Advertisement

Planta

, Volume 248, Issue 1, pp 89–103 | Cite as

Ectopic expression of VpSTS29, a stilbene synthase gene from Vitis pseudoreticulata, indicates STS presence in cytosolic oil bodies

  • Fuli Ma
  • Lei Wang
  • Yuejin Wang
Original Article
  • 236 Downloads

Abstract

Main conclusion

Stilbene synthase (STS) and its metabolic products are accumulated in senescing grapevine leaves. Ectopic expression of VpSTS29 in Arabidopsis shows the presence of VpSTS29 in oil bodies and increases trans-piceid in developing leaves.

Stilbenes are the natural antimicrobial phytoalexins that are synthesised via the phenylpropanoid pathway. STS is the key enzyme catalysing the production of stilbenes. We have previously reported that the VpSTS29 gene plays an important role in powdery mildew resistance in Vitis pseudoreticulata. However, the synthesis and accumulation of these stilbene products in plant cells remain unclear. Here, we demonstrate that VpSTS29 is present in cytosolic oil bodies and can be transported into the vacuole at particular plant-developmental stages. Western blot and high-performance liquid chromatography showed that STS and trans-piceid accumulated in senescent grape leaves and in pVpSTS29::VpSTS29-expressing Arabidopsis during age-dependent leaf senescence. Subcellular localisation analyses indicated VpSTS29-GFP was present in the cytoplasm and in STS-containing bodies in Arabidopsis. Nile red staining, co-localisation and immunohistochemistry analyses of leaves confirmed that the STS-containing bodies were oil bodies and that these moved randomly in the cytoplasm and vacuole. Detection of protein profiles revealed that no free GFP was detected in the pVpSTS29::VpSTS29-GFP-expressing protoplasts or in Arabidopsis during the dark–light cycle, demonstrating that GFP fluorescence distributed in the STS-containing bodies and vacuole was the VpSTS29-GFP fusion protein. Intriguingly, in comparison to the controls, over-expression of VpSTS29 in Arabidopsis resulted in relatively high levels of trans-piceid, chlorophyll content and of photochemical efficiency accompanied by delayed leaf senescence. These results provide exciting new insights into the subcellular localisation of STS in plant cells and information about stilbene synthesis and storage.

Keywords

Chinese wild grape Stilbene synthase gene Expression profile Subcellular localisation Oil body Leaf senescence 

Abbreviations

GFP

Green fluorescent protein

HPLC

High-performance liquid chromatography

STS

Stilbene synthase

CLO3

Caleosin 3

Notes

Acknowledgements

This work was supported by the Grants from the National Science Foundation of China (Grant No. 31672129). The authors specifically thank Dr Alexander (Sandy) Lang from RESCRIPT Co. (New Zealand) for useful comments and language editing which have greatly improved the manuscript.

Supplementary material

425_2018_2883_MOESM1_ESM.doc (1.4 mb)
Supplementary material 1 (DOC 1427 kb)
425_2018_2883_MOESM2_ESM.avi (20.1 mb)
Supplemental Movie S1 The STS-containing oil bodies moved randomly in the cytoplasm. Supplementary material 2 (AVI 20627 kb)

