Advertisement

Planta

, Volume 250, Issue 1, pp 79–94 | Cite as

Mouse lipogenic proteins promote the co-accumulation of triacylglycerols and sesquiterpenes in plant cells

  • Yingqi Cai
  • Payton Whitehead
  • Joe Chappell
  • Kent D. ChapmanEmail author
Original Article

Abstract

Main conclusion

Mouse FIT2 protein redirects the cytoplasmic terpene biosynthetic machinery to lipid-droplet-forming domains in the ER and this relocalization supports the efficient compartmentalization and accumulation of sesquiterpenes in plant cells.

Mouse (Mus musculus) fat storage-inducing transmembrane protein 2 (MmFIT2), an endoplasmic reticulum (ER)-resident protein with an important role in lipid droplet (LD) biogenesis in mammals, can function in plant cells to promote neutral lipid compartmentalization. Surprisingly, in affinity capture experiments, the Nicotiana benthamiana 5-epi-aristolochene synthase (NbEAS), a soluble cytoplasm-localized sesquiterpene synthase, was one of the most abundant proteins that co-precipitated with GFP-tagged MmFIT2 in transient expression assays in N. benthamiana leaves. Consistent with results of pull-down experiments, the subcellular location of mCherry-tagged NbEAS was changed from the cytoplasm to the LD-forming domains in the ER, only when co-expressed with MmFIT2. Ectopic co-expression of NbEAS and MmFIT2 together with mouse diacylglycerol:acyl-CoA acyltransferase 2 (MmDGAT2) in N. benthamiana leaves substantially increased the numbers of cytoplasmic LDs and supported the accumulation of the sesquiterpenes, 5-epi-aristolochene and capsidiol, up to tenfold over levels elicited by Agrobacterium infection alone. Taken together, our results suggest that MmFIT2 recruits sesquiterpene synthetic machinery to ER subdomains involved in LD formation and that this process can enhance the efficiency of sesquiterpene biosynthesis and compartmentalization in plant cells. Further, MmFIT2 and MmDGAT2 represent cross-kingdom lipogenic protein factors that may be used to engineer terpene accumulation more broadly in the cytoplasm of plant vegetative tissues.

Keywords

Terpenes Sesquiterpene synthase Lipid droplet Endoplasmic reticulum 

Notes

Acknowledgements

This research was initiated as part of a classroom undergraduate research course, BIOL 3900, at UNT with the support of the National Science Foundation (NSF), Integrative Organismal Systems Division (IOS-1656263). Course instructors and students deserving special recognition include Dr. Ashley Cannon, Charles Anderson, Rachael Tumer, Selina Aguilar, Matthew Barker, Andre Castaneda, Jessica Cruz, Nelson Duarte, Palamandadige Fernando, Gretchen Johnson, Bilal Khoncarly, Jose Lopez, Catherine Stout, Pratheeba Thirucenthilvelan. In addition, the contributions of the spring 2017 undergraduate biochemistry laboratory at Bethel University (St. Paul, MN) directed by Dr. Angela Stoeckman, are gratefully acknowledged. The expansion of this research was supported by the US Department of Energy (DOE) Office of Science, BES-Physical Biosciences program (DE-SC0016536). We are grateful to Dr. Qing Liu (CSIRO Plant Industry) for providing the construct pORE04-P19, Dr. David Silver (Duke—National University of Singapore) for providing the construct with MmFIT2 coding sequence, Dr. Mina Aziz for assistance with GC–MS, and Douglas Whitten (Michigan State University Proteomics Core Facility) for carrying out the proteomics analysis.

Supplementary material

425_2019_3148_MOESM1_ESM.pdf (2 mb)
Supplementary material 1 (PDF 2035 kb)
425_2019_3148_MOESM2_ESM.xlsx (189 kb)
Supplementary material 2 (XLSX 188 kb)

