Advertisement

Planta

, Volume 250, Issue 1, pp 23–40 | Cite as

Non-coding RNAs and transposable elements in plant genomes: emergence, regulatory mechanisms and roles in plant development and stress responses

  • Jinna Hou
  • Dandan Lu
  • Annaliese S. Mason
  • Baoquan Li
  • Meili Xiao
  • Sufang An
  • Donghui FuEmail author
Review

Abstract

Main conclusion

This review will provide evidence for the indispensable function of these elements in regulating plant development and resistance to biotic and abiotic stresses, as well as their evolutionary role in facilitating plant adaptation.

Abstract

Over millions of years of evolution, plant genomes have acquired a complex constitution. Plant genomes consist not only of protein coding sequences, but also contain large proportions of non-coding sequences. These include introns of protein-coding genes, and intergenic sequences such as non-coding RNA, repeat sequences and transposable elements. These non-coding sequences help to regulate gene expression, and are increasingly being recognized as playing an important role in genome organization and function. In this review, we summarize the known molecular mechanisms by which gene expression is regulated by several species of non-coding RNAs (microRNAs, long non-coding RNAs, and circular RNAs) and by transposable elements. We further discuss how these non-coding RNAs and transposable elements evolve and emerge in the genome, and the potential influence and importance of these non-coding RNAs and transposable elements in plant development and in stress responses.

Notes

References

  1. Agren JA, Huang HR, Wright SI (2016) Transposable element evolution in the allotetraploid Capsella bursa-pastoris. Am J Bot 103:1197–1202.  https://doi.org/10.3732/ajb.1600103 CrossRefPubMedGoogle Scholar
  2. Allen E, Howell MD (2010) miRNAs in the biogenesis of trans-acting siRNAs in higher plants. Semin Cell Dev Biol 21:798–804.  https://doi.org/10.1016/j.semcdb.2010.03.008 CrossRefPubMedGoogle Scholar
  3. Allen E, Xie Z, Gustafson AM, Sung GH, Spatafora JW, Carrington JC (2004) Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet 36:1282–1290.  https://doi.org/10.1038/ng1478 CrossRefPubMedGoogle Scholar
  4. Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221.  https://doi.org/10.1016/j.cell.2005.04.004 CrossRefPubMedGoogle Scholar
  5. Arabidopsis Genome I (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815.  https://doi.org/10.1038/35048692 CrossRefGoogle Scholar
  6. Aravind J et al (2017) Identification, Characterization, and functional validation of drought-responsive microRNAs in subtropical maize inbreds. Front Plant Sci 8:941.  https://doi.org/10.3389/fpls.2017.00941 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ariel F, Jegu T, Latrasse D, Romero-Barrios N, Christ A, Benhamed M, Crespi M (2014) Noncoding transcription by alternative RNA polymerases dynamically regulates an auxin-driven chromatin loop. Mol Cell 55:383–396.  https://doi.org/10.1016/j.molcel.2014.06.011 CrossRefPubMedGoogle Scholar
  8. Aung K, Lin SI, Wu CC, Huang YT, Su CL, Chiou TJ (2006) pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol 141:1000–1011.  https://doi.org/10.1104/pp.106.078063 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Baldrich P et al (2014) Small RNA profiling reveals regulation of Arabidopsis miR168 and heterochromatic siRNA415 in response to fungal elicitors. BMC Genomics 15:1083.  https://doi.org/10.1186/1471-2164-15-1083 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Barciszewska-Pacak M et al (2015) Arabidopsis microRNA expression regulation in a wide range of abiotic stress responses. Front Plant Sci 6:410.  https://doi.org/10.3389/fpls.2015.00410 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bardou F et al (2014) Long noncoding RNA modulates alternative splicing regulators in Arabidopsis. Dev Cell 30:166–176.  https://doi.org/10.1016/j.devcel.2014.06.017 CrossRefPubMedGoogle Scholar
  12. Bari R, Datt Pant B, Stitt M, Scheible WR (2006) PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol 141:988–999.  https://doi.org/10.1104/pp.106.079707 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Beauclair L, Yu A, Bouche N (2010) microRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis. Plant J 62:454–462.  https://doi.org/10.1111/j.1365-313x.2010.04162.x CrossRefPubMedGoogle Scholar
  14. Ben Amor B et al (2009) Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses. Genome Res 19:57–69.  https://doi.org/10.1101/gr.080275.108 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bentwich I et al (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37:766–770.  https://doi.org/10.1038/ng1590 CrossRefPubMedGoogle Scholar
  16. Berezikov E (2011) Evolution of microRNA diversity and regulation in animals. Nat Rev Genet 12:846–860.  https://doi.org/10.1038/nrg3079 CrossRefPubMedGoogle Scholar
  17. Berg JA et al (2015) A transposable element insertion in the susceptibility gene CsaMLO8 results in hypocotyl resistance to powdery mildew in cucumber. BMC Plant Biol 15:243.  https://doi.org/10.1186/s12870-015-0635-x CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bond DM, Baulcombe DC (2015) Epigenetic transitions leading to heritable, RNA-mediated de novo silencing in Arabidopsis thaliana. Proc Natl Acad Sci USA 112:917–922.  https://doi.org/10.1073/pnas.1413053112 CrossRefPubMedGoogle Scholar
  19. Bouche N, Lauressergues D, Gasciolli V, Vaucheret H (2006) An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J 25:3347–3356.  https://doi.org/10.1038/sj.emboj.7601217 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Brant EJ, Budak H (2018) Plant small non-coding RNAs and their roles in biotic stresses. Front Plant Sci 9:1038.  https://doi.org/10.3389/fpls.2018.01038 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190.  https://doi.org/10.1126/science.1159151 CrossRefPubMedGoogle Scholar
