Skip to main content

Transcript and metabolic adjustments triggered by drought in Ilex paraguariensis leaves

Abstract

Main conclusion

Abscisic acid is involved in the drought response of Ilex paraguariensis. Acclimation includes root growth stimulation, stomatal closure, osmotic adjustment, photoprotection, and regulation of nonstructural carbohydrates and amino acid metabolisms.

Abstract

Ilex paraguariensis (yerba mate) is cultivated in the subtropical region of South America, where the occurrence of drought episodes limit yield. To explore the mechanisms that allow I. paraguariensis to overcome dehydration, we investigated (1) how gene expression varied between water-stressed and non-stressed plants and (2) in what way the modulation of gene expression was linked to physiological status and metabolite composition. A total of 4920 differentially expressed transcripts were obtained through RNA-Seq after water deprivation. Drought induced the expression of several transcripts involved in the ABA-signalling pathway. Stomatal closure and leaf osmotic adjustments were promoted to minimize water loss, and these responses were accompanied by a high transcriptional remodeling of stress perception, signalling and transcriptional regulation, the photoprotective and antioxidant systems, and other stress-responsive genes. Simultaneously, significant changes in metabolite contents were detected. Glutamine, phenylalanine, isomaltose, fucose, and malate levels were shown to be positively correlated with dehydration. Principal component analysis showed differences in the metabolic profiles of control and stressed leaves. These results provide a comprehensive overview of how I. paraguariensis responds to dehydration at transcriptional and metabolomic levels and provide further characterization of the molecular mechanisms associated with drought response in perennial subtropical species.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

AOX:

Alternative oxidase

DETs:

Differentially expressed transcripts

NCED:

9-cis-epoxycarotenoid dioxygenase

RFOs:

Raffinose family of oligosaccharides

TFs:

Transcription factors

References

  1. Acevedo R, Maiale S, Pessino S, Bottini R, Ruiz O, Sansberro P (2013) A succinate dehydrogenase flavoprotein subunit-like transcript is upregulated in Ilex paraguariensis leaves in response to water deficit and abscisic acid. Plant Physiol Biochem 65:48–54. https://doi.org/10.1016/j.plaphy.2012.12.016

    Article  CAS  PubMed  Google Scholar 

  2. Acevedo R, Ruiz O, Sansberro P (2016) Gene expression changes in response to drought stress in Ilex paraguariensis leaves. Plant Omics J 9:334–343. https://doi.org/10.21475/poj.09.05.16.pne185

    Article  CAS  Google Scholar 

  3. Acevedo R, Avico E, Ruiz O, Sansberro P (2018) Assessment of reference genes for quantitative real-time PCR normalization in Ilex paraguariensis leaves during drought acclimatization. Biol Plant 62:89–96. https://doi.org/10.1007/s10535-017-0754-3

    Article  CAS  Google Scholar 

  4. Adams WW, Demmig-Adams B (2004) Chlorophyll fluorescence as a tool to monitor plant response to the environment. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence. Advances in photosynthesis and respiration, vol 19. Springer, Dordrecht, pp 583–604. https://doi.org/10.1007/978-1-4020-3218-9_22

    Chapter  Google Scholar 

  5. Agudelo-Romero P, Erban A, Rego C, Carbonell-Bejerano P, Nascimento T, Sousa L, Martínez-Zapater JM, Kopka J, Fortes AM (2015) Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea. J Exp Bot 66:1769–1785. https://doi.org/10.1093/jxb/eru517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Araújo WL, Tohge T, Ishizaki K, Leaver CJ, Fernie AR (2011) Protein degradation—an alternative respiratory substrate for stressed plants. Trends Plant Sci 16:489–498. https://doi.org/10.1016/j.tplants.2011.05.008

    CAS  Article  PubMed  Google Scholar 

  7. Augé RM, Duan X, Croker JL, Witte WT, Green CD (1998) Foliar dehydration tolerance of twelve deciduous tree species. J Exp Bot 49:753–759