References

  1. Bohlmann J, Keeling CI (2008) Terpenoid biomaterials. Plant J 54(4):656–669.  https://doi.org/10.1111/j.1365-313X.2008.03449.x CrossRefPubMedGoogle Scholar
  2. Brown GD (2010) The biosynthesis of artemisinin (Qinghaosu) and the phytochemistry of Artemisia annua L. (Qinghao). Molecules 15(11):7603–7698.  https://doi.org/10.3390/molecules15117603 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Brückner K, Tissier A (2013) High-level diterpene production by transient expression in Nicotiana benthamiana. Plant Methods 9(1):46.  https://doi.org/10.1186/1746-4811-9-46 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cai Y, Goodman JM, Pyc M, Mullen RT, Dyer JM, Chapman KD (2015) Arabidopsis SEIPIN proteins modulate triacylglycerol accumulation and influence lipid droplet proliferation. Plant Cell 27(9):2616–2636.  https://doi.org/10.1105/tpc.15.00588 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cai Y, McClinchie E, Price A, Nguyen TN, Gidda SK, Watt SC, Yurchenko O, Park S, Sturtevant D, Mullen RT, Dyer JM, Chapman KD (2017) Mouse fat storage-inducing transmembrane protein 2 (FIT2) promotes lipid droplet accumulation in plants. Plant Biotechnol J 15(7):824–836.  https://doi.org/10.1111/pbi.12678 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chapman KD, Dyer JM, Mullen RT (2012) Biogenesis and functions of lipid droplets in plants. J Lipid Res 53(2):215–226.  https://doi.org/10.1194/jlr.R021436 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chappell J, Nable R (1987) Induction of sesquiterpenoid biosynthesis in tobacco cell suspension cultures by fungal elicitor. Plant Physiol 85(2):469–473CrossRefGoogle Scholar
  8. Choudhary V, Ojha N, Golden A, Prinz WA (2015) A conserved family of proteins facilitates nascent lipid droplet budding from the ER. J Cell Biol 211(2):261–271.  https://doi.org/10.1083/jcb.201505067 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Choudhary V, Golani G, Joshi AS, Cottier S, Schneiter R, Prinz WA, Kozlov MM (2018) Architecture of lipid droplets in endoplasmic reticulum is determined by phospholipid intrinsic curvature. Curr Biol 28(6):915–926.  https://doi.org/10.1016/j.cub.2018.02.020 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Crouzet J, Roland J, Peeters E, Trombik T, Ducos E, Nader J, Boutry M (2013) NtPDR1, a plasma membrane ABC transporter from Nicotiana tabacum, is involved in diterpene transport. Plant Mol Biol 82(1–2):181–192.  https://doi.org/10.1007/s11103-013-0053-0 CrossRefGoogle Scholar
  11. Delatte TL, Scaiola G, Molenaar J, de Sousa Farias K, Alves Gomes Albertti L, Busscher J, Verstappen F, Carollo C, Bouwmeester H, Beekwilder J (2018) Engineering storage capacity for volatile sesquiterpenes in Nicotiana benthamiana leaves. Plant Biotechnol J.  https://doi.org/10.1111/pbi.12933 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Facchini PJ, Chappell J (1992) Gene family for an elicitor-induced sesquiterpene cyclase in tobacco. Proc Natl Acad Sci USA 89(22):11088–11092CrossRefGoogle Scholar
  13. Gardner RG, Hampton RY (1999) A highly conserved signal controls degradation of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase in eukaryotes. J Biol Chem 274(44):31671–31678CrossRefGoogle Scholar
  14. Geng S-L, Cui Z-X, Shu B, Zhao S, Yu X-H (2012) Histochemistry and cell wall specialization of oil cells related to the essential oil accumulation in the bark of Cinnamomum cassia Presl. (Lauraceae). Plant Prod Sci 15(1):1–9CrossRefGoogle Scholar
  15. Gershenzon J, Murtagh GJ, Croteau R (1993) Absence of rapid terpene turnover in several diverse species of terpene-accumulating plants. Oecologia 96(4):583–592.  https://doi.org/10.1007/BF00320517 CrossRefPubMedGoogle Scholar