References

  1. Achnine L, Blancaflor EB, Rasmussen S, Dixon RA (2004) Colocalization of l-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis. Plant Cell 16(11):3098–3109CrossRefPubMedPubMedCentralGoogle Scholar
  2. Baek SH, Shin WC, Ryu HS, Lee DW, Moon E, Seo CS, Hwang E, Lee HS, Ahn MH, Jeon Y (2012) Creation of resveratrol-enriched rice for the treatment of metabolic syndrome and related diseases. PLoS ONE 8(3):e57930CrossRefGoogle Scholar
  3. Bassard JE, Werck-Reichhart D (2012) Protein–protein and protein–membrane associations in the lignin pathway. Plant Cell 24(11):4465–4482CrossRefPubMedPubMedCentralGoogle Scholar
  4. Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5(6):493–506CrossRefPubMedGoogle Scholar
  5. Bellow S, Latouche G, Brown SC, Poutaraud A, Cerovic ZG (2012) In vivo localization at the cellular level of stilbene fluorescence induced by Plasmopara viticola in grapevine leaves. J Exp Bot 63(10):3697–3707CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bernales S, McDonald KL, Walter P (2006) Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol 4(12):e423CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chanoca A, Kovinich N, Burkel B, Stecha S, Bohorquez-Restrepo A, Ueda T, Eliceiri KW, Grotewold E, Otegui MS (2015) Anthocyanin vacuolar inclusions form by a microautophagy mechanism. Plant Cell 27(9):2545–2559CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cheng S, Xie X, Xu Y, Zhang C, Wang X, Zhang J, Wang Y (2016) Genetic transformation of a fruit-specific, highly expressed stilbene synthase gene from Chinese wild Vitis quinquangularis. Planta 243(4):1–13Google Scholar
  9. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743CrossRefPubMedGoogle Scholar
  10. David S, Brenda WS (2001) Localization of flavonoid enzymes in Arabidopsis roots. Plant J 27(27):37–48Google Scholar
  11. Dercks W, Creasy LL (1989) The significance of stilbene phytoalexins in the Plasmopara viticola-grapevine interaction. Physiol Mol Plant Pathol 13(4):351–371Google Scholar
  12. Dixon RA (2001) Natural products and plant disease resistance. Nature 411(6839):843–847CrossRefPubMedGoogle Scholar
  13. Donnez D, Kim KH, Antoine S, Conreux A, Luca VD, Jeandet P, Clément C, Courot E (2011) Bioproduction of resveratrol and viniferins by an elicited grapevine cell culture in a 2L stirred bioreactor. Process Biochem 46(5):1056–1062CrossRefGoogle Scholar
  14. Dubrovina A, Kiselev K (2017) Regulation of stilbene biosynthesis in plants. Planta 246:597–623CrossRefPubMedGoogle Scholar
  15. Ehlting J, Büttner D, Wang Q, Douglas CJ, Somssich IE, Kombrink E (1999) Three 4-coumarate: coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms. Plant J 19(1):9–20CrossRefPubMedGoogle Scholar
  16. Farese RV, Walther TC (2009) Lipid droplets finally get a little R-E-S-P-E-C-T. Cell 139(5):855–860CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fasoli M, Dal Santo S, Zenoni S, Tornielli GB, Farina L, Zamboni A, Porceddu A, Venturini L, Bicego M, Murino V (2012) The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program. Plant Cell Online 24(9):3489–3505CrossRefGoogle Scholar
  18. Ferrer JL, Jez JM, Bowman ME, Dixon RA, Noel JP (1999) Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat Struct Biol 6(8):775–784CrossRefPubMedGoogle Scholar
  19. Fornara V, Onelli E, Sparvoli F, Rossoni M, Aina R, Marino G, Citterio S (2008) Localization of stilbene synthase in Vitis vinifera L. during berry development. Protoplasma 233(1–2):83–93CrossRefPubMedGoogle Scholar