    Article  Google Scholar 

  8. Barratt DH, Derbyshirea P, Findlaya K, Pikea M, Wellnerb N, Lunnc J, Feilc R, Simpsona C, Maulea AJ, Smith AM (2009) Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase. Proc Natl Acad Sci USA 106:13124–13129. https://doi.org/10.1073/pnas.0900689106

    Article  Google Scholar 

  9. Blum A (2016) Stress, strain, signaling, and adaptation—not just a matter of definition. J Exp Bot 67:563–566. https://doi.org/10.1093/jxb/erv497

    Article  CAS  Google Scholar 

  10. Blum A (2017) Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ 40:4–10. https://doi.org/10.1111/pce.12800

    Article  CAS  PubMed  Google Scholar 

  11. Blum-Silva CH, Chaves VC, Schenkel EP, Coelho GC, Reginatto FH (2015) The influence of leaf age on methylxanthines, total phenolic content, and free radical scavenging capacity of Ilex paraguariensis aqueous extracts. Rev Bras Farmacogn 25:1–6. https://doi.org/10.1016/j.bjp.2015.01.002

    Article  CAS  Google Scholar 

  12. Bracesco N, Sanchez AG, Contreras V, Menini T, Gugliucci A (2011) Recent advances on Ilex paraguariensis research: minireview. J Ethnopharmacol 136:378–384. https://doi.org/10.1016/j.jep.2010.06.032

    Article  CAS  PubMed  Google Scholar 

  13. Caron BO, Schmid D, Balbinot R, Behling A, Eloy E, Elli EF (2016) Efficiency of the use of yerba mate solar radiation in intercropping or monocropping for the accumulation of carbon. Revis Árvore 40:983–990. https://doi.org/10.1590/0100-67622016000600003

    Article  Google Scholar 

  14. Chan ZL (2012) Expression profiling of ABA pathway transcripts indicates crosstalk between abiotic and biotic stress responses in Arabidopsis. Genomics 100:110–115. https://doi.org/10.1016/j.ygeno.2012.06.004

    Article  CAS  PubMed  Google Scholar 

  15. Chandran D, Reinders A, Ward JM (2003) Substrate specificity of the Arabidopsis thaliana sucrose transporter AtSUC2. J Biol Chem 278:44320–44325. https://doi.org/10.1074/jbc.M308490200

    Article  CAS  PubMed  Google Scholar 

  16. Crevillén P, Ballicora MA, Mérida A, Preiss J, Romero JM (2003) The different large subunit isoforms of Arabidopsis thaliana ADP-glucose pyrophosphorylase confer distinct kinetic and regulatory properties to the heterotetrameric enzyme. J Biol Chem 278:28508–28515. https://doi.org/10.1074/jbc.M304280200

    Article  CAS  PubMed  Google Scholar 

  17. Cross J, Von Korff M, Altmann T, Bartzetko L, Sulpice R, Gibon Y, Palacios N, Stitt M (2006) Variation of enzyme activities and metabolite levels in 24 Arabidopsis accessions growing in carbon-limited conditions. Plant Physiol 142:1574–1588. https://doi.org/10.1104/pp.106.086629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cutler S, Rodriguez P, Finkelstein R, Abrams S (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679. https://doi.org/10.1146/annurev-arplant-042809-112122

    Article  CAS  Google Scholar 

  19. Debat HJ, Grabiele M, Aguilera PM, Bubillo RE, Otegui MB, Ducasse DA, Zapata PD, Marti DA (2014) Exploring the genes of yerba mate (Ilex paraguariensis St. Hil.) by NGS and de novo transcriptome assembly. PLoS One 9:e109835. https://doi.org/10.1371/journal.pone.0109835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Doyle EA, Lane AM, Sides JM, Mudgett MB, Monroe JD (2007) An α-amylase (At4g25000) in Arabidopsis leaves is secreted and induced by biotic and abiotic stress. Plant Cell Environ 30:388–398. https://doi.org/10.1111/j.1365-3040.2006.01624.x

    Article  CAS  PubMed  Google Scholar 

  21. Ebert B, Carsten R, Heazlewood JL (2017) GDP-l-fucose transport in plants: the missing piece. Channels 11:8–10. https://doi.org/10.1080/19336950.2016.1222760

