Skip to main content
Log in

Identification, evolution and alternative splicing profile analysis of the splicing factor 30 (SPF30) in plant species

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The work offers a comprehensive evaluation on the phylogenetics and conservation of splicing patterns of the plant SPF30 splicing factor gene family.

In eukaryotes, one pre-mRNA can generate multiple mRNA transcripts by alternative splicing (AS), which expands transcriptome and proteome diversity. Splicing factor 30 (SPF30), also known as survival motor neuron domain containing protein 1 (SMNDC1), is a spliceosomal protein that plays an essential role in spliceosomal assembly. Although SPF30 genes have been well characterised in human and yeast, little is known about their homologues in plants. Here, we report the genome-wide identification and phylogenetic analysis of SPF30 genes in the plant kingdom. In total, 82 SPF30 genes were found in 64 plant species from algae to land plants. Alternative transcripts were found in many SPF30 genes and splicing profile analysis revealed that the second intron in SPF30 genome is frequently associated with AS events and contributed to the birth of novel exons in a few SPF30 members. In addition, different conserved sequences were observed at these putative splice sites among moss, monocots and dicots, respectively. Our findings will facilitate further functional characterization of plant SPF30 genes as putative splicing factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abascal F, Tress ML, Valencia A (2015) The evolutionary fate of alternatively spliced homologous exons after gene duplication. Genome Biol Evol 7:1392–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams KL, Wendel JF (2005) Polyploidy and genome evolution in plants. Curr Opin Plant Biol 8:135–141

    Article  CAS  PubMed  Google Scholar 

  • Alekseyenko AV, Kim N, Lee CJ (2007) Global analysis of exon creation versus loss and the role of alternative splicing in 17 vertebrate genomes. RNA 13:661–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren JY, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barta A, Marquez Y, Brown JW (2012) Challenges in plant alternative splicing. In: Stamm S, Smith C, Lührmann R (eds) Alternative pre-mRNA splicing: theory and protocols. Wiley, New York, pp 79–91

    Chapter  Google Scholar 

  • Bernard P, Drogat J, Dheur S, Genier S, Javerzat JP (2010) Splicing factor Spf30 assists exosome-mediated gene silencing in fission yeast. Mol Cell Biol 30:1145–1157

    Article  CAS  PubMed  Google Scholar 

  • Blencowe BJ (2017) The relationship between alternative splicing and proteomic complexity. Trends Biochem Sci 42:407–408

    Article  CAS  PubMed  Google Scholar 

  • Buhler D, Raker V, Luhrmann R, Fischer U (1999) Essential role for the tudor domain of SMN in spliceosomal U snRNP assembly: implications for spinal muscular atrophy. Hum Mol Genet 8:2351–2357

    Article  CAS  PubMed  Google Scholar 

  • Bush SJ, Chen L, Tovar-Corona JM, Urrutia AO (2017) Alternative splicing and the evolution of phenotypic novelty. Philos T R Soc B 372:20150474

    Article  Google Scholar 

  • Caceres JF, Kornblihtt AR (2002) Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet 18:186–193

    Article  CAS  PubMed  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST plus: architecture and applications. BMC Bioinformatics 10:421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chamala S, Feng G, Chavarro C, Barbazuk WB (2015) Genome-wide identification of evolutionarily conserved alternative splicing events in flowering plants. Front Bioeng Biotechnol 3:33

    Article  PubMed  PubMed Central  Google Scholar 

  • Corpet F (1988) Multiple sequence alignment with hierarchical-clustering. Nucleic Acids Res 16:10881–10890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cote J, Richard S (2005) Tudor domains bind symmetrical dimethylated arginines. J Biol Chem 280:28476–28483

    Article  CAS  PubMed  Google Scholar 

  • Darracq A, Adams KL (2013) Features of evolutionarily conserved alternative splicing events between Brassica and Arabidopsis. New Phytol 199:252–263

    Article  CAS  PubMed  Google Scholar 

  • Goodstein DM, Shu SQ, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186

    Article  CAS  PubMed  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  • Johnson LS, Eddy SR, Portugaly E (2010) Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinformatics 11:431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalyna M, Lopato S, Voronin V, Barta A (2006) Evolutionary conservation and regulation of particular alternative splicing events in plant SR proteins. Nucleic Acids Res 34:4395–4405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keren H, Lev-Maor G, Ast G (2010) Alternative splicing and evolution: diversification, exon definition and function. Nat Rev Genet 11:345–355