  20. Fritz K, Klaus H (1975) Enzymic synthesis of an aromatic ring from acetate units. Partial purification and some properties of flavanone synthase of cell-suspension cultures of Petroselinum hortense. Eur J Biochem 56(1):205–213CrossRefGoogle Scholar
  21. Giovinazzo G, Degara L (2005) Antioxidant metabolite profiles in tomato fruit constitutively expressing the grapevine stilbene synthase gene. Plant Biotechnol J 3(1):57–69CrossRefPubMedGoogle Scholar
  22. Gomez C, Conejero G, Torregrosa L, Cheynier V, Terrier N, Ageorges A (2011) In vivo grapevine anthocyanin transport involves vesicle-mediated trafficking and the contribution of anthoMATE transporters and GST. Plant J 67(6):960–970CrossRefPubMedGoogle Scholar
  23. Greenspan P, Mayer EP, Fowler SD (1985) Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 100(100):965–973CrossRefPubMedGoogle Scholar
  24. Hain R, Reif H, Krause E, Langebartels R, Kindl H, Vornam B, Wiese W, Schmelzer E, Schreier PH, Stöcker RH (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361(6408):153–156CrossRefPubMedGoogle Scholar
  25. Hammerbacher A, Ralph SG, Bohlmann J, Fenning TM, Gershenzon J, Schmidt A (2011) Biosynthesis of the major tetrahydroxystilbenes in spruce, astringin and isorhapontin, proceeds via resveratrol and is enhanced by fungal infection. Plant Physiol 157(2):876–890CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hanhineva K, Kokko H, Siljanen H, Rogachev I, Aharoni A, Kctrenlampi SO (2009) Stilbene synthase gene transfer caused alterations in the phenylpropanoid metabolism of transgenic strawberry (Fragariaxananassa). J Exp Bot 60(7):2093–2106CrossRefPubMedPubMedCentralGoogle Scholar
  27. Herman EM (2008) Endoplasmic reticulum bodies: solving the insoluble. Curr Opin Plant Biol 11(6):672–679CrossRefPubMedGoogle Scholar
  28. Höll J, Vannozzi A, Czemmel S, D’Onofrio C, Walker AR, Rausch T, Lucchin M, Boss PK, Dry IB, Bogs J (2013) The R2R3-MYB transcription factors MYB14 and MYB15 regulate stilbene biosynthesis in Vitis vinifera. Plant Cell 25(10):4135–4149CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hrazdina G, Zobel AM, Hoch HC (1987) Biochemical, immunological, and immunocytochemical evidence for the association of chalcone synthase with endoplasmic reticulum membranes. Proc Natl Acad Sci USA 84(24):8966–8970CrossRefPubMedPubMedCentralGoogle Scholar
  30. Huang L, Zhang S, Singer SD, Yin X, Yang J, Wang Y, Wang X (2016) Expression of the grape VqSTS21 gene in Arabidopsis confers resistance to osmotic stress and biotrophic pathogens but not Botrytis cinerea. Front Plant Sci 7:1379PubMedPubMedCentralGoogle Scholar
  31. Jeandet P, Courot E, Clément C, Ricord S, Crouzet J, Aziz A, Cordelier S (2017) Molecular engineering of phytoalexins in plants: benefits and limitations for food and agriculture. J Agric Food Chem 65(13):2643–2644CrossRefPubMedGoogle Scholar
  32. Jian Z (2015) Flavonoid transport mechanisms: how to go, and with whom. Trends Plant Sci 20(9):576–585CrossRefGoogle Scholar
  33. Jiao Y, Xu W, Dong D, Wang Y, Nick P (2016) A stilbene synthase allele from a Chinese wild grapevine confers resistance to powdery mildew by recruiting salicylic acid signalling for efficient defence. J Exp Bot 67(19):5841–5856CrossRefPubMedPubMedCentralGoogle Scholar