    Article  PubMed  Google Scholar 

  22. ElSayed AI, Rafudeen MS, Golldack D (2014) Physiological aspects of raffinose family oligosaccharides in plants: protection against abiotic stress. Plant Biol 16:1–8. https://doi.org/10.1111/plb.12053

    Article  CAS  PubMed  Google Scholar 

  23. Fernie A, Roessner U, Trethewey R, Willmitzer L (2001) The contribution of plastidial phosphoglucomutase to the control of starch synthesis within the potato tuber. Planta 213:418–426. https://doi.org/10.1007/s004250100521

    Article  CAS  PubMed  Google Scholar 

  24. Feys B, Wiermer M, Bhat R, Moisan L, Medina-Escobar N, Neu C, Cabral A, Parker J (2005) Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity. Plant Cell 17:2601–2613. https://doi.org/10.1105/tpc.105.033910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fridlyand L, Backhausen J, Scheibe R (1998) Flux control of the malate valve in leaf cells. Arch Biochem Biophys 349:290–298. https://doi.org/10.1006/abbi.1997.0482

    Article  CAS  PubMed  Google Scholar 

  26. Giberti GC (1995) Ilex en Sudamérica: Florística, sistemática y potencialidades con relación a un banco de germoplasma para la yerba mate. In: Winge H, Ferreira AG, Mariath JEA, Tarasconi LC (eds) Erva-mate: biologia e cultura no cone sul. UFRGS, Porto Alegre, pp 303–312

    Google Scholar 

  27. Gibon Y, Blaesing O, Hannemann J, Carillo P, Höhne M, Hendriks J, Palacios N, Cross J, Selbig J, Stitt M (2004) A robot-based platform to measure multiple enzyme activities in Arabidopsis using a set of cycling assays: comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness. Plant Cell 16:3304–3425. https://doi.org/10.1105/tpc.104.025973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gonzalez S, Clavijo B, Rivarola M, Moreno P, Fernández P, Dopazo J, Paniego N (2017) ATGC transcriptomics: a web-based application to integrate, explore and analyze de novo transcriptomic data. BMC Bioinform 18:121. https://doi.org/10.1186/s12859-017-1494-2

    Article  CAS  Google Scholar 

  29. Granot D, David-Schwartz R, Kelly G (2013) Hexose kinases and their role in sugar-sensing and plant development. Front Plant Sci 4:44. https://doi.org/10.3389/fpls.2013.00044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hamanishi ET, Barchet GLH, Dauwe R, Mansfield SD, Campbell MM (2015) Poplar trees reconfigure the transcriptome and metabolome in response to drought in a genotype- and time-of-day-dependent manner. BMC Genom 16:329. https://doi.org/10.1186/s12864-015-1535-z

    Article  CAS  Google Scholar 

  31. Harfouche A, Meilan R, Altman A (2014) Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement. Tree Physiol 34:1181–1198. https://doi.org/10.1093/treephys/tpu012

    Article  CAS  PubMed  Google Scholar 

  32. Hildebrandt TM, Nunes Nesi A, Araújo Wagner L, Braun H-P (2015) Amino acid catabolism in plants. Mol Plant 8:1563–1579. https://doi.org/10.1016/j.molp.2015.09.005

    Article  CAS  Google Scholar 

  33. Huang T, Jander G (2017) Abscisic acid-regulated protein degradation causes osmotic stress-induced accumulation of branched-chain amino acids in Arabidopsis thaliana. Planta 246:737–747. https://doi.org/10.1007/s00425-017-2727-3

    Article  CAS  PubMed  Google Scholar 

  34. Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333. https://doi.org/10.1046/j.1365-313x.2001.01096.x

    Article  CAS  PubMed  Google Scholar 

  35. Janecek S, Lanta V, Klimesova J, Dolezal J (2011) Effect of abandonment and plant classification on carbohydrate reserves of meadow plants. Plant Biol 13:243–251. https://doi.org/10.1111/j.1438-8677.2010.00352.x