  22. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–1927.  https://doi.org/10.1101/gad.17446611 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Cavrak VV, Lettner N, Jamge S, Kosarewicz A, Bayer LM, Mittelsten Scheid O (2014) How a retrotransposon exploits the plant’s heat stress response for its activation. PLoS Genet 10:e1004115.  https://doi.org/10.1371/journal.pgen.1004115 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Chen LL (2016) The biogenesis and emerging roles of circular RNAs Nature reviews. Mol Cell Biol 17:205–211.  https://doi.org/10.1038/nrm.2015.32 CrossRefGoogle Scholar
  25. Chen M, Penfield S (2018) Feedback regulation of COOLAIR expression controls seed dormancy and flowering time. Science 360:1014–1017.  https://doi.org/10.1126/science.aar7361 CrossRefPubMedGoogle Scholar
  26. Chen G, Cui J, Wang L, Zhu Y, Lu Z, Jin B (2017a) Genome-Wide Identification of circular RNAs in Arabidopsis thaliana. Front Plant Sci 8:1678.  https://doi.org/10.3389/fpls.2017.01678 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Chen Y et al (2017b) Integrating transcriptome and microRNA analysis identifies genes and microRNAs for AHO-induced systemic acquired resistance in N. tabacum. Sci Rep 7:12504.  https://doi.org/10.1038/s41598-017-12249-y CrossRefPubMedPubMedCentralGoogle Scholar
  28. Chuong EB, Elde NC, Feschotte C (2017) Regulatory activities of transposable elements: from conflicts to benefits. Nat Rev Genet 18:71–86.  https://doi.org/10.1038/nrg.2016.139 CrossRefGoogle Scholar
  29. Conn VM et al (2017) A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nat Plants 3:17053.  https://doi.org/10.1038/nplants.2017.53 CrossRefPubMedGoogle Scholar
  30. Cowley M, Oakey RJ (2013) Transposable elements re-wire and fine-tune the transcriptome. PLoS Genet 9:e1003234.  https://doi.org/10.1371/journal.pgen.1003234 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Csorba T, Questa JI, Sun Q, Dean C (2014) Antisense COOLAIR mediates the coordinated switching of chromatin states at FLC during vernalization. Proc Natl Acad Sci USA 111:16160–16165.  https://doi.org/10.1073/pnas.1419030111 CrossRefPubMedGoogle Scholar
  32. Cuperus JT, Fahlgren N, Carrington JC (2011) Evolution and functional diversification of MIRNA genes. Plant Cell 23:431–442.  https://doi.org/10.1105/tpc.110.082784 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Dai S et al (2015) Widespread and evolutionary analysis of a MITE family monkey king in Brassicaceae. BMC Plant Biol 15:149.  https://doi.org/10.1186/s12870-015-0490-9 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Darbani B, Noeparvar S, Borg S (2016) Identification of circular RNAs from the parental genes involved in multiple aspects of cellular metabolism in barley. Front Plant Sci 7:776.  https://doi.org/10.3389/fpls.2016.00776 CrossRefPubMedPubMedCentralGoogle Scholar
  35. D’Ario M, Griffiths-Jones S, Kim M (2017) Small RNAs: big impact on plant development. Trends Plant Sci 22:1056–1068.  https://doi.org/10.1016/j.tplants.2017.09.009 CrossRefPubMedGoogle Scholar
  36. Deng P, Liu S, Nie X, Weining S, Wu L (2017) Conservation analysis of long non-coding RNAs in plants. Sci China Life Sci 61:190–198.  https://doi.org/10.1007/s11427-017-9174-9 CrossRefPubMedGoogle Scholar
  37. Denli AM, Hannon GJ (2003) RNAi: an ever-growing puzzle. Trends Biochem Sci 28:196–201.  https://doi.org/10.1016/s0968-0004(03)00058-6 CrossRefPubMedGoogle Scholar
  38. Di C et al (2014) Characterization of stress-responsive lncRNAs in Arabidopsis thaliana by integrating expression, epigenetic and structural features. Plant J 80:848–861.  https://doi.org/10.1111/tpj.12679 CrossRefPubMedGoogle Scholar
  39. Diao X, Freeling M, Lisch D (2006) Horizontal transfer of a plant transposon. PLoS Biol 4:e5.  https://doi.org/10.1371/journal.pbio.0040005 CrossRefPubMedGoogle Scholar
  40. Dong Z et al (2018) Identification of microRNAs involved in drought stress responses in early-maturing cotton by high-throughput sequencing. Genes Genomics 40:305–314.  https://doi.org/10.1007/s13258-017-0637-1 CrossRefPubMedGoogle Scholar
  41. Dykes IM, Emanueli C (2017) Transcriptional and post-transcriptional gene regulation by long non-coding. RNA Genomics Proteomics Bioinform 15:177–186.  https://doi.org/10.1016/j.gpb.2016.12.005 CrossRefGoogle Scholar
  42. Eichten SR et al (2012) Spreading of heterochromatin is limited to specific families of maize retrotransposons. PLoS Genet 8:e1003127.  https://doi.org/10.1371/journal.pgen.1003127 CrossRefPubMedPubMedCentralGoogle Scholar
  43. El Baidouri M et al (2014) Widespread and frequent horizontal transfers of transposable elements in plants. Genome Res 24:831–838.  https://doi.org/10.1101/gr.164400.113 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Eun CH, Takagi K, Park KI, Maekawa M, Iida S, Tsugane K (2012) Activation and epigenetic regulation of DNA transposon nDart1 in rice. Plant Cell Physiol 53:857–868.  https://doi.org/10.1093/pcp/pcs060 CrossRefPubMedGoogle Scholar
  45. Fan Y et al (2016) PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice. Proc Natl Acad Sci USA 113:15144–15149.  https://doi.org/10.1073/pnas.1619159114 CrossRefPubMedGoogle Scholar
  46. Fei Q, Xia R, Meyers BC (2013) Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. Plant Cell 25:2400–2415.  https://doi.org/10.1105/tpc.113.114652 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Feuillet C, Keller B (2002) Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution. Ann Bot 89:3–10CrossRefGoogle Scholar
  48. Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 15:2038–2043.  https://doi.org/10.1016/j.cub.2005.10.016 CrossRefPubMedGoogle Scholar
