, Volume 249, Issue 1, pp 113–122 | Cite as

Effect of diflufenican on total carotenoid and phytoene production in carrot suspension-cultured cells

  • Begoña Miras-Moreno
  • Maria Angeles Pedreño
  • Paul D. Fraser
  • Ana Belén Sabater-Jara
  • Lorena AlmagroEmail author
Original Article
Part of the following topical collections:
  1. Terpenes and Isoprenoids


Main Conclusion

Diflufenican increased 493-fold the level of phytoene. Diflufenican-induced inhibition of phytoene desaturase gene expression in carrot cells resulted in an increased production of phytoene.

This work analyzes the effect of diflufenican, an inhibitor of phytoene desaturase, on the gene expression profiles of the biosynthetic pathway of carotenoids related with the production of these compounds in carrot cell cultures. The results showed that the presence of 10 µM diflufenican in the culture medium increased phytoene levels, which was 493-fold higher than in control cells after 7 days of treatment but did not alter cell growth in carrot cell cultures. The maximal production of phytoene was reached with 10 µM diflufenican after 7 days of incubation in the presence of light and with 30 g/L sucrose in the culture medium. Moreover, diflufenican decreased the expression of phytoene synthase and phytoene desaturase genes at all the times studied. This diflufenican-induced inhibition of phytoene desaturase gene expression in carrot cell cultures resulted in an increased production of phytoene. Our results provide new insights into the action of diflufenican in carrot cell cultures, which could represent an alternative more sustainable and environmentally friendly system to produce phytoene than those currently used.


Carotenoids Carrot suspension-cultured cells Diflufenican Phytoene 



This work has been supported by the Ministerio de Economía y Competitividad (no. BIO2017-82374-R) and Fundación Seneca-Agencia de Ciencia y Tecnología de la Región de Murcia (no. 19876/GERM/15).

Supplementary material

425_2018_2966_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 13 kb)
425_2018_2966_MOESM2_ESM.docx (217 kb)
Supplementary material 2 (DOCX 217 kb)
425_2018_2966_MOESM3_ESM.docx (17 kb)
Supplementary material 3 (DOCX 17 kb)
425_2018_2966_MOESM4_ESM.docx (12 kb)
Supplementary material 4 (DOCX 12 kb)


