Advertisement

Planta

, Volume 250, Issue 1, pp 69–78 | Cite as

Circular RNAs exhibit extensive intraspecific variation in maize

  • Zi Luo
  • Linqian Han
  • Jia Qian
  • Lin LiEmail author
Original Article

Abstract

Main conclusion

Comprehensive transcriptome profiling uncovers extensive intraspecific variation of circular RNAs in maize, shedding light on genomic and phenotypic variation among maize inbred lines.

Circular RNAs (circRNAs) are single-strand, covalently closed transcripts. A substantial number of circRNAs have been identified and shown to be associated with phenotypic variation in various species. However, little is known about the intraspecific variation of circRNAs in maize (Zea mays L.). Here, we collected a large transcriptomic dataset (by circRNA-seq and mRNA-seq) from seedling leaves of the reference maize inbred lines B73 and Mo17. We identified over 1500 circRNAs in these lines using two circRNA detection methods, CIRCexplorer2 and CIRI. Notably, a substantial proportion of circRNAs varied in terms of sequence or expression level between lines, pointing to extensive intraspecific variation of circRNAs in maize. GO and KEGG analyses showed that genes producing circRNAs with intraspecific variation were more likely to be enriched in multiple functional groups, compared with those that did not produce circRNAs. These findings suggest that circRNAs could be utilized as an indicator of genomic and phenotypic variation among maize inbred lines. Ribosomal profiling revealed that several circRNAs might have translational capacity in maize. These results uncover the extensive intraspecific variation of circRNAs and pave the way for further understanding the molecular mechanisms underlying phenotypic variation at the circRNA level in maize.

Keywords

Maize Circular RNAs Intraspecific variation Phenotypic variation 

Notes

Funding

This research was supported by the National Key Research and Development Program of China (2016YFD0100802) and Huazhong Agricultural University Scientific & Technological Self-innovation Foundation (Program No. 2015RC016). The authors declare no conflict of interest.

Supplementary material

425_2019_3145_MOESM1_ESM.docx (356 kb)
Supplementary material 1 (DOCX 355 kb)
425_2019_3145_MOESM2_ESM.xlsx (264 kb)
Supplementary material 2 Table S1 Summary of circRNA-seq data obtained for B73 and Mo17. Table S2 Detailed information about circRNAs detected in B73 and Mo17. Table S3 Parental gene IDs of circRNAs in B73 and Mo17. Table S4 Overlapped circRNAs in B73 and Mo17. Table S5 Differentially expressed circRNAs in B73 and Mo17. Table S6 qRT-PCR validation of differentially expressed circRNAs in B73 and Mo17. Table S7 Enriched GO terms for the parental genes of B73- and Mo17-specific circRNAs. Table S8 Number of circRNAs with junction sites covered by Ribo-seq data in B73 and Mo17. Table S9 Enriched GO terms for the parental genes of circRNAs with junction sites covered by Ribo-seq data. Table S10 Sequences of validated translatable circRNAs in B73 and Mo17. Table S11 Primer information for the validation of translatable circRNAs and differentially expressed circRNAs (XLSX 263 kb)