  49. Gao S et al (2016) A cotton miRNA is involved in regulation of plant response to salt stres. Sci Rep 6:19736.  https://doi.org/10.1038/srep19736 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Ghoshal K, Theilmann J, Reade R, Maghodia A, Rochon D (2015) Encapsidation of Host RNAs by cucumber necrosis virus coat protein during both agroinfiltration and infection. J Virol 89:10748–10761.  https://doi.org/10.1128/JVI.01466-15 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Girard L, Freeling M (2000) Mutator-suppressible alleles of rough sheath1 and liguleless3 in maize reveal multiple mechanisms for suppression. Genetics 154:437–446PubMedPubMedCentralGoogle Scholar
  52. Goodrich JA, Kugel JF (2006) Non-coding-RNA regulators of RNA polymerase II transcription Nature reviews. Mol Cell Biol 7:612–616.  https://doi.org/10.1038/nrm1946 CrossRefGoogle Scholar
  53. Groszmann M, Greaves IK, Fujimoto R, Peacock WJ, Dennis ES (2013) The role of epigenetics in hybrid vigour. Trends Genetics TIG 29:684–690.  https://doi.org/10.1016/j.tig.2013.07.004 CrossRefPubMedGoogle Scholar
  54. Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952CrossRefGoogle Scholar
  55. Hamilton A, Voinnet O, Chappell L, Baulcombe D (2015) Two classes of short interfering RNA in RNA silencing. EMBO J 34:2590.  https://doi.org/10.15252/embj.201570050 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Han R et al (2014) Identification and characterization of microRNAs in the flag leaf and developing seed of wheat (Triticum aestivum L.). BMC Genomics 15:289.  https://doi.org/10.1186/1471-2164-15-289 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388.  https://doi.org/10.1038/nature11993 CrossRefPubMedGoogle Scholar
  58. He L et al (2018) A naturally occurring epiallele associates with leaf senescence and local climate adaptation in Arabidopsis accessions. Nat Commun 9:460.  https://doi.org/10.1038/s41467-018-02839-3 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Helliwell CA, Robertson M, Finnegan EJ, Buzas DM, Dennis ES (2011) Vernalization-repression of Arabidopsis FLC requires promoter sequences but not antisense transcripts. PloS one 6:e21513.  https://doi.org/10.1371/journal.pone.0021513 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Heo JB, Sung S (2011) Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331:76–79.  https://doi.org/10.1126/science.1197349 CrossRefPubMedGoogle Scholar
  61. Hirsch CD, Springer NM (2017) Transposable element influences on gene expression in plants. Biochem Biophys Acta 1860:157–165.  https://doi.org/10.1016/j.bbagrm.2016.05.010 CrossRefGoogle Scholar
  62. Hollister JD, Gaut BS (2009) Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res 19:1419–1428.  https://doi.org/10.1101/gr.091678.109 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Holoch D, Moazed D (2015) RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet 16:71–84.  https://doi.org/10.1038/nrg3863 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Hou J et al (2012) A Tourist-like MITE insertion in the upstream region of the BnFLC.A10 gene is associated with vernalization requirement in rapeseed (Brassica napus L.). BMC Plant Biol 12:238.  https://doi.org/10.1186/1471-2229-12-238 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Huang D, Koh C, Feurtado JA, Tsang EW, Cutler AJ (2013) MicroRNAs and their putative targets in Brassica napus seed maturation. BMC Genomics 14:140.  https://doi.org/10.1186/1471-2164-14-140 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Ito H, Gaubert H, Bucher E, Mirouze M, Vaillant I, Paszkowski J (2011) An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 472:115–119.  https://doi.org/10.1038/nature09861 CrossRefPubMedGoogle Scholar
  67. Ito H et al (2016) A stress-activated transposon in Arabidopsis induces transgenerational abscisic acid insensitivity. Sci Rep 6:23181.  https://doi.org/10.1038/srep23181 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Iwakawa HO, Tomari Y (2013) Molecular insights into microRNA-mediated translational repression in plants. Mol Cell 52:591–601.  https://doi.org/10.1016/j.molcel.2013.10.033 CrossRefPubMedGoogle Scholar
  69. Jabnoune M, Secco D, Lecampion C, Robaglia C, Shu Q, Poirier Y (2013) A rice cis-natural antisense RNA acts as a translational enhancer for its cognate mRNA and contributes to phosphate homeostasis and plant fitness. Plant Cell 25:4166–4182.  https://doi.org/10.1105/tpc.113.116251 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32:453–461.  https://doi.org/10.1038/nbt.2890 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Jeck WR et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. Rna 19:141–157.  https://doi.org/10.1261/rna.035667.112 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Ji L et al (2011) ARGONAUTE10 and ARGONAUTE1 regulate the termination of floral stem cells through two microRNAs in Arabidopsis. PLoS Genet 7:1358.  https://doi.org/10.1371/journal.pgen.1001358 CrossRefGoogle Scholar
  73. Jiang N, Bao Z, Zhang X, Hirochika H, Eddy SR, McCouch SR, Wessler SR (2003) An active DNA transposon family in rice. Nature 421:163–167.  https://doi.org/10.1038/nature01214 CrossRefPubMedGoogle Scholar
  74. Jiao Y et al (2017) Improved maize reference genome with single-molecule technologies. Nature 546:524–527.  https://doi.org/10.1038/nature22971 CrossRefPubMedGoogle Scholar
  75. Kanazawa A, Liu B, Kong F, Arase S, Abe J (2009) Adaptive evolution involving gene duplication and insertion of a novel Ty1/copia-like retrotransposon in soybean. J Mol Evolution 69:164–175.  https://doi.org/10.1007/s00239-009-9262-1 CrossRefGoogle Scholar
  76. Kashkush K, Feldman M, Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33:102–106.  https://doi.org/10.1038/ng1063 CrossRefPubMedGoogle Scholar
  77. Kawakami T, Strakosh SC, Zhen Y, Ungerer MC (2010) Different scales of Ty1/copia-like retrotransposon proliferation in the genomes of three diploid hybrid sunflower species. Heredity 104:341–350.  https://doi.org/10.1038/hdy.2009.182 CrossRefPubMedGoogle Scholar