  1. Almagro L, Belchí-Navarro S, Martínez-Márquez A, Bru R, Pedreño MA (2015) Enhanced extracellular production of trans-resveratrol in Vitis vinifera suspension-cultured cells by using cyclodextrins and coronatine. Plant Physiol Biochem 97:361–367CrossRefGoogle Scholar
  2. Almagro L, García-Pérez P, Belchí-Navarro S, Sánchez-Pujante PJ, Pedreño MA (2016) New strategies for the use of Linum usitatissimum cell factories for the production of bioactive compounds. Plant Physiol Biochem 99:73–78CrossRefGoogle Scholar
  3. Azadi P, Otang NV, Chin DP, Nakamura I, Fujisawa M, Harada H, Misawa M, Mii M (2010) Metabolic engineering of Lilium × formolongi using multiple genes of the carotenoid biosynthesis pathway. Plant Biotechnol Rep 4:269–280CrossRefGoogle Scholar
  4. Biehler E, Alkerwi AA, Hoffmann L, Krause E, Guillaume M, Lair ML, Bohn T (2012) Contribution of violaxanthin, neoxanthin, phytoene and phytofluene to total carotenoid intake: assessment in Luxembourg. J Food Compos Anal 25:56–65CrossRefGoogle Scholar
  5. Bishayee A, Sarkar A, Chatterjee M (1995) Hepatoprotective activity of carrot (Daucus carota L.) against carbon tetrachloride intoxication in mouse liver. J Ethnopharmacol 47:69–74CrossRefGoogle Scholar
  6. Boger P, Sandmann G (1998) Carotenoid biosynthesis inhibitor herbicides—mode of action and resistance mechanisms. Pestic Outlook 9:29–35Google Scholar
  7. Botella-Pavía P, Rodríguez-Concepción M (2006) Carotenoid biotechnology in plants for nutritionally improved foods. Physiol Plant 126:369–381CrossRefGoogle Scholar
  8. Busch M, Seuter A, Hain R (2002) Functional analysis of the early steps of carotenoid biosynthesis in tobacco. Plant Physiol 128:439–453CrossRefGoogle Scholar
  9. Campbell JK, Stroud CK, Nakamura MT, Lila MA, Erdman JW (2006) Serum testosterone is reduced following short-term phytofluene, lycopene, or tomato powder consumption in F344 rats. J Nutr 136:2813–2819CrossRefGoogle Scholar
  10. Campisi L, Fambrini M, Michelotti V, Salvini M, Giuntini D, Pugliesi C (2006) Phytoene accumulation in sunflower decreases the transcript levels of the phytoene synthase gene. Plant Growth Regul 48:79–87CrossRefGoogle Scholar
  11. Cazzonelli CI, Pogson BJ (2010) Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci 15:266–274CrossRefGoogle Scholar
  12. Dayan FE, Zaccaro MLM (2012) Chlorophyll fluorescence as a marker for herbicide mechanisms of action pesticide. Biochem Physiol 102:189–197Google Scholar
  13. Edwards AJ, Vinyard BT, Wiley ER, Brown ED, Collins JK, Perkins-Veazie P, Clevidence BA (2003) Consumption of watermelon juice increases plasma concentrations of lycopene and β-carotene in humans. J Nut 133:1043–1050CrossRefGoogle Scholar
  14. Eliassen AH, Hendrickson SJ, Brinton LA, Buring JE, Campos H, Dai Q, Dorgan JF, Franke AA, Gao YT, Goodman MT, Helzlsouer KJ, Hoffman-Bolton J, Hultén K, Sesso HD, Sowell AL, Tamimi RM, Toniolo P, Wilkens LR, Winkvist A, Zeleniuch-Jacquotte A, Zheng W, Hankinson SE (2012) Circulating carotenoids and risk of breast cancer: pooled analysis of eight prospective studies. J Natl Cancer Inst 104:1905–1916CrossRefGoogle Scholar
  15. Engelmann NJ, Rogers RB, Rupassara SI, Garlick PJ, Lila MA, Erdman JW (2010) Production of [13C]-lycopene from high lycopene tomato cell suspension cultures. FASEB J 24:539–546Google Scholar
  16. Fatimah AMZ, Norazian MH, Rashidi O (2012) Identification of carotenoid composition in selected ‘ulam’ or traditional vegetables in Malaysia. Int Food Res J 19:527–530Google Scholar
  17. Fischer BB, Rüfenacht K, Dannenhauer K, Wiesendanger M, Eggen RI (2010) Multiple stressor effects of high light irradiance and photosynthetic herbicides on growth and survival of the green alga Chlamydomonas reinhardtii. Environ Toxicol Chem 29:2211–2219CrossRefGoogle Scholar
