, Volume 247, Issue 3, pp 773–777 | Cite as

O-acetylserine(thio)lyase (OAS-TL) molecular expression in Pancratium maritimum L. (Amaryllidaceae) under salt stress

  • Olga De Castro
  • Michele Innangi
  • Bruno Menale
  • Simona Carfagna
Short Communication


Main conclusion

Different levels of salt stress affected the OAS-TL expression levels in Pancratium maritimum organs (bulb, leaf and root). A detailed method has been described for the identification of the conserved domain of the OAS-TL cDNA in sea daffodil given the scarce data available for the Amaryllidaceae family.

Pancratium maritimum or sea daffodil (Amaryllidaceae) is a bulbous geophyte growing on coastal sands. In this study, we investigated the involvement of cysteine synthesis for salt tolerance through the expression of the enzyme O-acetylserine(thio)lyase (OAS-TL) during the stress response to NaCl treatments in P. maritimum. Quantitative real-time PCR was used in different organs (bulb, leaf and root).


Psammophilous Real-time PCR Salt stress Sand dune Sea daffodil 



Basic Local Alignment Search Tool





We gratefully acknowledge the Nando Peretti Foundation for funding the study (Project 2012-83). For field sampling of Pancratium maritimum, we would like to thank Dr. Rossella Muoio and Giancarlo Sibilio from Botanical Garden of Naples (University of Naples Federico II, Italy). Finally, a special thanks to Prof. Luciano Gaudio (University of Naples Federico II) for giving us the possibility to believe in ourselves.

Supplementary material

425_2018_2855_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 17 kb)


  1. Ahmad N, Malagoli M, Wirtz M, Hell R (2016) Drought stress in maize causes differential acclimation responses of glutathione and sulfur metabolism in leaves and roots. BMC Plant Biol 16:247. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman JD (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barroso C, Romero LC, Cejudo FJ, Vega JM, Gotor C (1999) Salt specific regulation of the cytosolic O-acetylserine(thiol)lyase gene from Arabidopsis thaliana is dependent on abscisic acid. Plant Mol Biol 40:729–736CrossRefPubMedGoogle Scholar
  4. Camprubi A, Abril M, Estaun V, Calvet C (2012) Contribution of arbuscular mycorrhizal symbiosis to the survival of psammophilic plants after sea water flooding. Plant Soil 351:97–105. CrossRefGoogle Scholar
  5. Carfagna S, Vona V, Di Martino V, Esposito S, Rigano C (2011) Nitrogen assimilation and cysteine biosynthesis in barley: evidence for root sulphur assimilation upon recovery from N deprivation. Environ Exp Bot 71:18–24. CrossRefGoogle Scholar
  6. De Castro O, Brullo S, Colombo P, Jury S, De Luca P, Di Maio A (2012) Phylogenetic and biogeographical inferences for Pancratium (Amaryllidaceae), with an emphasis on the Mediterranean species based on plastid sequence data. Bot J Linn Soc 170:12–28. CrossRefGoogle Scholar
  7. De Castro O, Di Maio A, Di Febbraro M, Imparato G, Innangi M, Véla E, Menale B (2016) A multi-faceted approach to analyse the effects of environmental variables on geographic range and genetic structure of a perennial psammophilous geophyte: the case of the sea daffodil Pancratium maritimum L. in the Mediterranean Basin. PLoS ONE 11(10):e0164816. CrossRefPubMedPubMedCentralGoogle Scholar
  8. De Felice B, Manfellotto F, D’Alessandro R, De Castro O, Di Maio A, Trifuoggi M (2013) Comparative transcriptional analysis reveals differential gene expression between sand daffodil tissues. Genetica 141:443–452. CrossRefPubMedGoogle Scholar
  9. Di Maio A, De Castro O (2013) SSR-Patchwork: an optimized protocol to obtain a rapid and inexpensive SSR library using First-Generation Sequencing technology. Appl Plant Sci 1:1200158. CrossRefGoogle Scholar
  10. Fediuc E, Lips SH, Erdei L (2005) O-acetylserine(thiol)lyase activity in Phragmites and Typha plants under cadmium and NaCl stress conditions and the involvement of ABA in the stress response. J Plant Physiol 162:865–872. CrossRefPubMedGoogle Scholar
  11. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  12. Hell R, Wirtz M (2011) Molecular biology, biochemistry and cellular physiology of cysteine metabolism in Arabidopsis thaliana. Arabidopsis Book 9:e0154. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agri Exp Station Circ 347:1–32Google Scholar
  14. Khan NA, Khan MIR, Asgher M, Fatma M, Masood A, Syeed S (2014) Salinity tolerance in plants: revisiting the role of sulfur metabolites. J Plant Biochem Physiol 2:120. CrossRefGoogle Scholar
  15. Khedr AHA, Abbas MA, Wahid AAA, Quick WP, Abogadallah GM (2003) Proline induces the expression of salt-stress-responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress. J Exp Bot 54:2553–2562. CrossRefPubMedGoogle Scholar
  16. Leustek T (2002) Sulfate metabolism. Arabidopsis Book. PubMedPubMedCentralGoogle Scholar
  17. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Methods 25:402–408. CrossRefPubMedGoogle Scholar
  18. Perrone R, Salmeri C, Brullo S, Colombo P, De Castro O (2015) What do leaf anatomy and micro-morphology tell us about the psammophilous Pancratium maritimum L. (Amaryllidaceae) in response to sand dune conditions? Flora 213:20–31. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiologyUniversity of Naples Federico IINaplesItaly
  2. 2.Department of Environmental, Biological, Pharmaceutical Sciences and TechnologiesUniversity of Campania “Luigi Vanvitelli”CasertaItaly

Personalised recommendations