  78. Kikuchi K, Terauchi K, Wada M, Hirano HY (2003) The plant MITE mPing is mobilized in anther culture. Nature 421:167–170.  https://doi.org/10.1038/nature01218 CrossRefPubMedGoogle Scholar
  79. Kim ED, Sung S (2012) Long noncoding RNA: unveiling hidden layer of gene regulatory networks. Trends Plant Sci 17:16–21.  https://doi.org/10.1016/j.tplants.2011.10.008 CrossRefPubMedGoogle Scholar
  80. Kim DH, Sung S (2017) Vernalization-triggered intragenic chromatin loop formation by long noncoding RNAs. Dev Cell 40(302–312):e304.  https://doi.org/10.1016/j.devcel.2016.12.021 CrossRefGoogle Scholar
  81. Klein SJ, O’Neill RJ (2018) Transposable elements: genome innovation, chromosome diversity, and centromere conflict. Chromosome Res 26:5–23.  https://doi.org/10.1007/s10577-017-9569-5 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Knauer S et al (2013) A protodermal miR394 signal defines a region of stem cell competence in the Arabidopsis shoot meristem. Dev Cell 24:125–132.  https://doi.org/10.1016/j.devcel.2012.12.009 CrossRefPubMedGoogle Scholar
  83. Komiya R, Ohyanagi H, Niihama M, Watanabe T, Nakano M, Kurata N, Nonomura K (2014) Rice germline-specific argonaute MEL1 protein binds to phasiRNAs generated from more than 700 lincRNAs. Plant J 78:385–397.  https://doi.org/10.1111/tpj.12483 CrossRefPubMedGoogle Scholar
  84. Kouchi H, Takane K, So RB, Ladha JK, Reddy PM (1999) Rice ENOD40: isolation and expression analysis in rice and transgenic soybean root nodules. Plant J 18:121–129CrossRefGoogle Scholar
  85. Kurihara Y, Watanabe Y (2004) Arabidopsis micro-RNA biogenesis through dicer-like 1 protein functions. Proc Nat Acad Sci USA 101:12753–12758.  https://doi.org/10.1073/pnas.0403115101 CrossRefPubMedGoogle Scholar
  86. Lam P, Zhao L, Eveleigh N, Yu Y, Chen X, Kunst L (2015) The exosome and trans-acting small interfering RNAs regulate cuticular wax biosynthesis during Arabidopsis inflorescence stem development. Plant Physiol 167:323–336.  https://doi.org/10.1104/pp.114.252825 CrossRefPubMedGoogle Scholar
  87. Lauressergues D, Couzigou JM, Clemente HS, Martinez Y, Dunand C, Becard G, Combier JP (2015) Primary transcripts of microRNAs encode regulatory peptides. Nature 520:90–93.  https://doi.org/10.1038/nature14346 CrossRefPubMedGoogle Scholar
  88. Le TN et al (2014) DNA demethylases target promoter transposable elements to positively regulate stress responsive genes in Arabidopsis. Genome Biol 15:458.  https://doi.org/10.1186/s13059-014-0458-3 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Lee SI, Kim NS (2014) Transposable elements and genome size variations in plants. Genomics Inform 12:87–97.  https://doi.org/10.5808/GI.2014.12.3.87 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Lelandais-Briere C, Sorin C, Declerck M, Benslimane A, Crespi M, Hartmann C (2010) Small RNA diversity in plants and its impact in development. Curr Genomics 11:14–23.  https://doi.org/10.2174/138920210790217918 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Li L, Foster CM, Gan Q, Nettleton D, James MG, Myers AM, Wurtele ES (2009a) Identification of the novel protein QQS as a component of the starch metabolic network in Arabidopsis leaves. Plant J 58:485–498.  https://doi.org/10.1111/j.1365-313X.2009.03793.x CrossRefPubMedPubMedCentralGoogle Scholar
  92. Li Z et al (2009b) Detection of intergenic non-coding RNAs expressed in the main developmental stages in Drosophila melanogaster. Nucl Acids Res 37:4308–4314.  https://doi.org/10.1093/nar/gkp334 CrossRefPubMedGoogle Scholar
  93. Li Y, Zhang Q, Zhang J, Wu L, Qi Y, Zhou JM (2010) Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity. Plant Physiol 152:2222–2231.  https://doi.org/10.1104/pp.109.151803 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Li S et al (2013) MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis. Cell 153:562–574.  https://doi.org/10.1016/j.cell.2013.04.005 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Li L et al (2014) Genome-wide discovery and characterization of maize long non-coding RNAs. Genome Biol 15:R40.  https://doi.org/10.1186/gb-2014-15-2-r40 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Lin R, Wang H (2004) Arabidopsis FHY3/FAR1 gene family and distinct roles of its members in light control of Arabidopsis development. Plant Physiol 136:4010–4022.  https://doi.org/10.1104/pp.104.052191 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Ling HQ et al (2013) Draft genome of the wheat a-genome progenitor Triticum urartu. Nature 496:87–90.  https://doi.org/10.1038/nature11997 CrossRefPubMedGoogle Scholar
  98. Lisch D (2009) Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol 60:43–66.  https://doi.org/10.1146/annurev.arplant.59.032607.092744 CrossRefPubMedGoogle Scholar
  99. Lisch D (2013) How important are transposons for plant evolution? Nat Rev Genet 14:49–61.  https://doi.org/10.1038/nrg3374 CrossRefGoogle Scholar
  100. Liu B, Kanazawa A, Matsumura H, Takahashi R, Harada K, Abe J (2008) Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene. Genetics 180:995–1007.  https://doi.org/10.1534/genetics.108.092742 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Liu F, Marquardt S, Lister C, Swiezewski S, Dean C (2010) Targeted 3′ processing of antisense transcripts triggers Arabidopsis FLC chromatin silencing. Science 327:94–97.  https://doi.org/10.1126/science.1180278 CrossRefPubMedGoogle Scholar
  102. Liu S et al (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5:3930.  https://doi.org/10.1038/ncomms4930 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Liu T, Zhang L, Chen G, Shi T (2017) Identifying and characterizing the circular RNAs during the lifespan of Arabidopsis leaves. Front Plant Sci 8:1278.  https://doi.org/10.3389/fpls.2017.01278 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Lu T et al (2015) Transcriptome-wide investigation of circular RNAs in rice. Rna 21:2076–2087.  https://doi.org/10.1261/rna.052282.115 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Lysak MA, Berr A, Pecinka A, Schmidt R, McBreen K, Schubert I (2006) Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Natl Acad Sci USA 103:5224–5229.  https://doi.org/10.1073/pnas.0510791103 CrossRefPubMedGoogle Scholar