  16. Gidda SK, Park S, Pyc M, Yurchenko O, Cai Y, Wu P, Andrews DW, Chapman KD, Dyer JM, Mullen RT (2016) Lipid droplet-associated proteins (LDAPs) are required for the dynamic regulation of neutral lipid compartmentation in plant cells. Plant Physiol 170(4):2052–2071.  https://doi.org/10.1104/pp.15.01977 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gross DA, Snapp EL, Silver DL (2010) Structural insights into triglyceride storage mediated by fat storage-inducing transmembrane (FIT) protein 2. PLoS One 5(5):e10796.  https://doi.org/10.1371/journal.pone.0010796 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gross DA, Zhan C, Silver DL (2011) Direct binding of triglyceride to fat storage-inducing transmembrane proteins 1 and 2 is important for lipid droplet formation. Proc Natl Acad Sci USA 108(49):19581–19586.  https://doi.org/10.1073/pnas.1110817108 CrossRefPubMedGoogle Scholar
  19. Hasegawa M, Mitsuhara I, Seo S, Imai T, Koga J, Okada K, Yamane H, Ohashi Y (2010) Phytoalexin accumulation in the interaction between rice and the blast fungus. Mol Plant Microbe Interact 23(8):1000–1011.  https://doi.org/10.1094/MPMI-23-8-1000 CrossRefPubMedGoogle Scholar
  20. Hemmerlin A, Hoeffler JF, Meyer O, Tritsch D, Kagan IA, Grosdemange-Billiard C, Rohmer M, Bach TJ (2003) Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J Biol Chem 278(29):26666–26676.  https://doi.org/10.1074/jbc.M302526200 CrossRefPubMedGoogle Scholar
  21. Horn PJ, Chapman KD (2014) Metabolite Imager: customized spatial analysis of metabolite distributions in mass spectrometry imaging. Metabolomics 10(2):337–348.  https://doi.org/10.1007/s11306-013-0575-0 CrossRefGoogle Scholar
  22. Jasiński M, Stukkens Y, Degand H, Purnelle B, Marchand-Brynaert J, Boutry M (2001) A plant plasma membrane ATP binding cassette-type transporter is involved in antifungal terpenoid secretion. Plant Cell 13(5):1095–1107PubMedPubMedCentralGoogle Scholar
  23. Jiang Z, Kempinski C, Bush CJ, Nybo SE, Chappell J (2016) Engineering triterpene and methylated triterpene production in plants provides biochemical and physiological insights into terpene metabolism. Plant Physiol 170(2):702–716.  https://doi.org/10.1104/pp.15.01548 CrossRefPubMedGoogle Scholar
  24. Kadereit B, Kumar P, Wang WJ, Miranda D, Snapp EL, Severina N, Torregroza I, Evans T, Silver DL (2008) Evolutionarily conserved gene family important for fat storage. Proc Natl Acad Sci USA 105(1):94–99.  https://doi.org/10.1073/pnas.0708579105 CrossRefPubMedGoogle Scholar
  25. Kappers IF, Aharoni A, van Herpen TW, Luckerhoff LL, Dicke M, Bouwmeester HJ (2005) Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science 309(5743):2070–2072.  https://doi.org/10.1126/science.1116232 CrossRefPubMedGoogle Scholar
  26. Kempinski C, Chappell J (2018) Engineering triterpene metabolism in the oilseed of Arabidopsis thaliana. Plant Biotechnol J.  https://doi.org/10.1111/pbi.12984 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kempinski C, Jiang Z, Zinck G, Sato SJ, Ge Z, Clemente TE, Chappell J (2018) Engineering linear, branched-chain triterpene metabolism in monocots. Plant Biotechnol J.  https://doi.org/10.1111/pbi.12983 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lange BM (2015) The evolution of plant secretory structures and emergence of terpenoid chemical diversity. Annu Rev Plant Biol 66:139–159.  https://doi.org/10.1146/annurev-arplant-043014-114639 CrossRefPubMedGoogle Scholar
  29. Lange BM, Ahkami A (2013) Metabolic engineering of plant monoterpenes, sesquiterpenes and diterpenes—current status and future opportunities. Plant Biotechnol J 11(2):169–196.  https://doi.org/10.1111/pbi.12022 CrossRefPubMedGoogle Scholar
  30. Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, Debono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J (2010) Acyl-lipid metabolism. Arabidopsis Book 8:e0133.  https://doi.org/10.1199/tab.0133 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Maldonado-Bonilla LD, Betancourt-Jiménez M, Lozoya-Gloria E (2008) Local and systemic gene expression of sesquiterpene phytoalexin biosynthetic enzymes in plant leaves. Eur J Plant Pathol 121(4):439–449.  https://doi.org/10.1007/s10658-007-9262-1 CrossRefGoogle Scholar