References

  1. Arabidopsis Genome I (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408(6814):796–815.  https://doi.org/10.1038/35048692 CrossRefGoogle Scholar
  2. Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56(1):55–66.  https://doi.org/10.1016/j.molcel.2014.08.019 CrossRefPubMedGoogle Scholar
  3. Bruce AB (1910) The Mendelian theory of heredity and the augmentation of vigor. Science 32(827):627–628.  https://doi.org/10.1126/science.32.827.627-a CrossRefPubMedGoogle Scholar
  4. Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE (2010) Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet 6(12):e1001233.  https://doi.org/10.1371/journal.pgen.1001233 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Burt AJ, Grainger CM, Shelp BJ, Lee EA (2011) Heterosis for carotenoid concentration and profile in maize hybrids. Genome 54(12):993–1004.  https://doi.org/10.1139/g11-066 CrossRefPubMedGoogle Scholar
  6. Chen CY, Sarnow P (1995) Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 268(5209):415–417CrossRefPubMedGoogle Scholar
  7. Chen G, Cui J, Wang L, Zhu Y, Lu Z, Jin B (2017) Genome-wide identification of circular RNAs in Arabidopsis thaliana. Front Plant Sci 8:1678.  https://doi.org/10.3389/fpls.2017.01678 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chen L, Zhang P, Fan Y, Lu Q, Li Q, Yan J, Muehlbauer GJ, Schnable PS, Dai M, Li L (2018) Circular RNAs mediated by transposons are associated with transcriptomic and phenotypic variation in maize. New Phytol 217(3):1292–1306.  https://doi.org/10.1111/nph.14901 CrossRefPubMedGoogle Scholar
  9. Chu Q, Zhang X, Zhu X, Liu C, Mao L, Ye C, Zhu QH, Fan L (2017) PlantcircBase: a database for plant circular RNAs. Mol Plant 10(8):1126–1128.  https://doi.org/10.1016/j.molp.2017.03.003 CrossRefPubMedGoogle Scholar
  10. Chu Q, Bai P, Zhu X, Zhang X, Mao L, Zhu QH, Fan L, Ye CY (2018) Characteristics of plant circular RNAs. Brief Bioinform.  https://doi.org/10.1093/bib/bby111 CrossRefPubMedGoogle Scholar
  11. Davenport CB (1908) Degeneration, albinism and inbreeding. Science 28(718):454–455.  https://doi.org/10.1126/science.28.718.454-b CrossRefPubMedGoogle Scholar
  12. Fu H, Dooner HK (2002) Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci USA 99(14):9573–9578.  https://doi.org/10.1073/pnas.132259199 CrossRefPubMedGoogle Scholar
  13. Gao Y, Wang J, Zhao F (2015) CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol 16:4.  https://doi.org/10.1186/s13059-014-0571-3 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Garcia AA, Wang S, Melchinger AE, Zeng ZB (2008) Quantitative trait loci mapping and the genetic basis of heterosis in maize and rice. Genetics 180(3):1707–1724.  https://doi.org/10.1534/genetics.107.082867 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Guo B, Chen Y, Li C, Wang T, Wang R, Wang B, Hu S, Du X, Xing H, Song X, Yao Y, Sun Q, Ni Z (2014) Maize (Zea mays L.) seedling leaf nuclear proteome and differentially expressed proteins between a hybrid and its parental lines. Proteomics 14(9):1071–1087.  https://doi.org/10.1002/pmic.201300147 CrossRefPubMedGoogle Scholar
  16. Hansen KD, Wu Z, Irizarry RA, Leek JT (2011a) Sequencing technology does not eliminate biological variability. Nat Biotechnol 29(7):572–573.  https://doi.org/10.1038/nbt.1910 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hansen TB, Wiklund ED, Bramsen JB, Villadsen SB, Statham AL, Clark SJ, Kjems J (2011b) miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J 30(21):4414–4422.  https://doi.org/10.1038/emboj.2011.359 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388.  https://doi.org/10.1038/nature11993 CrossRefPubMedGoogle Scholar
  19. Hansen TB, Veno MT, Damgaard CK, Kjems J (2016) Comparison of circular RNA prediction tools. Nucleic Acids Res 44(6):e58.  https://doi.org/10.1093/nar/gkv1458 CrossRefPubMedGoogle Scholar