  106. Ma C, Burd S, Lers A (2015) miR408 is involved in abiotic stress responses in Arabidopsis. Plant J 84:169–187.  https://doi.org/10.1111/tpj.12999 CrossRefPubMedGoogle Scholar
  107. Mach J (2017) The long-noncoding RNA ELENA1 functions in plant immunity. Plant Cell 29:916.  https://doi.org/10.1105/tpc.17.00343 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Makarevitch I, Waters AJ, West PT, Stitzer M, Hirsch CN, Ross-Ibarra J, Springer NM (2015) Transposable elements contribute to activation of maize genes in response to abiotic stress. PLoS Genet 11:e1004915.  https://doi.org/10.1371/journal.pgen.1004915 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Mao H et al (2015) A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nat Commun 6:8326.  https://doi.org/10.1038/ncomms9326 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Matsunaga W, Kobayashi A, Kato A, Ito H (2012) The effects of heat induction and the siRNA biogenesis pathway on the transgenerational transposition of ONSEN, a copia-like retrotransposon in Arabidopsis thaliana. Plant Cell Physiol 53:824–833.  https://doi.org/10.1093/pcp/pcr179 CrossRefPubMedGoogle Scholar
  111. Mattick JS (2004) RNA regulation: a new genetics? Nat Rev Genet 5:316–323.  https://doi.org/10.1038/nrg1321 CrossRefPubMedGoogle Scholar
  112. Maunoury N, Vaucheret H (2011) AGO1 and AGO2 act redundantly in miR408-mediated Plantacyanin regulation. PloS one 6:e28729.  https://doi.org/10.1371/journal.pone.0028729 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Memczak S et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338.  https://doi.org/10.1038/nature11928 CrossRefGoogle Scholar
  114. Mohammadin S, Edger PP, Pires JC, Schranz ME (2015) Positionally-conserved but sequence-diverged: identification of long non-coding RNAs in the brassicaceae and cleomaceae. BMC Plant Biol 15:217.  https://doi.org/10.1186/s12870-015-0603-5 CrossRefPubMedPubMedCentralGoogle Scholar
  115. Mondal TK, Panda AK, Rawal HC, Sharma TR (2018) Discovery of microRNA-target modules of African rice (Oryza glaberrima) under salinity stress. Sci Rep 8:570.  https://doi.org/10.1038/s41598-017-18206-z CrossRefPubMedPubMedCentralGoogle Scholar
  116. Mower JP, Stefanovic S, Young GJ, Palmer JD (2004) Plant genetics: gene transfer from parasitic to host plants. Nature 432:165–166.  https://doi.org/10.1038/432165b CrossRefPubMedGoogle Scholar
  117. Mutum RD, Kumar S, Balyan S, Kansal S, Mathur S, Raghuvanshi S (2016) Identification of novel miRNAs from drought tolerant rice variety Nagina 22. Sci Rep 6:30786.  https://doi.org/10.1038/srep30786 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Nakazaki T et al (2003) Mobilization of a transposon in the rice genome. Nature 421:170–172.  https://doi.org/10.1038/nature01219 CrossRefPubMedGoogle Scholar
  119. Natarajan B et al (2018) MiRNA160 is associated with local defense and systemic acquired resistance against Phytophthora infestans infection in potato. J Exp Bot 69:2023–2036.  https://doi.org/10.1093/jxb/ery025 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Negi P, Rai AN, Suprasanna P (2016) Moving through the stressed genome: emerging regulatory roles for transposons in plant stress response. Front Plant Sci 7:1448.  https://doi.org/10.3389/fpls.2016.01448 CrossRefPubMedPubMedCentralGoogle Scholar
  121. Ni F et al (2017) Wheat Ms2 encodes for an orphan protein that confers male sterility in grass species. Nat Commun 8:15121.  https://doi.org/10.1038/ncomms15121 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Nodine MD, Bartel DP (2010) MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis. Genes Dev 24:2678–2692.  https://doi.org/10.1101/gad.1986710 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Nozawa M, Miura S, Nei M (2010) Origins and evolution of microRNA genes in Drosophila species. Genome Biol Evol 2:180–189.  https://doi.org/10.1093/gbe/evq009 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Nozawa M, Miura S, Nei M (2012) Origins and evolution of microRNA genes in plant species. Genome Biol Evol 4:230–239.  https://doi.org/10.1093/gbe/evs002 CrossRefPubMedPubMedCentralGoogle Scholar
  125. Ohtsu K et al (2007) Global gene expression analysis of the shoot apical meristem of maize (Zea mays L.). Plant J 52:391–404.  https://doi.org/10.1111/j.1365-313x.2007.03244.x CrossRefPubMedPubMedCentralGoogle Scholar
  126. Oliver KR, McComb JA, Greene WK (2013) Transposable elements: powerful contributors to angiosperm evolution and diversity. Genome Biol Evol 5:1886–1901.  https://doi.org/10.1093/gbe/evt141 CrossRefPubMedPubMedCentralGoogle Scholar
  127. Pecinka A, Dinh HQ, Baubec T, Rosa M, Lettner N, Mittelsten Scheid O (2010) Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis. Plant Cell 22:3118–3129.  https://doi.org/10.1105/tpc.110.078493 CrossRefPubMedPubMedCentralGoogle Scholar
  128. Pegler JL, Oultram JMJ, Grof CPL, Eamens AL (2019) Profiling the abiotic stress responsive microRNA landscape of Arabidopsis thaliana. Plants 8:58.  https://doi.org/10.3390/plants8030058 CrossRefPubMedCentralGoogle Scholar
  129. Piednoel M, Carrete-Vega G, Renner SS (2013) Characterization of the LTR retrotransposon repertoire of a plant clade of six diploid and one tetraploid species. Plant J 75:699–709.  https://doi.org/10.1111/tpj.12233 CrossRefPubMedGoogle Scholar
  130. Piriyapongsa J, Jordan IK (2008) Dual coding of siRNAs and miRNAs by plant transposable elements. Rna 14:814–821.  https://doi.org/10.1261/rna.916708 CrossRefPubMedPubMedCentralGoogle Scholar