  34. Jørgensen K, Rasmussen AV, Morant M, Nielsen AH, Bjarnholt N, Zagrobelny M, Bak S, Møller BL (2005) Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr Opin Plant Biol 8(3):280–291CrossRefPubMedGoogle Scholar
  35. Jung E, Jensen RA (1986) Chloroplasts of higher plants synthesize l-phenylalanine via l-arogenate. Proc Natl Acad Sci USA 83(19):7231–7235CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kambiranda D, Katam R, Basha SM, Siebert S (2014) iTRAQ-based quantitative proteomics of developing and ripening muscadine grape berry. J Proteome Res 13(2):555–569CrossRefPubMedGoogle Scholar
  37. Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M, Agostinis P, Aguirre-Ghiso JA (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8(4):445–544CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kobayashi S, Ding CK, Nakamura Y, Nakajima I, Matsumoto R (2000) Kiwifruits (Actinidia deliciosa) transformed with a Vitis stilbene synthase gene produce piceid (resveratrol-glucoside). Plant Cell Rep 19(9):904–910CrossRefGoogle Scholar
  39. Krokene P (2015) Conifer defense and resistance to bark beetles. Bark beetles: biology and ecology of native and invasive species. Elsevier, Oxford, pp 177–207Google Scholar
  40. Langcake P, Pryce RJ (1976) The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol Plant Pathol 9(1):77–86CrossRefGoogle Scholar
  41. Leckband GH (1998) Transformation and expression of a stilbene synthase gene of Vitis vinifera L. in barley and wheat for increased fungal resistance. Theor Appl Genetics 96(8):1004–1012CrossRefGoogle Scholar
  42. Leivar P, Tepperman JM, Monte E, Calderon RH, Liu TL, Quail PH (2009) Definition of early transcriptional circuitry involved in light-induced reversal of PIF-imposed repression of photomorphogenesis in young Arabidopsis seedlings. Plant Cell 21(11):3535–3553CrossRefPubMedPubMedCentralGoogle Scholar
  43. Li SH, Nagy NE, Hammerbacher A, Krokene P, Niu XM, Gershenzon J, Schneider B (2012) Localization of phenolics in phloem parenchyma cells of Norway spruce (Picea abies). ChemBioChem 13(18):2707–2713CrossRefPubMedGoogle Scholar
  44. Li Z, Peng J, Wen X, Guo H (2013) Ethylene-insensitive3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. Plant Cell 25(9):3311–3328CrossRefPubMedPubMedCentralGoogle Scholar
  45. Li Y, Im Kim J, Pysh L, Chapple C (2015) Four isoforms of Arabidopsis 4-coumarate: CoA ligase have overlapping yet distinct roles in phenylpropanoid metabolism. Plant Physiol 169(4):2409–2421PubMedPubMedCentralGoogle Scholar
  46. Martin S, Parton RG (2006) Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Biol 7(5):373–378CrossRefPubMedGoogle Scholar
  47. Oh SA, Park JH, Lee GI, Paek KH, Park SK, Nam HG (1997) Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana. Plant J 12(3):527–535CrossRefPubMedGoogle Scholar
  48. Pan QH, Wang L, Li JM (2009) Amounts and subcellular localization of stilbene synthase in response of grape berries to UV irradiation. Plant Sci 176(3):360–366CrossRefGoogle Scholar
  49. Parage C, Tavares R, Réty S, Baltenweckguyot R, Poutaraud A, Renault L, Heintz D, Lugan R, Marais GA, Aubourg S (2012) Structural, functional, and evolutionary analysis of the unusually large stilbene synthase gene family in grapevine. Plant Physiol 160(3):1407–1419CrossRefPubMedPubMedCentralGoogle Scholar
  50. Poutaraud A, Latouche G, Martins S, Meyer S, Merdinoglu D, Cerovic ZG (2007) Fast and local assessment of stilbene content in grapevine leaf by in vivo fluorometry. J Agric & Food Chem 55(13):4913CrossRefGoogle Scholar