    Article  CAS  PubMed  Google Scholar 

  36. Janz D, Behnke K, Schnitzler J-P, Kanawati B, Schmitt-Kopplin P, Polle A (2010) Pathway analysis of the transcriptome and metabolome of salt sensitive and tolerant poplar species reveals evolutionary adaption of stress tolerance mechanisms. BMC Plant Biol 10:150. https://doi.org/10.1186/1471-2229-10-150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jin J, Tian F, Yang D, Meng Y, Kong L, Luo J, Gao G (2016) PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res 45:1040–1045. https://doi.org/10.1093/nar/gkw982

    Article  CAS  Google Scholar 

  38. Joshi R, Wani S, Singh B, Bohra A, Dar Z, Lone A, Pareek A, Singla-Pareek S (2016) Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci 7:1029. https://doi.org/10.3389/fpls.2016.01029

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kim HK, Saifullah K, Wilson EG, Prat Kricun SD, Meissner A, Goraler S, Deelder AM, Choia YH, Verpoorte R (2010) Metabolic classification of South American Ilex species by NMR-based metabolomics. Phytochemistry 71:773–784. https://doi.org/10.1016/j.phytochem.2010.02.001

    Article  CAS  PubMed  Google Scholar 

  40. Kirma M, Araújo WL, Fernie AR, Galili G (2012) The multifaceted role of aspartate-family amino acids in plant metabolism. J Exp Bot 63:4995–5001. https://doi.org/10.1093/jxb/ers119

    Article  CAS  PubMed  Google Scholar 

  41. Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmüller E, Dörmann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie A, Steinhauser D (2005) GMD@CSB. DB: the Golm metabolome database. Bioinformatics 21:1635–1638. https://doi.org/10.1093/bioinformatics/bti236

    Article  CAS  PubMed  Google Scholar 

  42. Less H, Angelovici R, Tzin V, Galili G (2010) Principal transcriptional regulation and genome-wide system interactions of the Asp-family and aromatic amino acid networks of amino acid metabolism in plants. Amino Acids 39:1023–1028. https://doi.org/10.1007/s00726-010-0566-7

    Article  CAS  PubMed  Google Scholar 

  43. Li P, Cao W, Fang H, Xu S, Yin S, Zhang Y, Lin D, Wang J, Chen Y, Xu C, Yang Z (2017) Transcriptomic profiling of the maize (Zea mays L.) leaf response to abiotic stresses at the seedling stage. Front Plant Sci 8:290. https://doi.org/10.3389/fpls.2017.00290

    Article  PubMed  PubMed Central  Google Scholar 

  44. Licausi F, Ohme-Takagi M, Perata P (2013) APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol 199:639–649. https://doi.org/10.1111/nph.12291

    Article  CAS  PubMed  Google Scholar 

  45. Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie A (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Prot 1:387–396. https://doi.org/10.1038/nprot.2006.59

    Article  CAS  Google Scholar 

  46. Liu Q, Wang Z, Xu X, Zhang H, Li C (2015) Genome-wide analysis of C2H2 zinc-finger family transcription factors and their responses to abiotic stresses in poplar (Populus trichocarpa). PLoS One 10:e0134753. https://doi.org/10.1371/journal.pone.0134753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Llorca C, Potschin M, Zentgraf U (2014) bZIPs and WRKYs: two large transcription factor families executing two different functional strategies. Front Plant Sci 5:169. https://doi.org/10.3389/fpls.2014.00169

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lohse M, Nagel A, Herter T, May P, Schroda M, Zrenner R, Tohge T, Fernie A, Stitt M, Usadel B (2014) Mercator: a fast and simple web server for genome scale functional annotation of plant sequence data. Plant Cell Environ 37:1250–1258. https://doi.org/10.1111/pce.12231

    Article  CAS  PubMed  Google Scholar 

  49. Loriaux SD, Avenson TJ, Welles JM, McDermitt DK, Eckles RD, Riensche B, Genty B (2013) Closing in on maximum yield of chlorophyll fluorescence using a single multiphase flash of sub-saturating intensity. Plant Cell Environ 36:1755–17570. https://doi.org/10.1111/pce.12115