  131. Piriyapongsa J, Marino-Ramirez L, Jordan IK (2007) Origin and evolution of human microRNAs from transposable elements. Genetics 176:1323–1337.  https://doi.org/10.1534/genetics.107.072553 CrossRefPubMedPubMedCentralGoogle Scholar
  132. Pogue AI, Clement C, Hill JM, Lukiw WJ (2014) Evolution of microRNA (miRNA) structure and function in plants and animals: relevance to aging and disease. J Aging Sci 2(2):119.  https://doi.org/10.4172/2329-8847.1000119 CrossRefGoogle Scholar
  133. Qin T, Zhao H, Cui P, Albesher N, Xiong L (2017) A nucleus-localized long non-coding RNA enhances drought and salt stress tolerance. Plant Physiol 175:1321–1336.  https://doi.org/10.1104/pp.17.00574 CrossRefPubMedPubMedCentralGoogle Scholar
  134. Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:3407–3425.  https://doi.org/10.1101/gad.1476406 CrossRefPubMedPubMedCentralGoogle Scholar
  135. Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626.  https://doi.org/10.1101/gad.1004402 CrossRefPubMedPubMedCentralGoogle Scholar
  136. Ren G, Xie M, Zhang S, Vinovskis C, Chen X, Yu B (2014) Methylation protects microRNAs from an AGO1-associated activity that uridylates 5′ RNA fragments generated by AGO1 cleavage. Proc Natl Acad Sci USA 111:6365–6370.  https://doi.org/10.1073/pnas.1405083111 CrossRefPubMedGoogle Scholar
  137. Ren Y, Yue H, Li L, Xu Y, Wang Z, Xin Z, Lin T (2018) Identification and characterization of circRNAs involved in the regulation of low nitrogen-promoted root growth in hexaploid wheat. Biol Res 51:43.  https://doi.org/10.1186/s40659-018-0194-3 CrossRefPubMedPubMedCentralGoogle Scholar
  138. Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520CrossRefGoogle Scholar
  139. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the rosetta stone of a hidden RNA language? Cell 146:353–358.  https://doi.org/10.1016/j.cell.2011.07.014 CrossRefPubMedPubMedCentralGoogle Scholar
  140. Salvador-Guirao R, Baldrich P, Weigel D, Rubio-Somoza I, San Segundo B (2018) The MicroRNA miR773 is involved in the arabidopsis immune response to fungal pathogens. Mole Plant-Microbe Interactions 31:249–259.  https://doi.org/10.1094/mpmi-05-17-0108-r CrossRefGoogle Scholar
  141. Schmutz J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183.  https://doi.org/10.1038/nature08670 CrossRefPubMedGoogle Scholar
  142. Schnable PS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115.  https://doi.org/10.1126/science.1178534 CrossRefPubMedGoogle Scholar
  143. Schranz ME, Song BH, Windsor AJ, Mitchell-Olds T (2007) Comparative genomics in the brassicaceae: a family-wide perspective. Curr Opin Plant Biol 10:168–175.  https://doi.org/10.1016/j.pbi.2007.01.014 CrossRefPubMedGoogle Scholar
  144. Secco D, Baumann A, Poirier Y (2010) Characterization of the rice PHO1 gene family reveals a key role for OsPHO1;2 in phosphate homeostasis and the evolution of a distinct clade in dicotyledons. Plant Physiol 152:1693–1704.  https://doi.org/10.1104/pp.109.149872 CrossRefPubMedPubMedCentralGoogle Scholar
  145. Shen J et al (2017) Translational repression by a miniature inverted-repeat transposable element in the 3′ untranslated region. Nat Commun 8:14651.  https://doi.org/10.1038/ncomms14651 CrossRefPubMedPubMedCentralGoogle Scholar
  146. Shin SY, Jeong JS, Lim JY, Kim T, Park JH, Kim JK, Shin C (2018) Transcriptomic analyses of rice (Oryza sativa) genes and non-coding RNAs under nitrogen starvation using multiple omics technologies. BMC Genomics 19:532.  https://doi.org/10.1186/s12864-018-4897-1 CrossRefPubMedPubMedCentralGoogle Scholar
  147. Shuai P et al (2014) Genome-wide identification and functional prediction of novel and drought-responsive lincRNAs in Populus trichocarpa. J Exp Bot 65:4975–4983.  https://doi.org/10.1093/jxb/eru256 CrossRefPubMedPubMedCentralGoogle Scholar
  148. Snyman MC, Solofoharivelo MC, Souza-Richards R, Stephan D, Murray S, Burger JT (2017) The use of high-throughput small RNA sequencing reveals differentially expressed microRNAs in response to aster yellows phytoplasma-infection in Vitis vinifera cv. ‘Chardonnay’. PloS one 12:e0182629.  https://doi.org/10.1371/journal.pone.0182629 CrossRefPubMedPubMedCentralGoogle Scholar
  149. Souret FF, Kastenmayer JP, Green PJ (2004) AtXRN4 degrades mRNA in Arabidopsis and its substrates include selected miRNA targets. Mol Cell 15:173–183.  https://doi.org/10.1016/j.molcel.2004.06.006 CrossRefPubMedGoogle Scholar
  150. Sousa C, Johansson C, Charon C, Manyani H, Sautter C, Kondorosi A, Crespi M (2001) Translational and structural requirements of the early nodulin gene enod40, a short-open reading frame-containing RNA, for elicitation of a cell-specific growth response in the alfalfa root cortex. Mol Cell Biol 21:354–366.  https://doi.org/10.1128/mcb.21.1.354-366.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  151. Spanudakis E, Jackson S (2014) The role of microRNAs in the control of flowering time. J Exp Bot 65:365–380.  https://doi.org/10.1093/jxb/ert453 CrossRefPubMedGoogle Scholar
  152. Stief A, Altmann S, Hoffmann K, Pant BD, Scheible WR, Baurle I (2014) Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. Plant Cell 26:1792–1807.  https://doi.org/10.1105/tpc.114.123851 CrossRefPubMedPubMedCentralGoogle Scholar
  153. Sun X et al (2016) Integrative analysis of Arabidopsis thaliana transcriptomics reveals intuitive splicing mechanism for circular RNA. FEBS Lett 590:3510–3516.  https://doi.org/10.1002/1873-3468.12440 CrossRefPubMedGoogle Scholar
  154. Swiezewski S, Liu F, Magusin A, Dean C (2009) Cold-induced silencing by long antisense transcripts of an Arabidopsis polycomb target. Nature 462:799–802.  https://doi.org/10.1038/nature08618 CrossRefPubMedGoogle Scholar
  155. Tanzer A, Stadler PF (2004) Molecular evolution of a microRNA cluster. J Mol Biol 339:327–335.  https://doi.org/10.1016/j.jmb.2004.03.065 CrossRefPubMedGoogle Scholar
