Gorshkova T (2013) Cellulosic fibers: role of matrix polysaccharides in structure and function. In: Van De Ven TGM (ed) Cellulose-fundamental aspects. InTech, Rijeka

    Google Scholar 

  • Mikshina PV, Petrova AA, Gorshkova TA (2015) Functional diversity of rhamnogalacturonans I. Russ Chem Bull 64:1014–1023. https://doi.org/10.1007/s11172-015-0970-y

    Article  CAS  Google Scholar 

  • Mollard A, Joseleau J-P (1994) Acacia senegal cells cultured in suspension secrete a hydroxyproline-deficient arabinogalactan-protein. Plant Physiol Biochem 32:703–709

    CAS  Google Scholar 

  • Nakagawa K, Yoshinaga A, Takabe K (2014) Xylan deposition and lignification in the multi-layered cell walls of phloem fibres in Mallotus japonicus (Euphorbiaceae). Tree Physiol 34:1018–1029. https://doi.org/10.1093/treephys/tpu061

    Article  CAS  PubMed  Google Scholar 

  • Novo-Uzal E, Fernandez-Perez F, Herrero J, Gutierrez J, Gomez-Ros LV, Bernal MA, Diaz J, Cuello J, Pomar F, Pedreno MA (2013) From Zinnia to Arabidopsis: approaching the involvement of peroxidases in lignification. J ExpBot 64:3499–3518

    CAS  Google Scholar 

  • Printz B, Dos Santos Morais R, Wienkoop S, Sergeant K, Lutts S, Hausman J-F, Renaut J (2015) An improved protocol to study the plant cell wall proteome. Front Plant Sci 6:237. https://doi.org/10.3389/fpls.2015.00237

    Article  PubMed  PubMed Central  Google Scholar 

  • Ralet M-C, Tranquet O, Poulain D, Moïse A, Guillon F (2010) Monoclonal antibodies to rhamnogalacturonan I backbone. Planta 231:1373–1383. https://doi.org/10.1007/s00425-010-1116-y

    Article  CAS  PubMed  Google Scholar 

  • Rennie EA, Scheller HV (2014) Xylan biosynthesis. Curr Opin Biotechnol 26:100–107

    Article  CAS  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208

    Article  CAS  Google Scholar 

  • Reza M, Kontturi E, Jääskeläinen AS, Vuorinen T, Ruokolainen J (2015) Transmission electron microscopy for wood and fiber analysis − A review. BioResources 10:6230–6261

    CAS  Google Scholar 

  • Roach MJ, Mokshina NY, Badhan A, Snegireva AV, Hobson N, Deyholos MK, Gorshkova TA (2011) Development of cellulosic secondary walls in flax fibers requires beta-galactosidase. Plant Physiol 156:1351–1363

    Article  CAS  Google Scholar 

  • Ruel K, Nishiyama Y, Joseleau JP (2012) Crystalline and amorphous cellulose in the secondary walls of Arabidopsis. Plant Sci 193:48–61

    Article  Google Scholar 

  • Ruprecht C, Bartetzko MP, Senf D, Dallabernadina P, Boos I, Andersen M, Kotake T, Knox JP, Hahn MG, Clausen M, Pfrengle F (2017) A synthetic glycan microarray enables epitope mapping of plant cell wall glycan-directed antibodies. Plant Physiol 175:1094–1104. https://doi.org/10.1104/pp.17.00737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salnikov VV, Ageeva MV, Gorshkova TA (2008) Homofusion of Golgi secretory vesicles in flax phloem fibers during formation of the gelatinous secondary cell wall. Protoplasma 233:269–273. https://doi.org/10.1007/s00709-008-0011-x

    Article  PubMed  Google Scholar 

  • Sanchez-Rodriguez C, Bauer S, Hematy K, Saxe F, Ibanez AB, Vodermaier V, Konlechner C, Sampathkumar A, Ruggeberg M, Aichinger E, Neumetzler L, Burgert I, Somerville C, Hauser M-T, Persson S (2012) CHITINASE-LIKE1/POM-POM1 and its homolog CTL2 are glucan-interacting proteins important for cellulose biosynthesis in Arabidopsis. Plant Cell 24:589–607. https://doi.org/10.1105/tpc.111.094672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuetz M, Benske A, Smith RA, Watanabe Y, Tobimatsu Y, Ralph J, Demura T, Ellis B, Samuels AL (2014) Laccases direct lignification in the discrete secondary cell wall domains of protoxylem. Plant Physiol 166:798–807