  32. Moreau RA, Preisig CL (1993) Lipid changes in tobacco cell suspensions following treatment with cellulase elicitor. Physiol Plant 87(1):7–13.  https://doi.org/10.1111/j.1399-3054.1993.tb08783.x CrossRefGoogle Scholar
  33. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497.  https://doi.org/10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  34. Murphy DJ (2001) The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 40(5):325–438CrossRefGoogle Scholar
  35. Petrie JR, Shrestha P, Liu Q, Mansour MP, Wood CC, Zhou XR, Nichols PD, Green AG, Singh SP (2010) Rapid expression of transgenes driven by seed-specific constructs in leaf tissue: DHA production. Plant Methods 6:8.  https://doi.org/10.1186/1746-4811-6-8 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Pyc M, Cai Y, Gidda SK, Yurchenko O, Park S, Kretzschmar FK, Ischebeck T, Valerius O, Braus GH, Chapman KD, Dyer JM, Mullen RT (2017a) Arabidopsis lipid droplet-associated protein (LDAP)—interacting protein (LDIP) influences lipid droplet size and neutral lipid homeostasis in both leaves and seeds. Plant J 92(6):1182–1201.  https://doi.org/10.1111/tpj.13754 CrossRefPubMedGoogle Scholar
  37. Pyc M, Cai Y, Greer MS, Yurchenko O, Chapman KD, Dyer JM, Mullen RT (2017b) Turning over a new leaf in lipid droplet biology. Trends Plant Sci 22(7):596–609.  https://doi.org/10.1016/j.tplants.2017.03.012 CrossRefPubMedGoogle Scholar
  38. Ralston L, Kwon ST, Schoenbeck M, Ralston J, Schenk DJ, Coates RM, Chappell J (2001) Cloning, heterologous expression, and functional characterization of 5-epi-aristolochene-1,3-dihydroxylase from tobacco (Nicotiana tabacum). Arch Biochem Biophys 393(2):222–235.  https://doi.org/10.1006/abbi.2001.2483 CrossRefPubMedGoogle Scholar
  39. Reed J, Stephenson MJ, Miettinen K, Brouwer B, Leveau A, Brett P, Goss RJM, Goossens A, O’Connell MA, Osbourn A (2017) A translational synthetic biology platform for rapid access to gram-scale quantities of novel drug-like molecules. Metab Eng 42:185–193.  https://doi.org/10.1016/j.ymben.2017.06.012 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Reiling KK, Yoshikuni Y, Martin VJ, Newman J, Bohlmann J, Keasling JD (2004) Mono and diterpene production in Escherichia coli. Biotechnol Bioeng 87(2):200–212.  https://doi.org/10.1002/bit.20128 CrossRefPubMedGoogle Scholar
  41. Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440(7086):940–943.  https://doi.org/10.1038/nature04640 CrossRefPubMedGoogle Scholar
  42. Sallaud C, Giacalone C, Töpfer R, Goepfert S, Bakaher N, Rösti S, Tissier A (2012) Characterization of two genes for the biosynthesis of the labdane diterpene Z-abienol in tobacco (Nicotiana tabacum) glandular trichomes. Plant J 72(1):1–17.  https://doi.org/10.1111/j.1365-313X.2012.05068.x CrossRefPubMedGoogle Scholar
  43. Sasabe M, Toyoda K, Shiraishi T, Inagaki Y, Ichinose Y (2002) cDNA cloning and characterization of tobacco ABC transporter: NtPDR1 is a novel elicitor-responsive gene. FEBS Lett 518(1–3):164–168CrossRefGoogle Scholar
  44. Schwab W, Davidovich-Rikanati R, Lewinsohn E (2008) Biosynthesis of plant-derived flavor compounds. Plant J 54(4):712–732.  https://doi.org/10.1111/j.1365-313X.2008.03446.x CrossRefPubMedGoogle Scholar
  45. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68(5):850–858CrossRefGoogle Scholar
  46. Shimada TL, Takano Y, Shimada T, Fujiwara M, Fukao Y, Mori M, Okazaki Y, Saito K, Sasaki R, Aoki K, Hara-Nishimura I (2014) Leaf oil body functions as a subcellular factory for the production of a phytoalexin in Arabidopsis. Plant Physiol 164(1):105–118.  https://doi.org/10.1104/pp.113.230185 CrossRefPubMedGoogle Scholar
  47. Sparkes I, Tolley N, Aller I, Svozil J, Osterrieder A, Botchway S, Mueller C, Frigerio L, Hawes C (2010) Five Arabidopsis reticulon isoforms share endoplasmic reticulum location, topology, and membrane-shaping properties. Plant Cell 22(4):1333–1343.  https://doi.org/10.1105/tpc.110.074385 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Starks CM, Back K, Chappell J, Noel JP (1997) Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. Science 277(5333):1815–1820CrossRefGoogle Scholar