  156. Taulli R, Loretelli C, Pandolfi PP (2013) From pseudo-ceRNAs to circ-ceRNAs: a tale of cross-talk and competition. Nat Struct Mol Biol 20:541–543.  https://doi.org/10.1038/nsmb.2580 CrossRefPubMedPubMedCentralGoogle Scholar
  157. Tenaillon MI, Hufford MB, Gaut BS, Ross-Ibarra J (2011) Genome size and transposable element content as determined by high-throughput sequencing in maize and Zea luxurians. Genome Biol Evol 3:219–229.  https://doi.org/10.1093/gbe/evr008 CrossRefPubMedPubMedCentralGoogle Scholar
  158. Teotia S, Tang G (2015) To bloom or not to bloom: role of microRNAs in plant flowering. Mol Plant 8:359–377.  https://doi.org/10.1016/j.molp.2014.12.018 CrossRefPubMedGoogle Scholar
  159. Ungerer MC, Strakosh SC, Zhen Y (2006) Genome expansion in three hybrid sunflower species is associated with retrotransposon proliferation. Curr Biol 16:R872–R873.  https://doi.org/10.1016/j.cub.2006.09.020 CrossRefPubMedGoogle Scholar
  160. Vicient CM (2010) Transcriptional activity of transposable elements in maize. BMC Genomics 11:601.  https://doi.org/10.1186/1471-2164-11-601 CrossRefPubMedPubMedCentralGoogle Scholar
  161. Wallau GL, Ortiz MF, Loreto EL (2012) Horizontal transposon transfer in eukarya: detection, bias, and perspectives. Genome Biol Evol 4:689–699.  https://doi.org/10.1093/gbe/evs055 CrossRefPubMedGoogle Scholar
  162. Wang HY et al (2010) Transpositional reactivation of two LTR retrotransposons in rice-Zizania recombinant inbred lines (RILs). Hereditas 147:264–277.  https://doi.org/10.1111/j.1601-5223.2010.02181.x CrossRefPubMedGoogle Scholar
  163. Wang M et al (2014a) The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication. Nat Genet 46:982–988.  https://doi.org/10.1038/ng.3044 CrossRefPubMedGoogle Scholar
  164. Wang PL et al (2014b) Circular RNA is expressed across the eukaryotic tree of life. PloS one 9:e90859.  https://doi.org/10.1371/journal.pone.0090859 CrossRefPubMedPubMedCentralGoogle Scholar
  165. Wang Y, Fan X, Lin F, He G, Terzaghi W, Zhu D, Deng XW (2014c) Arabidopsis noncoding RNA mediates control of photomorphogenesis by red light. Proc Natl Acad Sci USA 111:10359–10364.  https://doi.org/10.1073/pnas.1409457111 CrossRefPubMedGoogle Scholar
  166. Wang YG, An M, Zhou SF, She YH, Li WC, Fu FL (2014d) Expression profile of maize microRNAs corresponding to their target genes under drought stress. Biochem Genet 52:474–493.  https://doi.org/10.1007/s10528-014-9661-x CrossRefPubMedGoogle Scholar
  167. Wang D et al (2017a) Transposable elements (TEs) contribute to stress-related long intergenic noncoding RNAs in plants. Plant J 90:133–146.  https://doi.org/10.1111/tpj.13481 CrossRefPubMedPubMedCentralGoogle Scholar
  168. Wang J, Meng X, Dobrovolskaya OB, Orlov YL, Chen M (2017b) Non-coding RNAs and their roles in stress response in plants. Genomics Proteomics Bioinform 15:301–312.  https://doi.org/10.1016/j.gpb.2017.01.007 CrossRefGoogle Scholar
  169. Wang J et al (2018) Re-analysis of long non-coding RNAs and prediction of circRNAs reveal their novel roles in susceptible tomato following TYLCV infection. BMC Plant Biol 18:104.  https://doi.org/10.1186/s12870-018-1332-3 CrossRefPubMedPubMedCentralGoogle Scholar
  170. Wei L et al (2014) Dicer-like 3 produces transposable element-associated 24-nt siRNAs that control agricultural traits in rice. Proc Natl Acad Sci USA 111:3877–3882.  https://doi.org/10.1073/pnas.1318131111 CrossRefPubMedGoogle Scholar
  171. Wicker T et al (2018) Impact of transposable elements on genome structure and evolution in bread wheat. Genome Biol 19:103.  https://doi.org/10.1186/s13059-018-1479-0 CrossRefPubMedPubMedCentralGoogle Scholar
  172. Wight M, Werner A (2013) The functions of natural antisense transcripts Essays in biochemistry 54:91–101.  https://doi.org/10.1042/bse0540091 CrossRefPubMedGoogle Scholar
  173. Williams L, Grigg SP, Xie M, Christensen S, Fletcher JC (2005) Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development 132:3657–3668.  https://doi.org/10.1242/dev.01942 CrossRefPubMedGoogle Scholar
  174. Woodrow P, Pontecorvo G, Ciarmiello LF, Fuggi A, Carillo P (2011) Ttd1a promoter is involved in DNA-protein binding by salt and light stresses. Mol Biol Rep 38:3787–3794.  https://doi.org/10.1007/s11033-010-0494-3 CrossRefPubMedGoogle Scholar
  175. Wu L, Zhou H, Zhang Q, Zhang J, Ni F, Liu C, Qi Y (2010) DNA methylation mediated by a microRNA pathway. Mol Cell 38:465–475.  https://doi.org/10.1016/j.molcel.2010.03.008 CrossRefPubMedGoogle Scholar
  176. Wu J et al (2011) Dominant and pleiotropic effects of a GAI gene in wheat results from a lack of interaction between DELLA and GID1. Plant Physiol 157:2120–2130.  https://doi.org/10.1104/pp.111.185272 CrossRefPubMedPubMedCentralGoogle Scholar
  177. Wu HJ, Wang ZM, Wang M, Wang XJ (2013) Widespread long noncoding RNAs as endogenous target mimics for microRNAs in plants. Plant Physiol 161:1875–1884.  https://doi.org/10.1104/pp.113.215962 CrossRefPubMedPubMedCentralGoogle Scholar
  178. Xia C et al (2017) A TRIM insertion in the promoter of Ms2 causes male sterility in wheat. Nat Commun 8:15407.  https://doi.org/10.1038/ncomms15407 CrossRefPubMedPubMedCentralGoogle Scholar
  179. Xiang L et al (2018) Identification of circularRNAs and their targets in gossypium under verticillium wilt stress based on RNA-seq. PeerJ 6:e4500.  https://doi.org/10.7717/peerj.4500 CrossRefPubMedPubMedCentralGoogle Scholar
  180. Xie Z, Allen E, Wilken A, Carrington JC (2005) DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. Proc Natl Acad Sci USA 102:12984–12989.  https://doi.org/10.1073/pnas.0506426102 CrossRefPubMedGoogle Scholar
  181. Xie K, Shen J, Hou X, Yao J, Li X, Xiao J, Xiong L (2012) Gradual increase of miR156 regulates temporal expression changes of numerous genes during leaf development in rice. Plant Physiol 158:1382–1394.  https://doi.org/10.1104/pp.111.190488 CrossRefPubMedPubMedCentralGoogle Scholar