    Article  Google Scholar 

  • Snegireva A, Chernova T, Ageeva M, Lev-Yadun S, Gorshkova T (2015) Intrusive growth of primary and secondary phloem fibres in hemp stem determines fibre-bundle formation and structure. AoB Plants 7:plv061

    Article  Google Scholar 

  • Sorek N, Sorek H, Kijac A, Szemenyei HJ, Bauer S, Hématy K, Wemmer DE, Somerville CR (2015) The Arabidopsis COBRA protein facilitates cellulose crystallization at the plasma membrane. J Biol Chem 290:25274. https://doi.org/10.1074/jbc.A114.607192

    Article  CAS  PubMed Central  Google Scholar 

  • Tenhaken R (2015) Cell wall remodeling under abiotic stress. Front Plant Sci 5:771

    Article  Google Scholar 

  • Willats WGT, Marcus SE, Knox JP (1998) Generation of a monoclonal antibody specific to (1 → 5)-α-l-arabinan. Carbohydr Res 308:149–152. https://doi.org/10.1016/S0008-6215(98)00070-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Aude Corvisy and Laurent Solinhac for technical support.

Funding

The authors acknowledge the Fonds National de la Recherche, Luxembourg (Project CANCAN C13/SR/5774202) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Giampiero Cai or Gea Guerriero.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2019_3245_MOESM1_ESM.docx

Supplementary material 1 Supplementary Document S1 Nucleotide sequences used for the design of qPCR primers targeting CELLULOSE SYNTHASE genes (DOCX 20 kb)

425_2019_3245_MOESM2_ESM.tif

Supplementary material 2 Supplementary Fig. S2 Expression of genes involved in xylan biosynthesis as determined by RNA-Seq (RPKM values for expression). For each gene, different letters correspond to significant differences (Tukey post hoc test). ESK ESKIMO, FRA FRAGILE FIBER, GAUT GALACTURONOSYLTRANSFERASE, GUT Β-1,4-XYLOSYLTRANSFERASE, GUX GLUCURONIC ACID SUBSTITION OF XYLAN, GXM GLUCURONOXYLAN METHYLTRANSFERASE, IRX IRREGULAR XYLEM, RWA REDUCED WALL ACETYLATION (TIFF 703 kb)

425_2019_3245_MOESM3_ESM.tif

Supplementary material 3 Supplementary Fig. S3 (a) Expression of genes involved in cellulose deposition as determined by RNA-Seq (RPKM values for expression). For each gene, different letters correspond to significant differences (Tukey post hoc test). CTL CHITINASE LIKE, COB COBRA, IRX IRREGULAR XYLEM, CESA CELLULOSE SYNTHASE, FLA FASCICLIN-LIKE ARABINOGALACTAN PROTEIN. (b) Expression of genes involved in cellulose deposition as determined by RT-qPCR. For each gene, different letters correspond to significant differences (ANOVA one-way with Tukey’s post hoc test) (TIFF 1872 kb)

425_2019_3245_MOESM4_ESM.tif

Supplementary material 4 Supplementary Fig. S4 Densitometric analysis of immunogold labelling signals. (a) Analysis of the distribution of xylans as shown by the LM10 antibody. (b) Analysis of the crystalline cellulose distribution as shown by the CBM3a probe. (c) Analysis of laccase distribution as shown by the Lac17 antibody. Measurements were performed at the three developmental stages H9, H15, and H20. The signal intensity (ordinate axis) is expressed as a percentage of gray values. The x-axis shows the distance where point 0 indicates the boundary of the primary cell wall (PCW). The thickness of the secondary cell wall layers is indicated. (TIFF 1309 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behr, M., Faleri, C., Hausman, JF. et al. Distribution of cell-wall polysaccharides and proteins during growth of the hemp hypocotyl. Planta 250, 1539–1556 (2019). https://doi.org/10.1007/s00425-019-03245-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-019-03245-9

Keywords

Navigation