  18. Fraser PD, Kiano JW, Truesdale MR, Schuch W, Bramley PM (1999) Phytoene synthase-2 enzyme activity in tomato does not contribute to carotenoid synthesis in ripening fruit. Plant Mol Biol 40:687–698CrossRefGoogle Scholar
  19. Fuller B, Smith D, Howerton A, Kern D (2006) Anti-inflammatory effects of CoQ10 and colorless carotenoids. J Cosmet Dermatol 5:30–38CrossRefGoogle Scholar
  20. Giuliano G, Bartley GE, Scolnik PA (1993) Regulation of carotenoid biosynthesis during tomato development. Plant Cell 5:379–387CrossRefGoogle Scholar
  21. Hoppe PP, Krämer K, Van den Berg H, Steenge G, van Vliet T (2003) Synthetic and tomato-based lycopene have identical bioavailability in humans. Eur J Nutr 42:272–278CrossRefGoogle Scholar
  22. Ibrahim RK (1987) Regulation of synthesis of phenolic. In: Constabel F, Vasil IK (eds) Cell culture and somatic cell genetics of plants. Academic Press Books, New York, pp 77–95Google Scholar
  23. Iorizzo M, Ellison S, Senalik D, Zeng P, Satapoomin P, Huang J et al (2016) A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat Genet 48:657–670CrossRefGoogle Scholar
  24. Joyard J, Ferro M, Masselon C, Seigneurin-Berny D, Salvi D, Garin J, Rolland N (2009) Chloroplast proteomics and the compartmentation of plastidial isoprenoid biosynthetic pathways. Mol Plant 2:1154–1180CrossRefGoogle Scholar
  25. Karppi J, Kurl S, Ronkainen K, Kauhanen J, Laukkanen JA (2013) Serum carotenoids reduce progression of early atherosclerosis in the carotid artery wall among Eastern Finnish men. PLoS One 8:e64107CrossRefGoogle Scholar
  26. Khachik F, Carvalho L, Bernstein PS, Muir GJ, Zhao DY, Katz NB (2002) Chemistry, distribution, and metabolism of tomato carotenoids and their impact on human health. Exp Biol Med 227:845–851CrossRefGoogle Scholar
  27. Kim BR, Kim SU, Chang YJ (2005) Differential expression of three 1-deoxy-d-xylulose-5-phosphate synthase genes in rice. Biotechnol Lett 27:997–1001CrossRefGoogle Scholar
  28. Li F, Vallabhaneni R, Wurtzel ET (2008) PSY3, a new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic stress-induced root carotenogenesis. Plant Physiol 146:1333–1345CrossRefGoogle Scholar
  29. Maass D, Arango J, Wüst F, Beyer P, Welsch R (2009) Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels. PLoS One 4:e6373CrossRefGoogle Scholar
  30. Miras-Moreno B, Almagro L, Pedreño MA, Sabater-Jara AB (2016) Enhanced accumulation of phytosterols and phenolic compounds in cyclodextrin-elicited cell suspension culture of Daucus carota. Plant Sci 250:154–164CrossRefGoogle Scholar
  31. Müller P, Li XP, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566CrossRefGoogle Scholar
  32. Nicolle C, Simon G, Rock E, Amouroux P, Rémésy C (2004) Genetic variability influences carotenoid, vitamin, phenolic, and mineral content in white, yellow, purple, orange, and dark-orange carrot cultivars. J Am Soc Hortic Sci 129:523–529CrossRefGoogle Scholar
  33. Paetau I, Khachik F, Brown ED, Beecher GR, Kramer TR, Chittams J, Clevidence BA (1998) Chronic ingestion of lycopene-rich tomato juice or lycopene supplements significantly increases plasma concentrations of lycopene and related tomato carotenoids in humans. Am J Clin Nutr 68:1187–1195CrossRefGoogle Scholar
  34. Qin G, Gu H, Ma L, Peng Y, Deng XW, Chen Z, Qu LJ (2007) Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Res 17:471–482CrossRefGoogle Scholar
  35. Rakovic J (2014) Effects of the carotenoid inhibiting herbicide diflufenican on the photosynthesis of benthic algae. Thesis Dissertation. Swedish University of Agricultural SciencesGoogle Scholar
  36. Rao SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153CrossRefGoogle Scholar