  20. International Rice Genome Sequencing P (2005) The map-based sequence of the rice genome. Nature 436(7052):793–800.  https://doi.org/10.1038/nature03895 CrossRefGoogle Scholar
  21. Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19(2):141–157.  https://doi.org/10.1261/rna.035667.112 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Jiao Y, Peluso P, Shi J, Liang T, Stitzer MC, Wang B, Campbell MS, Stein JC, Wei X, Chin CS, Guill K, Regulski M, Kumari S, Olson A, Gent J, Schneider KL, Wolfgruber TK, May MR, Springer NM, Antoniou E, McCombie WR, Presting GG, McMullen M, Ross-Ibarra J, Dawe RK, Hastie A, Rank DR, Ware D (2017) Improved maize reference genome with single-molecule technologies. Nature 546(7659):524–527.  https://doi.org/10.1038/nature22971 CrossRefPubMedGoogle Scholar
  23. Kaeppler S (2012) Heterosis: many genes, many mechanisms—end the search for an undiscovered unifying theory. ISRN Bot 2012:1–12.  https://doi.org/10.5402/2012/682824 CrossRefGoogle Scholar
  24. Lai J, Li R, Xu X, Jin W, Xu M, Zhao H, Xiang Z, Song W, Ying K, Zhang M, Jiao Y, Ni P, Zhang J, Li D, Guo X, Ye K, Jian M, Wang B, Zheng H, Liang H, Zhang X, Wang S, Chen S, Li J, Fu Y, Springer NM, Yang H, Wang J, Dai J, Schnable PS, Wang J (2010) Genome-wide patterns of genetic variation among elite maize inbred lines. Nat Genet 42(11):1027–1030.  https://doi.org/10.1038/ng.684 CrossRefPubMedGoogle Scholar
  25. Lei L, Shi J, Chen J, Zhang M, Sun S, Xie S, Li X, Zeng B, Peng L, Hauck A, Zhao H, Song W, Fan Z, Lai J (2015) Ribosome profiling reveals dynamic translational landscape in maize seedlings under drought stress. Plant J 84(6):1206–1218.  https://doi.org/10.1111/tpj.13073 CrossRefPubMedGoogle Scholar
  26. Lisch D (2009) Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol 60:43–66.  https://doi.org/10.1146/annurev.arplant.59.032607.092744 CrossRefPubMedGoogle Scholar
  27. Lisch D (2013) How important are transposons for plant evolution? Nat Rev Genet 14(1):49–61.  https://doi.org/10.1038/nrg3374 CrossRefGoogle Scholar
  28. Lu T, Cui L, Zhou Y, Zhu C, Fan D, Gong H, Zhao Q, Zhou C, Zhao Y, Lu D, Luo J, Wang Y, Tian Q, Feng Q, Huang T, Han B (2015) Transcriptome-wide investigation of circular RNAs in rice. RNA 21(12):2076–2087.  https://doi.org/10.1261/rna.052282.115 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338.  https://doi.org/10.1038/nature11928 CrossRefGoogle Scholar
  30. Schnable PS, Springer NM (2013) Progress toward understanding heterosis in crop plants. Annu Rev Plant Biol 64:71–88.  https://doi.org/10.1146/annurev-arplant-042110-103827 CrossRefGoogle Scholar
  31. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326(5956):1112–1115.  https://doi.org/10.1126/science.1178534 CrossRefPubMedGoogle Scholar
  32. Springer NM, Stupar RM (2007) Allelic variation and heterosis in maize: how do two halves make more than a whole? Genome Res 17(3):264–275.  https://doi.org/10.1101/gr.5347007 CrossRefPubMedGoogle Scholar
  33. Springer NM, Ying K, Fu Y, Ji T, Yeh CT, Jia Y, Wu W, Richmond T, Kitzman J, Rosenbaum H, Iniguez AL, Barbazuk WB, Jeddeloh JA, Nettleton D, Schnable PS (2009) Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLoS Genet 5(11):e1000734.  https://doi.org/10.1371/journal.pgen.1000734 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Stuber CW, Lincoln SE, Wolff DW, Helentjaris T, Lander ES (1992) Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132(3):823–839PubMedPubMedCentralGoogle Scholar
  35. Sun S, Zhou Y, Chen J, Shi J, Zhao H, Zhao H, Song W, Zhang M, Cui Y, Dong X, Liu H, Ma X, Jiao Y, Wang B, Wei X, Stein JC, Glaubitz JC, Lu F, Yu G, Liang C, Fengler K, Li B, Rafalski A, Schnable PS, Ware DH, Buckler ES, Lai J (2018) Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes. Nat Genet 50(9):1289–1295.  https://doi.org/10.1038/s41588-018-0182-0 CrossRefPubMedGoogle Scholar