    Article  CAS  Google Scholar 

  50. Magoc T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963. https://doi.org/10.1093/bioinformatics/btr507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Martinelli T, Whittaker A, Bochicchio A, Vazzana C, Suzuki A, Masclaux-Daubresse C (2007) Amino acid pattern and glutamate metabolism during dehydration stress in the ‘resurrection’ plant Sporobolus stapfianus: a comparison between desiccation-sensitive and desiccation-tolerant leaves. J Exp Bot 58:3037–30346. https://doi.org/10.1093/jxb/erm161

    Article  CAS  PubMed  Google Scholar 

  52. Mofatto LS, de Araújo Carneiro F, Gomes Vieira N, Duarte KE, Oliveira Vidal R, Alekcevetch JC, Cotta MG, Verdeil J-L, Lapeyre-Montes F, Lartaud M et al (2016) Identification of candidate genes for drought tolerance in coffee by high-throughput sequencing in the shoot apex of different Coffea arabica cultivars. BMC Plant Biol 16:94. https://doi.org/10.1186/s12870-016-0777-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Moore B, Zhou L, Rolland F, Hall Q, Cheng W-H, Liu Y-X, Hwang I, Jones T, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332–336. https://doi.org/10.1126/science.1080585

    Article  CAS  Google Scholar 

  54. Nishizawa A, Yabuta Y, Shigeoka S (2008) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol 147:1251–1263. https://doi.org/10.1104/pp.108.122465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Novitskaya L, Trevanion SJ, Driscoll S, Foyer CH, Noctor G (2002) How does photorespiration modulate leaf amino acid contents? A dual approach through modelling and metabolite analysis. Plant Cell Environ 25:821–835. https://doi.org/10.1046/j.1365-3040.2002.00866.x

    Article  CAS  Google Scholar 

  56. Nunes-Nesi A, Carrari F, Gibon Y, Sulpice R, Lytovchenko A, Fisahn J, Graham J, Ratcliffe R, Sweetlove L, Fernie A (2007) Deficiency of mitochondrial fumarase activity in tomato plants impairs photosynthesis via an effect on stomatal function. Plant J 50:1093–1106. https://doi.org/10.1111/j.1365-313X.2007.03115.x

    Article  CAS  PubMed  Google Scholar 

  57. Obata T, Fernie AR (2012) The use of metabolomics to dissect plant responses to abiotic stresses. Cell Mol Life Sci 69:3225–3243. https://doi.org/10.1007/s00018-012-1091-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ohkama-Ohtsu N, Oikawa A, Zhao P, Xiang C, Saito K, Oliver DJ (2008) A γ-glutamyl transpeptidase-independent pathway of glutathione catabolism to glutamate via 5-oxoproline in Arabidopsis. Plant Physiol 148:1603–1613. https://doi.org/10.1104/pp.108.125716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Osakabe Y, Osakabe K, Shinozaki K, Tran L-S (2014) Response of plants to water stress. Front Plant Sci 5:86. https://doi.org/10.3389/fpls.2014.00086

    Article  PubMed  PubMed Central  Google Scholar 

  60. Osorio S, Alba R, Nikoloski Z, Kochevenko A, Fernie A, Giovannoni J (2012) Integrative comparative analyses of transcript and metabolite profiles from pepper and tomato ripening and development stages uncovers species-specific patterns of network regulatory behavior. Plant Physiol 159:1713–1729. https://doi.org/10.1104/pp.112.199711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pandey P, Ramegowda V, Senthil-Kumar M (2015) Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. Front Plant Sci 6:723. https://doi.org/10.3389/fpls.2015.00723

    Article  PubMed  PubMed Central  Google Scholar 

  62. Pérez ML, Collavino MM, Sansberro PA, Mroginski LA, Galdeano E (2016) Diversity of endophytic fungal and bacterial communities in Ilex paraguariensis grown under field conditions. World J Microbiol Biotechnol 32:61. https://doi.org/10.1007/s11274-016-2016-5

    Article  PubMed  Google Scholar 

  63. Pinheiro C, Chaves MM (2011) Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot 62:869–882. https://doi.org/10.1093/jxb/erq340