    Article  CAS  PubMed  Google Scholar 

  • Kim E, Goren A, Ast G (2008) Alternative splicing: current perspectives. BioEssays 30:38–47

    Article  CAS  PubMed  Google Scholar 

  • Kopelman NM, Lancet D, Yanai I (2005) Alternative splicing and gene duplication are inversely correlated evolutionary mechanisms. Nat Genet 37:588–589

    Article  CAS  PubMed  Google Scholar 

  • Kornblihtt AR, Schor IE, Allo M, Dujardin G, Petrillo E, Munoz MJ (2013) Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nat Rev Mol Cell Bio 14:153–165

    Article  CAS  Google Scholar 

  • Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letunic I, Bork P (2018) 20 years of the SMART protein domain annotation resource. Nucleic Acids Res 46:D493–D496

    Article  CAS  PubMed  Google Scholar 

  • Lewis BP, Green RE, Brenner SE (2003) Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. P Natl Acad Sci USA 100:189–192

    Article  CAS  Google Scholar 

  • Little JT, Jurica MS (2008) Splicing factor SPF30 bridges an interaction between the prespliceosome protein U2AF35 and tri-small nuclear ribonucleoprotein protein hPrp3. J Biol Chem 283:8145–8152

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Guo YH, Liu HP, Bian CB, Lam R, Liu YS, Mackenzie F, Rojas LA, Reinberg D, Bedford MT, Xu RM, Min JR (2012) Crystal Structure of TDRD3 and methyl-arginine binding characterization of TDRD3, SMN and SPF30. PLoS One 7:e30375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu TT, Lu GJ, Fan DL, Zhu CR, Li W, Zhao QA, Feng Q, Zhao Y, Guo YL, Li WJ, Huang XH, Han B (2010) Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. Genome Res 20:1238–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marquez Y, Brown JWS, Simpson C, Barta A, Kalyna M (2012) Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Res 22:1184–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matera AG, Wang ZF (2014) A day in the life of the spliceosome. Nat Rev Mol Cell Bio 15:108–121

    Article  CAS  Google Scholar 

  • Mei WB, Boatwright L, Feng GQ, Schnable JC, Barbazuk WB (2017) Evolutionarily conserved alternative splicing across monocots. Genetics 207:465–480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meister G, Hannus S, Plottner O, Baars T, Hartmann E, Fakan S, Laggerbauer B, Fischer U (2001) SMNrp is an essential pre-mRNA splicing factor required for the formation of the mature spliceosome. EMBO J 20:2304–2314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morariu VI, Srinivasan BV, Raykar VC, Duraiswami R, Davis LS (2008) Automatic online tuning for fast Gaussian summation. Advances in Neural Information Processing Systems, 21st conference. pp 1113–1120

  • Neubauer G, King A, Rappsilber J, Calvio C, Watson M, Ajuh P, Sleeman J, Lamond A, Mann M (1998) Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nat Genet 20:46–50

    Article  CAS  PubMed  Google Scholar 

  • Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40:1413–1415

    Article  CAS  PubMed  Google Scholar 

  • Rappsilber J, Ajuh P, Lamond AI, Mann M (2001) SPF30 is an essential human splicing factor required for assembly of the U4/U5/U6 tri-small nuclear ribonucleoprotein into the spliceosome. J Biol Chem 276:31142–31150

    Article  CAS  PubMed  Google Scholar 

  • Reddy ASN (2007) Alternative splicing of pre-messenger RNAs in plants in the genomic era. Annu Rev Plant Biol 58:267–294

    Article  CAS  PubMed  Google Scholar 

  • Schlaen RG, Mancini E, Sanchez SE, Perez-Santangelo S, Rugnone ML, Simpson CG, Brown JWS, Zhang X, Chernomoretz A, Yanovsky MJ (2015) The spliceosome assembly factor GEMIN2 attenuates the effects of temperature on alternative splicing and circadian rhythms. P Natl Acad Sci USA 112:9382–9387