  51. Richter A, Jacobsen HJ, Kathen AD, Lorenzo GD, Briviba K, Hain R, Ramsay G, Kiesecker H (2006) Transgenic peas (Pisum sativum) expressing polygalacturonase inhibiting protein from raspberry (Rubus idaeus) and stilbene synthase from grape (Vitis vinifera). Plant Cell Rep 25(11):1166–1173CrossRefPubMedGoogle Scholar
  52. Rippert P, Puyaubert J, Grisollet D, Derrier L, Matringe M (2009) Tyrosine and phenylalanine are synthesized within the plastids in Arabidopsis. Plant Physiol 149(3):1251–1260CrossRefPubMedPubMedCentralGoogle Scholar
  53. Ro DK, Mah N, Ellis BE, Douglas CJ (2001) Functional characterization and subcellular localization of poplar (Populus trichocarpa × Populus deltoides) cinnamate 4-hydroxylase. Plant Physiol 126(1):317–329CrossRefPubMedPubMedCentralGoogle Scholar
  54. Roy S (2000) Strategies for the minimisation of UV-induced damage. In: de Mora SJ, Demers S, Vernet M (eds) The effects of UV radiation in the marine environment. Cambridge University Press, Cambridge, pp 177–205CrossRefGoogle Scholar
  55. Rühmann S, Treutter D, Fritsche S, Briviba K, Szankowski I (2006) Piceid (resveratrol glucoside) synthesis in stilbene synthase transgenic apple fruit. J Agric Food Chem 54(13):4633–4640CrossRefPubMedGoogle Scholar
  56. Schöppner A, Kindl H (1984) Purification and properties of a stilbene synthase from induced cell suspension cultures of peanut. J Biol Chem 259(11):6806–6811PubMedGoogle Scholar
  57. Serazetdinova L, Oldach KH, Lörz H (2005) Expression of transgenic stilbene synthases in wheat causes the accumulation of unknown stilbene derivatives with antifungal activity. J Plant Physiol 162(9):985–1002CrossRefPubMedGoogle Scholar
  58. Shen T, Wang X-N, Lou H-X (2009) Natural stilbenes: an overview. Nat Prod Rep 26(7):916–935CrossRefPubMedGoogle Scholar
  59. Shimada TL, Hara-Nishimura I (2015) Leaf oil bodies are subcellular factories producing antifungal oxylipins. Curr Opin Plant Biol 25:145–150CrossRefPubMedGoogle Scholar
  60. Shimada TL, Takano Y, Shimada T, Fujiwara M, Fukao Y, Mori M, Okazaki Y, Saito K, Sasaki R, Aoki K (2014) Leaf oil body functions as a subcellular factory for the production of a phytoalexin in Arabidopsis. Plant Physiol 164(1):105–118CrossRefPubMedGoogle Scholar
  61. Sirerol JA, Rodríguez ML, Mena S, Asensi MA, Estrela JM, Ortega AL (2016) Role of natural stilbenes in the prevention of cancer. Oxid Med Cell Longev 2016:3128951CrossRefPubMedGoogle Scholar
  62. Suzuki M, Nakabayashi R, Ogata Y, Sakurai N, Tokimatsu T, Goto S, Suzuki M, Jasinski M, Martinoia E, Otagaki S (2015) Multi omics in grape berry skin revealed specific induction of stilbene synthetic pathway by UV-C irradiation. Plant Physiol 168(1):47–59CrossRefPubMedPubMedCentralGoogle Scholar
  63. Tamura K, Shimada T, Ono E, Tanaka Y, Nagatani A, S-i Higashi, Watanabe M, Nishimura M, Hara-Nishimura I (2003) Why green fluorescent fusion proteins have not been observed in the vacuoles of higher plants. Plant J 35(4):545–555CrossRefPubMedGoogle Scholar
  64. Thazar-Poulot N, Miquel M, Fobis-Loisy I, Gaude T (2015) Peroxisome extensions deliver the Arabidopsis SDP1 lipase to oil bodies. Proc Natl Acad Sci 112(13):4158–4163CrossRefPubMedPubMedCentralGoogle Scholar
  65. Tropf S, Lanz T, Rensing SA, Schröder J, Schröder G (1994) Evidence that stilbene synthases have developed from chalcone synthases several times in the course of evolution. J Mol Evol 38(6):610–618CrossRefPubMedGoogle Scholar