    Article  CAS  PubMed  Google Scholar 

  64. Ramon M, Rolland F, Sheen J (2008) Sugar sensing and signaling. The Arabidopsis Book 2008:e0117. https://doi.org/10.1199/tab.0117

    Article  Google Scholar 

  65. Rejeb I, Pastor V, Mauch-Mani B (2014) Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants 3:458–475. https://doi.org/10.3390/plants3040458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ruan Y-L, Jinb Y, Yang Y-J, Lid G-J, Boyer JS (2010) Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat. Mol Plant 3:942–955. https://doi.org/10.1093/mp/ssq044

    Article  CAS  Google Scholar 

  67. Sanhueza C, Bascunan-Godoy L, Corcuera LJ, Turnbull MH (2013) The response of leaf respiration to water stress in Nothofagus species. N Z J Bot 51:88–103. https://doi.org/10.1080/0028825X.2012.759600

    Article  Google Scholar 

  68. Sherson SM, Afford HL, Forbes SM, Wallace G, Smith SM (2003) Roles of cell-wall invertases and monosaccharide transporters in the growth and development of Arabidopsis. J Exp Bot 54:525–531. https://doi.org/10.1093/jxb/erg055

    Article  CAS  PubMed  Google Scholar 

  69. Shinozaki K, Uemura M, Bailey-Serres J, Bray E, Weretilnyk E (2015) Responses to abiotic stress. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants, 2nd edn. Wiley, Oxford, pp 1051–1100

    Google Scholar 

  70. Sieciechowicz KA, Joy KW, Ireland RJ (1988) The metabolism of asparagine in plants. Phytochemistry 27:663–671. https://doi.org/10.1016/0031-9422(88)84071-8

    Article  CAS  Google Scholar 

  71. Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29:417–426. https://doi.org/10.1046/j.0960-7412.2001.01227.x

    Article  CAS  Google Scholar 

  72. Tang S, Dong Y, Liang D, Zhang Z, Ye C-Y, Shuai P, Han X, Zhao Y, Yin W, Xia X (2015) Analysis of the drought stress-responsive transcriptome of black cottonwood (Populus trichocarpa) using deep RNA sequencing. Plant Mol Biol Rep 33:424–438. https://doi.org/10.1007/s11105-014-0759-4

    Article  CAS  Google Scholar 

  73. Taniguchi M, Miyake H (2012) Redox-shuttling between chloroplast and cytosol: integration of intra-chloroplast and extra-chloroplast metabolism. Curr Opin Plant Biol 15:252–260. https://doi.org/10.1016/j.pbi.2012.01.014

    Article  CAS  PubMed  Google Scholar 

  74. Tardieu F, Parent B, Caldeira CF, Welcker C (2014) Genetic and physiological controls of growth under water deficit. Plant Physiol 164:1628–1635. https://doi.org/10.1104/pp.113.233353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tardieu F, Simonneau T (1998) Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviors. J Exp Bot 49:419–432

    Article  Google Scholar 

  76. Tarrago J, Sansberro P, Filip R, López P, González A, Luna C, Mroginski L (2004) Effect of leaf retention and flavonoids on rooting of Ilex paraguariensis cuttings. Sci Hortic 103:479–488. https://doi.org/10.1016/j.scienta.2004.07.004

    Article  CAS  Google Scholar 

  77. Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller L, Rhee S, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939. https://doi.org/10.1111/j.1365-313X.2004.02016.x

    Article  CAS  Google Scholar 

  78. Timm CM, Carter KR, Carrell AA, Jun S, Jawdy SS, Vélez JM, Gunter LE (2018) Abiotic stresses shift belowground Populus-associated bacteria toward a core stress microbiome. mSystems 3:e00070-17. https://doi.org/10.1128/mSystems.00070-17

    Article  PubMed  PubMed Central  Google Scholar 

  79. Valluru R, Van den Ende W (2011) Myo-inositol and beyond—emerging networks under stress. Plant Sci 181:387–400. https://doi.org/10.1016/j.plantsci.2011.07.009