    Article  CAS  Google Scholar 

  • Selenko P, Sprangers R, Stier G, Buhler D, Fischer U, Sattler M (2001) SMN Tudor domain structure and its interaction with the Sm proteins. Nat Struct Biol 8:27–31

    Article  CAS  PubMed  Google Scholar 

  • Sorek R (2007) The birth of new exons: mechanisms and evolutionary consequences. RNA 13:1603–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staiger D, Brown JWS (2013) Alternative splicing at the intersection of biological timing, development, and stress responses. Plant Cell 25:3640–3656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talbot K, Miguel-Aliaga I, Mohaghegh P, Ponting CP, Davies KE (1998) Characterization of a gene encoding survival motor neuron (SMN)-related protein, a constituent of the spliceosome complex. Hum Mol Genet 7:2149–2156

    Article  CAS  PubMed  Google Scholar 

  • Tian Y, Chen M-X, Yang J-F, Achala H, Gao B, Hao G-F, Yang G-F, Dian Z-Y, Hu Q-J, Zhang D (2018) Genome-wide identification and functional analysis of the splicing component SYF2/NTC31/p29 across different plant species. Planta 1-18

  • Tress ML, Abascal F, Valencia A (2017) Most alternative isoforms are not functionally important. Trends Biochem Sci 42:408–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripsianes K, Madl T, Machyna M, Fessas D, Englbrecht C, Fischer U, Neugebauer KM, Sattler M (2011) Structural basis for dimethylarginine recognition by the Tudor domains of human SMN and SPF30 proteins. Nat Struct Mol Biol 18:1414

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Zheng H, Yang S, Yu H, Li J, Jiang H, Su J, Yang L, Zhang J, McDermott J, Samudrala R, Wang J, Yang H, Yu J, Kristiansen K, Wong GK, Wang J (2005) Origin and evolution of new exons in rodents. Genome Res 15:1258–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang BB, O’Toole M, Brendel V, Young ND (2008a) Cross-species EST alignments reveal novel and conserved alternative splicing events in legumes. BMC Plant Biol 8:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ET, Sandberg R, Luo SJ, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB (2008b) Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Will CL, Luhrmann R (2011) Spliceosome structure and function. Csh Perspect Biol 3:a003707

    CAS  Google Scholar 

  • Xing Y, Lee C (2006) Alternative splicing and RNA selection pressure—evolutionary consequences for eukaryotic genomes. Nat Rev Genet 7:499–509

    Article  CAS  PubMed  Google Scholar 

  • Yu CS, Lin CJ, Hwang JK (2004) Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci 13:1402–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Lotti F, Dittmar K, Younis I, Wan L, Kasim M, Dreyfuss G (2008) SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing. Cell 133:585–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu FY, Chen MX, Ye NH, Shi L, Ma KL, Yang JF, Cao YY, Zhang YJ, Yoshida T, Fernie AR, Fan GY, Wen B, Zhou R, Liu TY, Fan T, Gao B, Zhang D, Hao GF, Xiao S, Liu YG, Zhang JH (2017) Proteogenomic analysis reveals alternative splicing and translation as part of the abscisic acid response in Arabidopsis seedlings. Plant J 91:518–533

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Guangdong Province (2018A030313030) and Hong Kong Research Grant Council (AoE/M-05/12, AoE/M-403/16, GRF14160516, 14177617, 12100318).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mo-Xian Chen or Jianhua Zhang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1 Phylogenetic tree of plant SPF30 gene family constructed by Maximum likelihood methods.

Figure S2 Weblogo plots of conserved motifs in plant SPF30 family.

Table S1SPF30 genes identified from 64 plant species.

Table S2 Predicted subcellular localization of plant SPF30 proteins.

Table S3 Characteristics of plant SPF30 gene structures.

Supplementary material 1 (DOCX 42 kb)

Supplementary material 2 (TIFF 1031 kb)

Supplementary material 3 (TIFF 3244 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Yang, JF., Gao, B. et al. Identification, evolution and alternative splicing profile analysis of the splicing factor 30 (SPF30) in plant species. Planta 249, 1997–2014 (2019). https://doi.org/10.1007/s00425-019-03146-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-019-03146-x

Keywords

Navigation