  49. Takahashi S, Yeo Y, Greenhagen BT, McMullin T, Song L, Maurina-Brunker J, Rosson R, Noel JP, Chappell J (2007) Metabolic engineering of sesquiterpene metabolism in yeast. Biotechnol Bioeng 97(1):170–181.  https://doi.org/10.1002/bit.21216 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Tarshis LC, Yan M, Poulter CD, Sacchettini JC (1994) Crystal structure of recombinant farnesyl diphosphate synthase at 2.6-A resolution. Biochemistry 33(36):10871–10877CrossRefGoogle Scholar
  51. Tholl D, Lee S (2011) Terpene specialized metabolism in Arabidopsis thaliana. Arabidopsis Book 9:e0143.  https://doi.org/10.1199/tab.0143 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Vanhercke T, El Tahchy A, Liu Q, Zhou XR, Shrestha P, Divi UK, Ral JP, Mansour MP, Nichols PD, James CN, Horn PJ, Chapman KD, Beaudoin F, Ruiz-López N, Larkin PJ, de Feyter RC, Singh SP, Petrie JR (2014) Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves. Plant Biotechnol J 12(2):231–239.  https://doi.org/10.1111/pbi.12131 CrossRefPubMedGoogle Scholar
  53. Vögeli U, Freeman JW, Chappell J (1990) Purification and characterization of an inducible sesquiterpene cyclase from elicitor-treated tobacco cell suspension cultures. Plant Physiol 93(1):182–187CrossRefGoogle Scholar
  54. Wang B, Kashkooli AB, Sallets A, Ting HM, de Ruijter NCA, Olofsson L, Brodelius P, Pottier M, Boutry M, Bouwmeester H, van der Krol AR (2016) Transient production of artemisinin in Nicotiana benthamiana is boosted by a specific lipid transfer protein from A. annua. Metab Eng 38:159–169.  https://doi.org/10.1016/j.ymben.2016.07.004 CrossRefPubMedGoogle Scholar
  55. Whitehead IM, Threlfall DR, Ewing DF (1989) 5-epi-aristolochene is a common precursor of the sesquiterpenoid phytoalexins capsidiol and debneyol. Phytochemistry 28(3):775–779CrossRefGoogle Scholar
  56. Wilfling F, Haas JT, Walther TC, Farese RV (2014) Lipid droplet biogenesis. Curr Opin Cell Biol 29:39–45.  https://doi.org/10.1016/j.ceb.2014.03.008 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Wu S, Schalk M, Clark A, Miles RB, Coates R, Chappell J (2006) Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nat Biotechnol 24:1441CrossRefGoogle Scholar
  58. Wu S, Jiang Z, Kempinski C, Eric Nybo S, Husodo S, Williams R, Chappell J (2012) Engineering triterpene metabolism in tobacco. Planta 236(3):867–877.  https://doi.org/10.1007/s00425-012-1680-4 CrossRefPubMedGoogle Scholar
  59. Xu C, Shanklin J (2016) Triacylglycerol metabolism, function, and accumulation in plant vegetative tissues. Annu Rev Plant Biol 67:179–206.  https://doi.org/10.1146/annurev-arplant-043015-111641 CrossRefPubMedGoogle Scholar
  60. Yen CL, Stone SJ, Koliwad S, Harris C, Farese RV (2008) Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J Lipid Res 49(11):2283–2301.  https://doi.org/10.1194/jlr.r800018-jlr200 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Yurchenko O, Shockey JM, Gidda SK, Silver MI, Chapman KD, Mullen RT, Dyer JM (2017) Engineering the production of conjugated fatty acids in Arabidopsis thaliana leaves. Plant Biotechnol J 15(8):1010–1023.  https://doi.org/10.1111/pbi.12695 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Zhao C, Kim Y, Zeng Y, Li M, Wang X, Hu C, Gorman C, Dai SY, Ding SY, Yuan JS (2018) Co-compartmentation of terpene biosynthesis and storage via synthetic droplet. ACS Synth Biol 7(3):774–781.  https://doi.org/10.1021/acssynbio.7b00368 CrossRefPubMedGoogle Scholar
  63. Zhuang X, Chappell J (2015) Building terpene production platforms in yeast. Biotechnol Bioeng 112(9):1854–1864.  https://doi.org/10.1002/bit.25588 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biological Sciences, Biodiscovery InstituteUniversity of North TexasDentonUSA
  2. 2.Plant Biology Program and Department of Pharmaceutical SciencesUniversity of KentuckyLexingtonUSA

Personalised recommendations