  37. Ramirez-Estrada K, Vidal-Limon H, Hidalgo D, Moyano E, Golenioswki M, Cusidó RM, Palazon J (2016) Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules 21:182CrossRefGoogle Scholar
  38. Robertson GH, Mahoney NE, Goodman N, Pavlath AE (1995) Regulation of lycopene formation in cell suspension culture of VFNT tomato (Lycopersicon esculentum) by CPTA, growth regulators, sucrose, and temperature. J Exp Bot 46:667–673CrossRefGoogle Scholar
  39. Rodriguez-Concepcion M, Stange C (2013) Biosynthesis of carotenoids in carrot: an underground story comes to light. Arch Biochem Biophys 539:110–116CrossRefGoogle Scholar
  40. Rodríguez-Villalón A, Gas E, Rodríguez-Concepción M (2009a) Phytoene synthase activity controls the biosynthesis of carotenoids and the supply of their metabolic precursors in dark-grown Arabidopsis seedlings. Plant J 60:424–435CrossRefGoogle Scholar
  41. Rodríguez-Villalón A, Gas E, Rodríguez-Concepción M (2009b) Colors in the dark: a model for the regulation of carotenoid biosynthesis in etioplasts. Plant Signal Behav 4:965–967CrossRefGoogle Scholar
  42. Rossi PG, Bao L, Luciani A, Panighi J, Desjobert JM, Costa J, Casanova J, Bolla JM, Berti L (2007) (E)-methylisoeugenol and elemicin: antibacterial components of Daucus carota L. essential oil against Campylobacter jejuni. J Agric Food Chem 18:7332–7336CrossRefGoogle Scholar
  43. Ruiz-Sola MA, Rodríguez-Concepción M (2012) Carotenoid biosynthesis in Arabidopsis: a colorful pathway. Arabidopsis Book 10:e0158CrossRefGoogle Scholar
  44. Sabater-Jara AB, Pedreño MA (2013) Use of β-cyclodextrins to enhance phytosterol production in cell suspension cultures of carrot (Daucus carota L.). Plant Cell, Tiss Org Cult 114:249–258CrossRefGoogle Scholar
  45. Saladié M, Wright LP, Garcia-Mas J, Rodriguez-Concepcion M, Phillips MA (2014) The 2-C-methylerythritol 4-phosphate pathway in melon is regulated by specialized isoforms for the first and last steps. J Exp Bot 65:5077–5092CrossRefGoogle Scholar
  46. Simkin AJ, Breitenbach J, Kuntz M, Sandmann G (2000) In vitro and in situ inhibition of carotenoid biosynthesis in Capsicum annuum by bleaching herbicides. J Agric Food Chem 48:4676–4680CrossRefGoogle Scholar
  47. Srinivasan R, Babu S, Gothandam KM (2017) Accumulation of phytoene, a colorless carotenoid by inhibition of phytoene desaturase (PDS) gene in Dunaliella salina V-101. Bioresour Technol 242:311–318CrossRefGoogle Scholar
  48. Stahl W, Sies H (2007) Carotenoids and flavonoids contribute to nutritional protection against skin damage from sunlight. Mol Biotechnol 37:6–30CrossRefGoogle Scholar
  49. Tavares AC, Goncalves MJ, Cavaleiro C, Cruz MT, Lopes MC, Canhoto J, Salgueiro LR (2008) Essential oil of Daucus carota subsp. halophilus: composition, antifungal activity and cytotoxicity. J Ethnopharmacol 119:129–134CrossRefGoogle Scholar
  50. von Oppen-Bezalel L, Fishbein D, Havas F, Ben-Chitrit O, Khaiat A (2015) The photoprotective effects of a food supplement tomato powder rich in phytoene and phytofluene, the colorless carotenoids, a preliminary study. Glob Dermatol 2:178–182Google Scholar
  51. Weyman GS, Rufli H, Weltje L, Salinas ER, Hamitou M (2012) Aquatic toxicity tests with substances that are poorly soluble in water and consequences for environmental risk assessment. Environ Toxicol Chem 31:1662–1669CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Begoña Miras-Moreno
    • 1
  • Maria Angeles Pedreño
    • 1
  • Paul D. Fraser
    • 2
  • Ana Belén Sabater-Jara
    • 1
  • Lorena Almagro
    • 1
    Email author
  1. 1.Department of Plant Biology, Faculty of BiologyUniversity of MurciaMurciaSpain
  2. 2.School of Biological SciencesRoyal Holloway University of LondonEghamUK

Personalised recommendations