  182. Xie F, Wang Q, Sun R, Zhang B (2015) Deep sequencing reveals important roles of microRNAs in response to drought and salinity stress in cotton. J Exp Bot 66:789–804.  https://doi.org/10.1093/jxb/eru437 CrossRefPubMedGoogle Scholar
  183. Xin M et al (2011) Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing. BMC Plant Biol 11:61.  https://doi.org/10.1186/1471-2229-11-61 CrossRefPubMedPubMedCentralGoogle Scholar
  184. Yamaguchi A, Abe M (2012) Regulation of reproductive development by non-coding RNA in Arabidopsis: to flower or not to flower. J Plant Res 125:693–704.  https://doi.org/10.1007/s10265-012-0513-7 CrossRefPubMedPubMedCentralGoogle Scholar
  185. Yang L, Wu G, Poethig RS (2012) Mutations in the GW-repeat protein SUO reveal a developmental function for microRNA-mediated translational repression in Arabidopsis. Proc Natl Acad Sci USA 109:315–320.  https://doi.org/10.1073/pnas.1114673109 CrossRefPubMedGoogle Scholar
  186. Yasuda K et al (2013) Utilization of transposable element mPing as a novel genetic tool for modification of the stress response in rice. Mol breed 32:505–516.  https://doi.org/10.1007/s11032-013-9885-1 CrossRefPubMedPubMedCentralGoogle Scholar
  187. Ye R et al (2012) Cytoplasmic assembly and selective nuclear import of Arabidopsis Argonaute4/siRNA complexes. Mol Cell 46:859–870.  https://doi.org/10.1016/j.molcel.2012.04.013 CrossRefPubMedGoogle Scholar
  188. Ye CY, Chen L, Liu C, Zhu QH, Fan L (2015) Widespread noncoding circular RNAs in plants. The New Phytol 208:88–95.  https://doi.org/10.1111/nph.13585 CrossRefPubMedGoogle Scholar
  189. Yin Z, Li Y, Han X, Shen F (2012) Genome-wide profiling of miRNAs and other small non-coding RNAs in the Verticillium dahliae-inoculated cotton roots. PloS one 7:e35765.  https://doi.org/10.1371/journal.pone.0035765 CrossRefPubMedPubMedCentralGoogle Scholar
  190. Yoshida S, Maruyama S, Nozaki H, Shirasu K (2010) Horizontal gene transfer by the parasitic plant Striga hermonthica. Science 328:1128.  https://doi.org/10.1126/science.1187145 CrossRefPubMedGoogle Scholar
  191. Yoshikawa M, Peragine A, Park MY, Poethig RS (2005) A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev 19:2164–2175.  https://doi.org/10.1101/gad.1352605 CrossRefPubMedPubMedCentralGoogle Scholar
  192. You C et al (2017) Conservation and divergence of small RNA pathways and microRNAs in land plants. Genome Biol 18:158.  https://doi.org/10.1186/s13059-017-1291-2 CrossRefPubMedPubMedCentralGoogle Scholar
  193. Yu R, Jih G, Iglesias N, Moazed D (2014) Determinants of heterochromatic siRNA biogenesis and function. Mol Cell 53:262–276.  https://doi.org/10.1016/j.molcel.2013.11.014 CrossRefPubMedGoogle Scholar
  194. Zhang Y, Jiang WK, Gao LZ (2011) Evolution of microRNA genes in oryza sativa and Arabidopsis thaliana: an update of the inverted duplication model. PloS one 6:e28073.  https://doi.org/10.1371/journal.pone.0028073 CrossRefPubMedPubMedCentralGoogle Scholar
  195. Zhang Y et al (2013) Circular intronic long noncoding RNAs. Mol Cell 51:792–806.  https://doi.org/10.1016/j.molcel.2013.08.017 CrossRefPubMedGoogle Scholar
  196. Zhang T et al (2015) Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol 33:531–537.  https://doi.org/10.1038/nbt.3207 CrossRefPubMedGoogle Scholar
  197. Zhang Y, Wang Y, Xie F, Li C, Zhang B, Nichols RL, Pan X (2016) Identification and characterization of microRNAs in the plant parasitic root-knot nematode Meloidogyne incognita using deep sequencing. Funct Integr Genomics 16:127–142.  https://doi.org/10.1007/s10142-015-0472-x CrossRefPubMedGoogle Scholar
  198. Zhang JW, Long Y, Xue MD, Xiao XG, Pei XW (2017) Identification of microRNAs in response to drought in common wild rice (Oryza rufipogon Griff) shoots and roots. PloS one 12:e0170330.  https://doi.org/10.1371/journal.pone.0170330 CrossRefPubMedPubMedCentralGoogle Scholar
  199. Zhao X, Li J, Lian B, Gu H, Li Y, Qi Y (2018) Global identification of Arabidopsis lncRNAs reveals the regulation of MAF4 by a natural antisense RNA. Nat Commun 9:5056.  https://doi.org/10.1038/s41467-018-07500-7 CrossRefPubMedPubMedCentralGoogle Scholar
  200. Zhou L, Liu Y, Liu Z, Kong D, Duan M, Luo L (2010) Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot 61:4157–4168.  https://doi.org/10.1093/jxb/erq237 CrossRefPubMedGoogle Scholar
  201. Zhou Y et al (2015) Spatiotemporal sequestration of miR165/166 by Arabidopsis argonaute10 promotes shoot apical meristem maintenance. Cell Rep 10:1819–1827.  https://doi.org/10.1016/j.celrep.2015.02.047 CrossRefPubMedGoogle Scholar
  202. Zhu H et al (2011) Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell 145:242–256.  https://doi.org/10.1016/j.cell.2011.03.024 CrossRefPubMedPubMedCentralGoogle Scholar
  203. Zou J et al (2011) De novo genetic variation associated with retrotransposon activation, genomic rearrangements and trait variation in a recombinant inbred line population of Brassica napus derived from interspecific hybridization with Brassica rapa. Plant J 68:212–224.  https://doi.org/10.1111/j.1365-313x.2011.04679.x CrossRefPubMedGoogle Scholar
  204. Zuo J, Wang Q, Zhu B, Luo Y, Gao L (2016) Deciphering the roles of circRNAs on chilling injury in tomato. Biochem Biophys Res Commun 479:132–138.  https://doi.org/10.1016/j.bbrc.2016.07.032 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jinna Hou
    • 1
  • Dandan Lu
    • 1
  • Annaliese S. Mason
    • 2
  • Baoquan Li
    • 1
  • Meili Xiao
    • 3
  • Sufang An
    • 1
  • Donghui Fu
    • 3
    Email author
  1. 1.Crop Designing CentreHenan Academy of Agricultural SciencesZhengzhouChina
  2. 2.Plant Breeding DepartmentIFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig UniversityGiessenGermany
  3. 3.Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy CollegeJiangxi Agricultural UniversityNanchangChina

Personalised recommendations