    Article  CAS  PubMed  Google Scholar 

  80. Vanlerberghe GC, Martyna GD, Dahala K (2016) Alternative oxidase: a respiratory electron transport chain pathway essential for maintaining photosynthetic performance during drought stress. Physiol Plant 157:322–337. https://doi.org/10.1111/ppl.12451

    Article  CAS  PubMed  Google Scholar 

  81. Vanlerberghe GC, Wang J, Cvetkovska M, Dahal K (2015) Modes of electron transport chain function during stress: does alternative oxidase respiration aid in balancing cellular energy metabolism during drought stress and recovery? In: Gupta KJ, Mur LAJ, Neelwarne B (eds) Alternative respiratory pathways in higher plants, 1st edn. Wiley, Oxford, pp 157–183. https://doi.org/10.1002/9781118789971.ch8

    Chapter  Google Scholar 

  82. Verma V, Ravindran P, Kumar P (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16:86. https://doi.org/10.1186/s12870-016-0771-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Vishwakarma A, Tetali SD, Selinski J, Scheibe R, Padmasree K (2015) Importance of the alternative oxidase (AOX) pathway in regulating cellular redox and ROS homeostasis to optimize photosynthesis during restriction of the cytochrome oxidase pathway in Arabidopsis thaliana. Ann Bot 116:555–569. https://doi.org/10.1093/aob/mcv122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Voss I, Sunil B, Scheibe R, Raghavendra AS (2013) Emerging concept for the role of photorespiration as an important part of abiotic stress response. Plant Biol 15:713–722. https://doi.org/10.1111/j.1438-8677.2012.00710.x

    Article  CAS  Google Scholar 

  85. Wang J, Vanlerberghe GC (2013) A lack of mitochondrial alternative oxidase compromises capacity to recover from severe drought stress. Physiol Plant 149:461–473. https://doi.org/10.1111/ppl.12059

    Article  CAS  PubMed  Google Scholar 

  86. Wang X, Cai X, Xu C, Wang Q, Dai S (2016) Drought-responsive mechanisms in plant leaves revealed by proteomics. Int J Mol Sci 17:1706. https://doi.org/10.3390/ijms17101706

    Article  CAS  PubMed Central  Google Scholar 

  87. Wellburn A (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313. https://doi.org/10.1016/S0176-1617(11)81192-2

    Article  CAS  Google Scholar 

  88. Zanetti ME, Rípodas C, Niebel A (2017) Plant NF-Y transcription factors: Key players in plant-microbe interactions, root development and adaptation to stress. Biochim Biophys Acta 1860:645–654. https://doi.org/10.1016/j.bbagrm.2016.11.007

    Article  CAS  Google Scholar 

  89. Zhou T, Zhang R, Guo S (2012) Molecular cloning and characterization of GhGolS1, a novel gene encoding galactinol synthase from cotton (Gossypium hirsutum). Plant Mol Biol Rep 30:699–709. https://doi.org/10.1007/s11105-011-0375-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Agencia Nacional de Promoción Científica y Tecnológica (PICT 2014-1246), Universidad Nacional del Nordeste (PI A001/14), BioCAD-INTA, CATG-MINCYT (PPL 004; AECID D/024562/09), National Council for Scientific and Technological Development (CNPq-Brazil), and Establecimiento Las Marías S.A.C.I.F.A. (Gdor. Virasoro, Argentina). We are grateful to NUBIOMOL (Universidade Federal de Viçosa) for the analytical facilities. We extend our sincere appreciation to anonymous reviewers for their critical comments. RMA, MR, NP, OAR, and PAS are members of the Research Council of Argentina (CONICET). EHA received CONICET scholarships.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pedro A. Sansberro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 752 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Acevedo, R.M., Avico, E.H., González, S. et al. Transcript and metabolic adjustments triggered by drought in Ilex paraguariensis leaves. Planta 250, 445–462 (2019). https://doi.org/10.1007/s00425-019-03178-3

Download citation

Keywords

  • Abiotic stress
  • De novo transcriptome
  • Drought stress
  • Cellular stress response
  • RNA-Seq
  • Transcription factors
  • Yerba mate