  66. Vannozzi A, Dry IB, Fasoli M, Zenoni S, Lucchin M (2012) Genome-wide analysis of the grapevine stilbene synthase multigenic family: genomic organization and expression profiles upon biotic and abiotic stresses. BMC Plant Biol 12(1):1–22CrossRefGoogle Scholar
  67. Wang Y, Liu Y, He P, Chen J, Lamikanra O, Lu J (1995) Evaluation of foliar resistance to Uncinula necator in Chinese wild Vitis species. Vitis 34(3):159–164Google Scholar
  68. Wang W, Tang K, Yang HR, Wen PF, Zhang P, Wang HL, Huang WD (2010) Distribution of resveratrol and stilbene synthase in young grape plants (Vitis vinifera L. cv. Cabernet Sauvignon) and the effect of UV-C on its accumulation. Plant Physiol Biochem 48(2):142–152CrossRefPubMedGoogle Scholar
  69. Weaver LM, Amasino RM (2001) Senescence is induced in individually darkened Arabidopsis leaves, but inhibited in whole darkened plants. Plant Physiol 127(3):876–886CrossRefPubMedPubMedCentralGoogle Scholar
  70. Welte M (2015) Expanding roles for lipid droplets. Curr Biol 25(11):R470–R481CrossRefPubMedPubMedCentralGoogle Scholar
  71. Winkel BS (2004) Metabolic channeling in plants. Annu Rev Plant Biol 55(4):85–107CrossRefPubMedGoogle Scholar
  72. Xu W, Yu Y, Ding J, Hua Z, Wang Y (2010) Characterization of a novel stilbene synthase promoter involved in pathogen- and stress-inducible expression from Chinese wild Vitis pseudoreticulata. Planta 231(2):475–487CrossRefPubMedGoogle Scholar
  73. Xu W, Yu Y, Zhou Q, Ding J, Dai L, Xie X, Xu Y, Zhang C, Wang Y (2011) Expression pattern, genomic structure, and promoter analysis of the gene encoding stilbene synthase from Chinese wild Vitis pseudoreticulata. J Exp Bot 62(8):2745CrossRefPubMedGoogle Scholar
  74. Xu W, Li R, Zhang N, Ma F, Jiao Y, Wang Z (2014) Transcriptome profiling of Vitis amurensis, an extremely cold-tolerant Chinese wild Vitis species, reveals candidate genes and events that potentially connected to cold stress. Plant Mol Biol 86(4):527–541CrossRefPubMedGoogle Scholar
  75. Yin X, Singer SD, Qiao H, Liu Y, Jiao C, Wang H, Li Z, Fei Z, Wang Y, Fan C (2016) Insights into the mechanisms underlying ultraviolet-C induced resveratrol metabolism in grapevine (V. amurensis Rupr.) cv. “Tonghua-3”. Front. Plant Sci 7:503Google Scholar
  76. Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2(7):1565–1572CrossRefPubMedGoogle Scholar
  77. Yu CKY, Lam CNW, Springob K, Schmidt J, Chu IK, Lo C (2006) Constitutive accumulation of cis-piceid in transgenic arabidopsis overexpressing a sorghum stilbene synthase gene. Plant Cell Physiol 47(7):1017CrossRefPubMedGoogle Scholar
  78. Zhao J, Dixon RA (2010) The ‘ins’ and ‘outs’ of flavonoid transport. Trends Plant Sci 15(2):72–80CrossRefPubMedGoogle Scholar
  79. Zhu YJ, Agbayani R, Jackson MC, Tang CS, Moore PH (2005) Expression of the grapevine stilbene synthase gene VST1 in papaya provides increased resistance against diseases caused by Phytophthora palmivora. Planta 220(2):241–250CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of HorticultureNorthwest A & F UniversityYanglingPeople’s Republic of China
  2. 2.Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureYanglingPeople’s Republic of China
  3. 3.State Key Laboratory of Crop Stress Biology in Arid AreasNorthwest A&F UniversityYanglingPeople’s Republic of China

Personalised recommendations