  36. Swanson-Wagner RA, Eichten SR, Kumari S, Tiffin P, Stein JC, Ware D, Springer NM (2010) Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor. Genome Res 20(12):1689–1699.  https://doi.org/10.1101/gr.109165.110 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Szabo L, Salzman J (2016) Detecting circular RNAs: bioinformatic and experimental challenges. Nat Rev Genet 17(11):679–692.  https://doi.org/10.1038/nrg.2016.114 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Tang J, Yan J, Ma X, Teng W, Wu W, Dai J, Dhillon BS, Melchinger AE, Li J (2010) Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an immortalized F2 population. Theor Appl Genet Theoretische und angewandte Genetik 120(2):333–340.  https://doi.org/10.1007/s00122-009-1213-0 CrossRefPubMedGoogle Scholar
  39. Tang B, Hao Z, Zhu Y, Zhang H, Li G (2018) Genome-wide identification and functional analysis of circRNAs in Zea mays. PLoS One 13(12):e0202375.  https://doi.org/10.1371/journal.pone.0202375 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Tong W, Yu J, Hou Y, Li F, Zhou Q, Wei C, Bennetzen JL (2018) Circular RNA architecture and differentiation during leaf bud to young leaf development in tea (Camellia sinensis). Planta 248(6):1417–1429.  https://doi.org/10.1007/s00425-018-2983-x CrossRefPubMedGoogle Scholar
  41. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–515.  https://doi.org/10.1038/nbt.1621 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Wang PL, Bao Y, Yee MC, Barrett SP, Hogan GJ, Olsen MN, Dinneny JR, Brown PO, Salzman J (2014) Circular RNA is expressed across the eukaryotic tree of life. PloS One.  https://doi.org/10.1371/journal.pone.0090859 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Wei L, Cao X (2016) The effect of transposable elements on phenotypic variation: insights from plants to humans. Sci China Life Sci 59(1):24–37.  https://doi.org/10.1007/s11427-015-4993-2 CrossRefPubMedGoogle Scholar
  44. Westholm JO, Miura P, Olson S, Shenker S, Joseph B, Sanfilippo P, Celniker SE, Graveley BR, Lai EC (2014) Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep 9(5):1966–1980CrossRefPubMedPubMedCentralGoogle Scholar
  45. Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li CY, Wei L (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res.  https://doi.org/10.1093/nar/gkr483 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, Huang N, Yang X, Zhao K, Zhou H, Huang S, Xie B, Zhang N (2018) Novel role of FBXW7 circular rna in repressing glioma tumorigenesis. J Natl Cancer Inst.  https://doi.org/10.1093/jnci/djx166 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Ye CY, Chen L, Liu C, Zhu QH, Fan L (2015) Widespread noncoding circular RNAs in plants. New Phytol 208(1):88–95.  https://doi.org/10.1111/nph.13585 CrossRefPubMedGoogle Scholar
  48. Zeng X, Lin W, Guo M, Zou Q (2017) A comprehensive overview and evaluation of circular RNA detection tools. PLoS Comput Biol 13(6):e1005420.  https://doi.org/10.1371/journal.pcbi.1005420 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL, Yang L (2014) Complementary sequence-mediated exon circularization. Cell 159(1):134–147.  https://doi.org/10.1016/j.cell.2014.09.001 CrossRefPubMedGoogle Scholar
  50. Zhang XO, Dong R, Zhang Y, Zhang JL, Luo Z, Zhang J, Chen LL, Yang L (2016) Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res 26(9):1277–1287.  https://doi.org/10.1101/gr.202895.115 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Zuo J, Wang Q, Zhu B, Luo Y, Gao L (2016) Deciphering the roles of circRNAs on chilling injury in tomato. Biochem Biophys Res Commun 479(2):132–138.  https://doi.org/10.1016/j.bbrc.2016.07.032 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Key Laboratory of Crop Genetic Improvement, Crop Information CenterHuazhong Agricultural UniversityWuhanChina

Personalised recommendations